csdc-atl/doc2query
This is a doc2query model based on T5 (also known as docT5query).
It can be used for:
- Document expansion: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our BEIR paper we showed that BM25+docT5query is a powerful search engine. In the BEIR repository we have an example how to use docT5query with Pyserini.
- Domain Specific Training Data Generation: It can be used to generate training data to learn an embedding model. In our GPL-Paper / GPL Example on SBERT.net we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models.
Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
model_name = 'csdc-atl/doc2query'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
text = "2014年12月9日,于洋转会至中超联赛球队广州富力。2015赛季初,于洋并没有出场机会。韩国中后卫张贤秀受伤后,主教练选择用金洋洋代替。足协杯4比0战胜贵州人和的比赛中,金洋洋打入两球。赛后,中国足协认定金洋洋在庆祝进球时使用侮辱性手势,将他禁赛四场。之后对阵山东鲁能的联赛,于洋迎来出场机会,首次代表广州富力出战正式比赛。从此开始,于洋得到了较为充足的出场时间。2015赛季于洋中超联赛出场17次、亚冠联赛1次,这18次出场中有17次为首发。2016赛季,于洋成为广州富力三后卫体系的主力,还曾担任队长。这个赛季,他在中超联赛出场25次、足协杯出场5次,联赛的25次出场中含22次首发。效力广州富力期间,他于2015年重返中国国家足球队。\n2016年12月30日,广州富力宣布于洋离队,加盟北京国安。有媒体透露,转会费在5000万至6000万元人民币之间。回归北京国安之后,于洋成为中后卫位置上的主力。2018年3月31日北京国安与北京人和的北京德比上,于洋第100次代表北京国安出场。他在比赛中打入一球,助球队4比0获胜。"
def create_queries(para):
input_ids = tokenizer.encode(para, return_tensors='pt')
with torch.no_grad():
# Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality
sampling_outputs = model.generate(
input_ids=input_ids,
max_length=64,
do_sample=True,
top_p=0.95,
top_k=10,
num_return_sequences=10
)
print("Paragraph:")
print(para)
print("\nSampling Outputs:")
for i in range(len(sampling_outputs)):
query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True)
print(f'{i + 1}: {query}')
create_queries(text)
# 1: 于洋在2016年重返中国国家足球队是在哪个球队效力?
# 2: 于洋在2018年3月31日的北京德比上打入了几个球?
# 3: 于洋在哪些比赛中有出场机会?
# 4: 于洋在哪个比赛中打入了两球?
# 5: 于洋在2015赛季中超联赛中出场次数和亚冠联赛中的首发次数分别是多少?
# 6: 于洋在哪个比赛中打入了两球,帮助球队赢了这场比赛?
# 7: 于洋在2018年3月31日北京国安与北京人和的北京德比上打进了几个进球?
# 8: 于洋在2015赛季中超联赛和亚冠联赛中出场次数分别是多少?
# 9: 于洋在广州富力期间曾担任什么职位?
# 10: 于洋在哪些比赛中有出场机会?
Note: model.generate()
is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it.
Training
This model fine-tuned Langboat/mengzi-t5-base.
The input-text was truncated to 768 word pieces. Output text was generated up to 64 word pieces.
This model was trained on a (query, positive, negative) from the CSDC query document retrieval dataset.
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.