|
--- |
|
base_model: IlyaGusev/saiga_llama3_8b |
|
model_type: llama |
|
pipeline_tag: text-generation |
|
quantized_by: Compressa |
|
language: |
|
- ru |
|
license: other |
|
license_name: llama3 |
|
license_link: https://llama.meta.com/llama3/license |
|
tags: |
|
- saiga |
|
- llama3 |
|
- omniquant |
|
- gptq |
|
- triton |
|
--- |
|
|
|
|
|
# Saiga – Llama 3 8B – OmniQuant |
|
|
|
Based on [Saiga Llama 3 8B](https://huggingface.co/IlyaGusev/saiga_llama3_8b). |
|
|
|
Quantized with [OmniQuant](https://github.com/OpenGVLab/OmniQuant). |
|
|
|
|
|
## Evaluation |
|
|
|
### PPL (↓) |
|
|
|
| | wiki | |
|
| ------------- | ----- | |
|
| FP | 7,862 | |
|
| **Quantized** | 8,615 | |
|
|
|
|
|
### Accuracy on English Benchmarks, % (↑) |
|
|
|
| | piqa | arc_easy | arc_challenge | boolq | hellaswag | winogrande | mmlu_humanities | mmlu_social_sciences | mmlu_stem | mmlu_other | |
|
| ------------- | ---- | -------- | ------------- | ----- | --------- | ---------- | --------------- | -------------------- | --------- | ---------- | |
|
| FP | 78,5 | 82,2 | 50,4 | 82,7 | 58,1 | 72,4 | 65,5 | 72,6 | 53,8 | 68,4 | |
|
| **Quantized** | 78,5 | 80,8 | 47,6 | 81,7 | 56,9 | 71,2 | 62,3 | 68,9 | 49,7 | 63,3 | |
|
|
|
|
|
### Accuracy on Russian Benchmarks, % (↑) |
|
|
|
| | danetqa | terra | rwsd | muserc | rucos | lidirus | parus | rcb | russe | rucola | |
|
| ------------- | ------- | ----- | ---- | ------ | ----- | ------- | ----- | ---- | ----- | ------ | |
|
| FP | 74,9 | 52,1 | 51,5 | 55,9 | 58,1 | 59,5 | 69,0 | 34,1 | 38,8 | 67,5 | |
|
| **Quantized** | 65,4 | 50,5 | 49,5 | 60,7 | 53,7 | 50,9 | 71,0 | 33,6 | 40,8 | 67,5 | |
|
|
|
|
|
### Summary |
|
|
|
| | Avg acc diff on Eng, % (↑) | Avg acc diff on Rus, % (↑) | Occupied disk space, % (↓) | |
|
| ------------- | -------------------------- | -------------------------- | ---------------------- | |
|
| FP | 0 | 0 | 100 | |
|
| **Quantized** | \-2,4 | \-1,8 | 35,7 | |
|
|
|
|
|
## Examples |
|
|
|
### Imports and Model Loading |
|
|
|
<details> |
|
<summary>Expand</summary> |
|
|
|
```python |
|
import gc |
|
|
|
import auto_gptq.nn_modules.qlinear.qlinear_cuda as qlinear_cuda |
|
import auto_gptq.nn_modules.qlinear.qlinear_triton as qlinear_triton |
|
import torch |
|
|
|
from accelerate import ( |
|
init_empty_weights, |
|
infer_auto_device_map, |
|
load_checkpoint_in_model, |
|
) |
|
from tqdm import tqdm |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
pipeline, |
|
) |
|
|
|
|
|
def get_named_linears(model): |
|
return { |
|
name: module for name, module in model.named_modules() |
|
if isinstance(module, torch.nn.Linear) |
|
} |
|
|
|
|
|
def set_module(model, name, module): |
|
parent = model |
|
levels = name.split('.') |
|
|
|
for i in range(len(levels) - 1): |
|
cur_name = levels[i] |
|
|
|
if cur_name.isdigit(): |
|
parent = parent[int(cur_name)] |
|
else: |
|
parent = getattr(parent, cur_name) |
|
|
|
setattr(parent, levels[-1], module) |
|
|
|
|
|
def load_model(model_path): |
|
# Based on: https://github.com/OpenGVLab/OmniQuant/blob/main/runing_quantized_mixtral_7bx8.ipynb |
|
|
|
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) |
