csikasote's picture
End of training
45cb8c2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - swagen
metrics:
  - wer
model-index:
  - name: whisper-medium-swagen-combined-20hrs-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: swagen
          type: swagen
        metrics:
          - name: Wer
            type: wer
            value: 0.22899756493506493

whisper-medium-swagen-combined-20hrs-model

This model is a fine-tuned version of openai/whisper-medium on the swagen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3817
  • Wer: 0.2290

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.7478 0.1238 200 0.7976 0.4823
1.6879 0.2477 400 0.6310 0.3895
1.7394 0.3715 600 0.5531 0.3318
1.4248 0.4954 800 0.5066 0.2981
1.2897 0.6192 1000 0.4650 0.2689
1.357 0.7430 1200 0.4458 0.2738
1.3443 0.8669 1400 0.4393 0.2709
1.2284 0.9907 1600 0.4151 0.2745
0.6748 1.1146 1800 0.4113 0.2520
0.7242 1.2384 2000 0.4233 0.2670
0.6472 1.3622 2200 0.4206 0.2592
0.6917 1.4861 2400 0.3990 0.2790
0.7172 1.6099 2600 0.3972 0.3005
0.6105 1.7337 2800 0.3926 0.2313
0.7442 1.8576 3000 0.3817 0.2290
0.7074 1.9814 3200 0.3849 0.2263
0.2659 2.1053 3400 0.4002 0.2486
0.3132 2.2291 3600 0.3958 0.2228

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0