This is a paraphraser for Russian sentences described in this Habr post.

It is recommended to use the model with the encoder_no_repeat_ngram_size argument:

from transformers import T5ForConditionalGeneration, T5Tokenizer
MODEL_NAME = 'cointegrated/rut5-base-paraphraser'
model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME)
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME)
model.cuda();
model.eval();

def paraphrase(text, beams=5, grams=4, do_sample=False):
    x = tokenizer(text, return_tensors='pt', padding=True).to(model.device)
    max_size = int(x.input_ids.shape[1] * 1.5 + 10)
    out = model.generate(**x, encoder_no_repeat_ngram_size=grams, num_beams=beams, max_length=max_size, do_sample=do_sample)
    return tokenizer.decode(out[0], skip_special_tokens=True)

print(paraphrase('Каждый охотник желает знать, где сидит фазан.'))
# Все охотники хотят знать где фазан сидит.
Downloads last month
4,991
Safetensors
Model size
244M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train cointegrated/rut5-base-paraphraser

Spaces using cointegrated/rut5-base-paraphraser 2