Yi-34Bx2-MoE-60B / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
8c2ecd6 verified
|
raw
history blame
5.42 kB
---
license: other
tags:
- yi
- moe
license_name: yi-license
license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE
model-index:
- name: Yi-34Bx2-MoE-60B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.08
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Yi-34Bx2-MoE-60B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.23
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Yi-34Bx2-MoE-60B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.47
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Yi-34Bx2-MoE-60B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 66.19
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Yi-34Bx2-MoE-60B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.85
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Yi-34Bx2-MoE-60B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.51
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/Yi-34Bx2-MoE-60B
name: Open LLM Leaderboard
---
UPDATE!
GGUF Format is ready at [cloudyu/Yi-34Bx2-MoE-60B-GGUF](https://huggingface.co/cloudyu/Yi-34Bx2-MoE-60B-GGUF)
# Yi based MOE 2x34B with mixtral architecture
Highest score Model ranked by Open LLM Leaderboard (2024-01-11)
* [Average Score 76.72](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
This is an English & Chinese MoE Model , slightly different with [cloudyu/Mixtral_34Bx2_MoE_60B](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B), and also based on
* [jondurbin/bagel-dpo-34b-v0.2]
* [SUSTech/SUS-Chat-34B]
gpu code example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Yi-34Bx2-MoE-60B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
CPU example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Yi-34Bx2-MoE-60B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.bfloat16, device_map='cpu'
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_cloudyu__Yi-34Bx2-MoE-60B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.72|
|AI2 Reasoning Challenge (25-Shot)|71.08|
|HellaSwag (10-Shot) |85.23|
|MMLU (5-Shot) |77.47|
|TruthfulQA (0-shot) |66.19|
|Winogrande (5-shot) |84.85|
|GSM8k (5-shot) |75.51|