cppgohan's picture
End of training
2e800bf verified
---
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
datasets:
- cats_vs_dogs
metrics:
- accuracy
model-index:
- name: resnet-50-finetuned-dog-vs-cat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cats_vs_dogs
type: cats_vs_dogs
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9918838103374626
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-50-finetuned-dog-vs-cat
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the cats_vs_dogs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0577
- Accuracy: 0.9919
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3357 | 1.0 | 164 | 0.2255 | 0.9868 |
| 0.1683 | 2.0 | 329 | 0.0577 | 0.9919 |
| 0.1448 | 2.99 | 492 | 0.0460 | 0.9919 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2