xls-r-1b-bemgen-balanced-model

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the BEMGEN - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2854
  • Wer: 0.4379

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.3571 100 3.7395 1.0075
No log 0.7143 200 2.8366 1.0
No log 1.0714 300 2.3453 1.0
No log 1.4286 400 0.5266 0.7476
5.5915 1.7857 500 0.4681 0.6964
5.5915 2.1429 600 0.4157 0.6484
5.5915 2.5 700 0.3743 0.5750
5.5915 2.8571 800 0.3286 0.5147
5.5915 3.2143 900 0.3155 0.4767
0.5861 3.5714 1000 0.3057 0.4911
0.5861 3.9286 1100 0.3009 0.4612
0.5861 4.2857 1200 0.2854 0.4382
0.5861 4.6429 1300 0.3016 0.4517
0.5861 5.0 1400 0.2924 0.4434
0.3557 5.3571 1500 0.3079 0.4488
0.3557 5.7143 1600 0.3054 0.4405

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
19
Safetensors
Model size
963M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/xls-r-1b-bemgen-balanced-model

Finetuned
(105)
this model