|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- yleo/EmertonMonarch-7B |
|
base_model: |
|
- yleo/EmertonMonarch-7B |
|
--- |
|
|
|
# Spaetzle-v31-7b |
|
|
|
Spaetzle-v31-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [yleo/EmertonMonarch-7B](https://huggingface.co/yleo/EmertonMonarch-7B) |
|
* [cstr/spaetzle-v8-7b](https://huggingface.co/cstr/spaetzle-v8-7b) |
|
|
|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |
|
|--------------------------------------------------------------|------:|------:|---------:|-------:|------:| |
|
|[Spaetzle-v31-7b](https://huggingface.co/cstr/Spaetzle-v31-7b)| 46.23| 76.6| 69.58| 46.79| 59.8| |
|
|
|
### AGIEval |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------|------:|--------|----:|---|-----:| |
|
|agieval_aqua_rat | 0|acc |28.74|± | 2.85| |
|
| | |acc_norm|27.56|± | 2.81| |
|
|agieval_logiqa_en | 0|acc |39.63|± | 1.92| |
|
| | |acc_norm|40.25|± | 1.92| |
|
|agieval_lsat_ar | 0|acc |24.35|± | 2.84| |
|
| | |acc_norm|24.35|± | 2.84| |
|
|agieval_lsat_lr | 0|acc |54.31|± | 2.21| |
|
| | |acc_norm|54.12|± | 2.21| |
|
|agieval_lsat_rc | 0|acc |65.80|± | 2.90| |
|
| | |acc_norm|66.54|± | 2.88| |
|
|agieval_sat_en | 0|acc |79.13|± | 2.84| |
|
| | |acc_norm|79.61|± | 2.81| |
|
|agieval_sat_en_without_passage| 0|acc |46.12|± | 3.48| |
|
| | |acc_norm|45.15|± | 3.48| |
|
|agieval_sat_math | 0|acc |35.00|± | 3.22| |
|
| | |acc_norm|32.27|± | 3.16| |
|
|
|
Average: 46.23% |
|
|
|
### GPT4All |
|
| Task |Version| Metric |Value| |Stderr| |
|
|-------------|------:|--------|----:|---|-----:| |
|
|arc_challenge| 0|acc |64.76|± | 1.40| |
|
| | |acc_norm|66.89|± | 1.38| |
|
|arc_easy | 0|acc |86.66|± | 0.70| |
|
| | |acc_norm|82.83|± | 0.77| |
|
|boolq | 1|acc |87.80|± | 0.57| |
|
|hellaswag | 0|acc |67.43|± | 0.47| |
|
| | |acc_norm|85.85|± | 0.35| |
|
|openbookqa | 0|acc |38.00|± | 2.17| |
|
| | |acc_norm|48.80|± | 2.24| |
|
|piqa | 0|acc |83.57|± | 0.86| |
|
| | |acc_norm|84.71|± | 0.84| |
|
|winogrande | 0|acc |79.32|± | 1.14| |
|
|
|
Average: 76.6% |
|
|
|
### TruthfulQA |
|
| Task |Version|Metric|Value| |Stderr| |
|
|-------------|------:|------|----:|---|-----:| |
|
|truthfulqa_mc| 1|mc1 |53.37|± | 1.75| |
|
| | |mc2 |69.58|± | 1.48| |
|
|
|
Average: 69.58% |
|
|
|
### Bigbench |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------------------------|------:|---------------------|----:|---|-----:| |
|
|bigbench_causal_judgement | 0|multiple_choice_grade|56.84|± | 3.60| |
|
|bigbench_date_understanding | 0|multiple_choice_grade|66.94|± | 2.45| |
|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|44.57|± | 3.10| |
|
|bigbench_geometric_shapes | 0|multiple_choice_grade|21.17|± | 2.16| |
|
| | |exact_str_match | 0.28|± | 0.28| |
|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|31.80|± | 2.08| |
|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|22.57|± | 1.58| |
|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|56.00|± | 2.87| |
|
|bigbench_movie_recommendation | 0|multiple_choice_grade|45.40|± | 2.23| |
|
|bigbench_navigate | 0|multiple_choice_grade|52.80|± | 1.58| |
|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|70.65|± | 1.02| |
|
|bigbench_ruin_names | 0|multiple_choice_grade|50.67|± | 2.36| |
|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|30.66|± | 1.46| |
|
|bigbench_snarks | 0|multiple_choice_grade|71.27|± | 3.37| |
|
|bigbench_sports_understanding | 0|multiple_choice_grade|74.34|± | 1.39| |
|
|bigbench_temporal_sequences | 0|multiple_choice_grade|49.80|± | 1.58| |
|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.16|± | 1.18| |
|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|18.57|± | 0.93| |
|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|56.00|± | 2.87| |
|
|
|
Average: 46.79% |
|
|
|
Average score: 59.8% |
|
|
|
Elapsed time: 02:09:50 |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: cstr/spaetzle-v8-7b |
|
# no parameters necessary for base model |
|
- model: yleo/EmertonMonarch-7B |
|
parameters: |
|
density: 0.60 |
|
weight: 0.3 |
|
merge_method: dare_ties |
|
base_model: cstr/spaetzle-v8-7b |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
random_seed: 0 |
|
tokenizer_source: base |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "cstr/Spaetzle-v31-7b" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |