whisper-medium-swagen-combined-30hrs-model

This model is a fine-tuned version of openai/whisper-medium on the swagen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3610
  • Wer: 0.2234

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.7508 0.0828 200 0.8134 0.4877
1.8748 0.1656 400 0.6291 0.3898
1.6214 0.2484 600 0.5560 0.3431
1.559 0.3312 800 0.4968 0.2953
1.3616 0.4140 1000 0.4720 0.2872
1.3078 0.4967 1200 0.4577 0.2978
1.2579 0.5795 1400 0.4218 0.2758
1.214 0.6623 1600 0.4156 0.2654
1.0719 0.7451 1800 0.4005 0.2315
1.0432 0.8279 2000 0.3864 0.2433
0.9825 0.9107 2200 0.3743 0.2207
1.0952 0.9935 2400 0.3610 0.2234
0.6001 1.0766 2600 0.3888 0.2423
0.5491 1.1594 2800 0.3730 0.2265
0.6732 1.2422 3000 0.3702 0.2201

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
35
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/whisper-medium-swagen-combined-30hrs-model

Finetuned
(539)
this model

Evaluation results