csikasote's picture
End of training
bd94250 verified
|
raw
history blame
3.13 kB
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - bigcgen
  - mms
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-bigcgen-combined-10hrs-model
    results: []

mms-1b-bigcgen-combined-10hrs-model

This model is a fine-tuned version of facebook/mms-1b-all on the BIGCGEN - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.5167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
14.705 0.1528 100 inf 1.0004
6.0879 0.3056 200 inf 1.0203
5.4042 0.4584 300 inf 1.0160
2.8156 0.6112 400 inf 0.6058
1.9111 0.7639 500 inf 0.5724
1.82 0.9167 600 inf 0.5643
1.6294 1.0688 700 inf 0.5685
1.6856 1.2215 800 inf 0.5530
1.6363 1.3743 900 inf 0.5501
1.5114 1.5271 1000 inf 0.5417
1.5417 1.6799 1100 inf 0.5358
1.6518 1.8327 1200 inf 0.5337
1.4795 1.9855 1300 inf 0.5292
1.5822 2.1375 1400 inf 0.5278
1.4938 2.2903 1500 inf 0.5194
1.5701 2.4431 1600 inf 0.5353
1.47 2.5959 1700 inf 0.5183
1.4109 2.7487 1800 inf 0.5342
1.3993 2.9015 1900 inf 0.5175
1.4848 3.0535 2000 inf 0.5177
1.4331 3.2063 2100 inf 0.5286
1.4392 3.3591 2200 inf 0.5213
1.3324 3.5118 2300 inf 0.5161
1.501 3.6646 2400 inf 0.5160
1.3526 3.8174 2500 inf 0.5163

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0