metadata
license: apache-2.0
datasets:
- climatebert/climate_sentiment
language:
- en
metrics:
- accuracy
Model Card for distilroberta-base-climate-sentiment
Model Description
This is the fine-tuned ClimateBERT language model with a classification head for classifying climate-related paragraphs into the climate-related sentiment classes opportunity, neutral, or risk.
Using the climatebert/distilroberta-base-climate-f language model as starting point, the distilroberta-base-climate-sentiment model is fine-tuned on our climatebert/climate_sentiment dataset.
Note: This model is trained on paragraphs. It may not perform well on sentences.
Citation Information
@techreport{bingler2023cheaptalk,
title={How Cheap Talk in Climate Disclosures Relates to Climate Initiatives, Corporate Emissions, and Reputation Risk},
author={Bingler, Julia and Kraus, Mathias and Leippold, Markus and Webersinke, Nicolas},
type={Working paper},
institution={Available at SSRN 3998435},
year={2023}
}
How to Get Started With the Model
You can use the model with a pipeline for text classification:
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from transformers.pipelines.pt_utils import KeyDataset
import datasets
from tqdm.auto import tqdm
dataset_name = "climatebert/climate_sentiment"
model_name = "climatebert/distilroberta-base-climate-sentiment"
# If you want to use your own data, simply load them as 🤗 Datasets dataset, see https://huggingface.co/docs/datasets/loading
dataset = datasets.load_dataset(dataset_name, split="test")
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, max_len=512)
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
# See https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline
for out in tqdm(pipe(KeyDataset(dataset, "text"), padding=True, truncation=True)):
print(out)