clt013's picture
End of training
3f30b4c verified
|
raw
history blame
2.15 kB
metadata
language:
  - ms
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - clt013/malay-speech-1.6-million-rows-dataset
metrics:
  - wer
model-index:
  - name: Whisper Large v3 FT Malay - CLT013
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Malay Speech 1.6 million
          type: clt013/malay-speech-1.6-million-rows-dataset
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 33.069727071077246

Whisper Large v3 FT Malay - CLT013

This model is a fine-tuned version of openai/whisper-large-v3 on the Malay Speech 1.6 million dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5227
  • Wer: 33.0697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6896 0.2 1000 0.7044 40.9683
0.634 0.4 2000 0.6366 40.5439
0.5836 0.6 3000 0.5821 34.3331
0.5568 0.8 4000 0.5446 33.6870
0.535 1.0 5000 0.5227 33.0697

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1