|
--- |
|
tags: |
|
- yi |
|
- moe |
|
license: apache-2.0 |
|
--- |
|
UPDATE! |
|
GGUF Format is ready at [cloudyu/Yi-34Bx2-MoE-60B-GGUF](https://huggingface.co/cloudyu/Yi-34Bx2-MoE-60B-GGUF) |
|
|
|
# Yi based MOE 2x34B with mixtral architecture |
|
|
|
Highest score Model ranked by Open LLM Leaderboard (2024-01-11) |
|
* [Average Score 76.72](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
|
|
This is an English & Chinese MoE Model , slightly different with [cloudyu/Mixtral_34Bx2_MoE_60B](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B), and also based on |
|
* [jondurbin/bagel-dpo-34b-v0.2] |
|
* [SUSTech/SUS-Chat-34B] |
|
|
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_cloudyu__Yi-34Bx2-MoE-60B) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |76.72| |
|
|AI2 Reasoning Challenge (25-Shot)|71.08| |
|
|HellaSwag (10-Shot) |85.23| |
|
|MMLU (5-Shot) |77.47| |
|
|TruthfulQA (0-shot) |66.19| |
|
|Winogrande (5-shot) |84.85| |
|
|GSM8k (5-shot) |75.51| |
|
|
|
gpu code example |
|
|
|
``` |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import math |
|
|
|
## v2 models |
|
model_path = "cloudyu/Yi-34Bx2-MoE-60B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True |
|
) |
|
print(model) |
|
prompt = input("please input prompt:") |
|
while len(prompt) > 0: |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") |
|
|
|
generation_output = model.generate( |
|
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 |
|
) |
|
print(tokenizer.decode(generation_output[0])) |
|
prompt = input("please input prompt:") |
|
``` |
|
|
|
CPU example |
|
|
|
``` |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import math |
|
|
|
## v2 models |
|
model_path = "cloudyu/Yi-34Bx2-MoE-60B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, torch_dtype=torch.bfloat16, device_map='cpu' |
|
) |
|
print(model) |
|
prompt = input("please input prompt:") |
|
while len(prompt) > 0: |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids |
|
|
|
generation_output = model.generate( |
|
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 |
|
) |
|
print(tokenizer.decode(generation_output[0])) |
|
prompt = input("please input prompt:") |
|
|
|
``` |
|
|
|
|