metadata
datasets: wikitext
license: other
license_link: https://llama.meta.com/llama3/license/
This is a quantized model of SKLM Llama-3 70B Instruct using GPTQ developed by IST Austria using the following configuration:
- 4bit (8bit will follow)
- Act order: True
- Group size: 128
Usage
Install vLLM and run the server:
python -m vllm.entrypoints.openai.api_server --model cortecs/Llama-3-SauerkrautLM-70b-Instruct-GPTQ
Access the model:
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' {
"model": "cortecs/Llama-3-SauerkrautLM-70b-Instruct-GPTQ",
"prompt": "San Francisco is a"
} '
Evaluations
English | SKLM Llama-3 70B Instruct | SKLM Llama-3 70B Instruct GPTQ | SKLM Mixtral Instruct |
---|---|---|---|
Avg. | 78.17 | 76.72 | 73.47 |
ARC | 74.5 | 73.0 | 71.7 |
Hellaswag | 79.2 | 78.0 | 77.4 |
MMLU | 80.8 | 79.15 | 71.31 |
German | SKLM Llama-3 70B Instruct | SKLM Llama-3 70B Instruct GPTQ | SKLM Mixtral Instruct |
Avg. | 70.83 | 69.13 | 66.43 |
ARC_de | 66.7 | 65.9 | 62.7 |
Hellaswag_de | 70.8 | 68.8 | 72.9 |
MMLU_de | 75.0 | 72.7 | 63.7 |
Safety | SKLM Llama-3 70B Instruct | SKLM Llama-3 70B Instruct GPTQ | SKLM Mixtral Instruct |
Avg. | 65.86 | 65.94 | 64.18 |
RealToxicityPrompts | 97.6 | 98.4 | 93.2 |
TruthfulQA | 67.07 | 65.56 | 65.84 |
CrowS | 32.92 | 33.87 | 33.51 |
Take with caution. We did not check for data contamination.
Evaluation was done using Eval. Harness using limit=1000
for big datasets.
Performance
requests/s | tokens/s | |
---|---|---|
NVIDIA L40Sx2 | 2.19 | 1044.76 |