|
|
|
if not hasattr(config, 'quantization_config'): |
|
raise AttributeError( |
|
f'No quantization info found in model config "{model_path}"' |
|
f' (`quantization_config` section is missing).' |
|
) |
|
|
|
wbits = config.quantization_config['bits'] |
|
group_size = config.quantization_config['group_size'] |
|
|
|
# We are going to init an ordinary model and then manually replace all Linears with QuantLinears |
|
del config.quantization_config |
|
|
|
with init_empty_weights(): |
|
model = AutoModelForCausalLM.from_config(config=config, torch_dtype=torch.float16, trust_remote_code=True) |
|
|
|
layers = model.model.layers |
|
|
|
for i in tqdm(range(len(layers))): |
|
layer = layers[i] |
|
named_linears = get_named_linears(layer) |
|
|
|
for name, module in named_linears.items(): |
|
params = ( |
|
wbits, group_size, |
|
module.in_features, module.out_features, |
|
module.bias is not None |
|
) |
|
|
|
if wbits in [2, 4]: |
|
q_linear = qlinear_triton.QuantLinear(*params) |
|
elif wbits == 3: |
|
q_linear = qlinear_cuda.QuantLinear(*params) |
|
else: |
|
raise NotImplementedError("Only 2, 3 and 4 bits are supported.") |
|
|
|
q_linear.to(next(layer.parameters()).device) |
|
set_module(layer, name, q_linear) |
|
|
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
model.tie_weights() |
|
device_map = infer_auto_device_map(model) |
|
|
|
print("Loading pre-computed quantized weights...") |
|
|
|
load_checkpoint_in_model( |
|
model, checkpoint=model_path, |
|
device_map=device_map, offload_state_dict=True, |
|
) |
|
|
|
print("Model loaded successfully!") |
|
|
|
return model |
|
``` |
|
</details> |
|
|
|
|
|
### Inference |
|
|
|
```python |
|
model_path = "compressa-ai/Saiga-Llama-3-8B-OmniQuant" |
|
|
|
model = load_model(model_path).cuda() |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_path, use_fast=False, trust_remote_code=True |
|
) |
|
|
|
system_message = "Ты — дружелюбный чат-бот, который всегда отвечает как пират." |
|
user_message = "Куда мы направляемся, капитан?" |
|
messages = [ |
|
{"role": "system", "content": system_message}, |
|
{"role": "user", "content": user_message}, |
|
] |
|
prompt = tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
inputs = {k: v.cuda() for k, v in inputs.items()} |
|
|
|
outputs = model.generate( |
|
**inputs, max_new_tokens=512, |
|
do_sample=True, temperature=0.7, top_p=0.95, |
|
) |
|
|
|
response = tokenizer.decode(outputs[0]) |
|
continuation = response.removeprefix(prompt).removesuffix(tokenizer.eos_token) |
|
|
|
print(f'Prompt:\n{prompt}') |
|
print(f'Continuation:\n{continuation}\n') |
|
``` |
|
|
|
|
|
### Inference Using Pipeline |
|
|
|
```python |
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, tokenizer=tokenizer, |
|
max_new_tokens=512, do_sample=True, |
|
temperature=0.7, top_p=0.95, |
|
device=0, |
|
) |
|
|
|
prompt = pipe.tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
|
|
outputs = pipe(prompt) |
|
|
|
response = outputs[0]["generated_text"] |
|
continuation = response.removeprefix(prompt) |
|
|
|
print(f'Prompt:\n{prompt}') |
|
print(f'Continuation:\n{continuation}\n') |
|
``` |
|
|