csikasote's picture
End of training
73c79c2 verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - bigcgen
  - mms
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-bigcgen-combined-20hrs-model
    results: []

mms-1b-bigcgen-combined-20hrs-model

This model is a fine-tuned version of facebook/mms-1b-all on the BIGCGEN - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.5166

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
14.8448 0.0762 100 inf 1.0079
6.2506 0.1524 200 inf 1.0042
5.5314 0.2287 300 inf 1.0270
3.4418 0.3049 400 inf 0.5906
1.9396 0.3811 500 inf 0.5762
1.698 0.4573 600 inf 0.5566
1.5483 0.5335 700 inf 0.5571
1.6501 0.6098 800 inf 0.5487
1.5528 0.6860 900 inf 0.5471
1.5398 0.7622 1000 inf 0.5479
1.6413 0.8384 1100 inf 0.5304
1.418 0.9146 1200 inf 0.5283
1.5625 0.9909 1300 inf 0.5265
1.4753 1.0671 1400 inf 0.5347
1.616 1.1433 1500 inf 0.5309
1.3802 1.2195 1600 inf 0.5246
1.4105 1.2957 1700 inf 0.5197
1.3793 1.3720 1800 inf 0.5288
1.3991 1.4482 1900 inf 0.5140
1.5838 1.5244 2000 inf 0.5239
1.6283 1.6006 2100 inf 0.5144
1.4131 1.6768 2200 inf 0.5135
1.388 1.7530 2300 inf 0.5137
1.3846 1.8293 2400 inf 0.5145
1.497 1.9055 2500 inf 0.5167

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0