Text Classification
Transformers
PyTorch
roberta
Inference Endpoints
netzero-reduction / README.md
tobischimanski's picture
Update README.md
d1c92b6
|
raw
history blame
1.81 kB
---
license: apache-2.0
---
# Model Card for transition-physical
## Model Description
This is the fine-tuned ClimateBERT language model with a classification head for detecting sentences that are either related to emission net zero or reduction targets.
We use the [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) language model as a starting point and fine-tuned it on our human-annotated dataset.
## Citation Information
```bibtex
@article{schimanski2023detecting,
title={ClimateBERT-NetZero: Detecting and Assessing Net Zero and Reduction Targets},
author={Tobias Schimanski and Julia Bingler and Camilla Hyslop and Mathias Kraus and Markus Leippold},
year={2023}
}
```
## How to Get Started With the Model
You can use the model with a pipeline for text classification:
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from transformers.pipelines.pt_utils import KeyDataset
import datasets
from tqdm.auto import tqdm
dataset_name = "climatebert/climate_detection"
tokenizer_name = “"climatebert/distilroberta-base-climate-f"
model_name = "climatebert/netzero-reduction"
# If you want to use your own data, simply load them as 🤗 Datasets dataset, see https://huggingface.co/docs/datasets/loading
dataset = datasets.load_dataset(dataset_name, split="test")
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, max_len=512)
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
# See https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline
for out in tqdm(pipe(KeyDataset(dataset, "text"), padding=True, truncation=True)):
print(out)
```