metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- automatic-speech-recognition
- bigcgen
- generated_from_trainer
metrics:
- wer
model-index:
- name: xls-r-1b-bigcgen-combined-30hrs-model
results: []
xls-r-1b-bigcgen-combined-30hrs-model
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the BIGCGEN - NA dataset. It achieves the following results on the evaluation set:
- Loss: 0.6444
- Wer: 0.6496
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0.0703 | 100 | 3.5624 | 1.0 |
No log | 0.1406 | 200 | 2.7976 | 1.0 |
No log | 0.2110 | 300 | 1.7477 | 1.0 |
No log | 0.2813 | 400 | 0.9556 | 0.9632 |
5.9145 | 0.3516 | 500 | 0.8887 | 0.8956 |
5.9145 | 0.4219 | 600 | 0.8703 | 0.9244 |
5.9145 | 0.4923 | 700 | 0.6985 | 0.7486 |
5.9145 | 0.5626 | 800 | 0.8053 | 0.8899 |
5.9145 | 0.6329 | 900 | 0.6571 | 0.6398 |
1.3395 | 0.7032 | 1000 | 0.6413 | 0.6394 |
1.3395 | 0.7736 | 1100 | 0.6008 | 0.5699 |
1.3395 | 0.8439 | 1200 | 0.6438 | 0.6576 |
1.3395 | 0.9142 | 1300 | 0.6003 | 0.6022 |
1.3395 | 0.9845 | 1400 | 0.7025 | 0.7080 |
1.1915 | 1.0549 | 1500 | 0.8043 | 0.8568 |
1.1915 | 1.1252 | 1600 | 0.6106 | 0.6685 |
1.1915 | 1.1955 | 1700 | 0.6003 | 0.6195 |
1.1915 | 1.2658 | 1800 | 0.6331 | 0.6743 |
1.1915 | 1.3361 | 1900 | 0.7777 | 0.8180 |
1.0769 | 1.4065 | 2000 | 0.5906 | 0.6095 |
1.0769 | 1.4768 | 2100 | 0.6689 | 0.7242 |
1.0769 | 1.5471 | 2200 | 0.6466 | 0.6489 |
1.0769 | 1.6174 | 2300 | 0.5825 | 0.6113 |
1.0769 | 1.6878 | 2400 | 0.7114 | 0.7517 |
1.0964 | 1.7581 | 2500 | 0.8009 | 0.7965 |
1.0964 | 1.8284 | 2600 | 0.6260 | 0.6364 |
1.0964 | 1.8987 | 2700 | 0.5530 | 0.5519 |
1.0964 | 1.9691 | 2800 | 0.6974 | 0.7149 |
1.0964 | 2.0394 | 2900 | 0.5647 | 0.5955 |
1.0268 | 2.1097 | 3000 | 0.5556 | 0.5488 |
1.0268 | 2.1800 | 3100 | 0.6444 | 0.6502 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0