|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/mms-1b-all |
|
tags: |
|
- automatic-speech-recognition |
|
- lozgen |
|
- mms |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: mms-1b-lozgen-female-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mms-1b-lozgen-female-model |
|
|
|
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the LOZGEN - LOZ dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6218 |
|
- Wer: 0.3955 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 30.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:| |
|
| 6.7809 | 0.8696 | 100 | 3.1491 | 0.9759 | |
|
| 2.6957 | 1.7391 | 200 | 2.0011 | 0.9278 | |
|
| 1.1829 | 2.6087 | 300 | 0.8064 | 0.6421 | |
|
| 0.8527 | 3.4783 | 400 | 0.7470 | 0.5333 | |
|
| 0.8376 | 4.3478 | 500 | 0.6996 | 0.4923 | |
|
| 0.7567 | 5.2174 | 600 | 0.6792 | 0.4686 | |
|
| 0.7014 | 6.0870 | 700 | 0.6882 | 0.4555 | |
|
| 0.7242 | 6.9565 | 800 | 0.6557 | 0.4578 | |
|
| 0.6895 | 7.8261 | 900 | 0.6532 | 0.4409 | |
|
| 0.6543 | 8.6957 | 1000 | 0.6477 | 0.4278 | |
|
| 0.6386 | 9.5652 | 1100 | 0.6592 | 0.4219 | |
|
| 0.6145 | 10.4348 | 1200 | 0.6435 | 0.4257 | |
|
| 0.6513 | 11.3043 | 1300 | 0.6570 | 0.4147 | |
|
| 0.5788 | 12.1739 | 1400 | 0.6259 | 0.4086 | |
|
| 0.6061 | 13.0435 | 1500 | 0.6179 | 0.4006 | |
|
| 0.5647 | 13.9130 | 1600 | 0.6186 | 0.4006 | |
|
| 0.5715 | 14.7826 | 1700 | 0.6271 | 0.3985 | |
|
| 0.5502 | 15.6522 | 1800 | 0.6218 | 0.3962 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0.dev0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|