|
--- |
|
language: "en" |
|
tags: |
|
- icefall |
|
- k2 |
|
- transducer |
|
- aishell |
|
- ASR |
|
- stateless transducer |
|
- PyTorch |
|
license: "apache-2.0" |
|
datasets: |
|
- aishell |
|
- aidatatang_200zh |
|
metrics: |
|
- WER |
|
--- |
|
|
|
# Introduction |
|
|
|
This repo contains pre-trained model using |
|
<https://github.com/k2-fsa/icefall/pull/219>. |
|
|
|
It is trained on [AIShell](https://www.openslr.org/33/) dataset |
|
using modified transducer from [optimized_transducer](https://github.com/csukuangfj/optimized_transducer). |
|
Also, it uses [aidatatang_200zh](http://www.openslr.org/62/) as extra training data. |
|
|
|
## How to clone this repo |
|
``` |
|
sudo apt-get install git-lfs |
|
git clone https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01 |
|
|
|
cd icefall-aishell-transducer-stateless-modified-2-2022-03-01 |
|
git lfs pull |
|
``` |
|
|
|
**Catuion**: You have to run `git lfs pull`. Otherwise, you will be SAD later. |
|
|
|
The model in this repo is trained using the commit `TODO`. |
|
|
|
You can use |
|
|
|
``` |
|
git clone https://github.com/k2-fsa/icefall |
|
cd icefall |
|
git checkout TODO |
|
``` |
|
to download `icefall`. |
|
|
|
You can find the model information by visiting <https://github.com/k2-fsa/icefall/blob/TODO/egs/aishell/ASR/transducer_stateless_modified-2/train.py#L232>. |
|
|
|
|
|
In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward; |
|
the decoder contains a 512-dim embedding layer and a Conv1d with kernel size 2. |
|
|
|
The decoder architecture is modified from |
|
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419). |
|
A Conv1d layer is placed right after the input embedding layer. |
|
|
|
----- |
|
|
|
## Description |
|
|
|
This repo provides pre-trained transducer Conformer model for the AIShell dataset |
|
using [icefall][icefall]. There are no RNNs in the decoder. The decoder is stateless |
|
and contains only an embedding layer and a Conv1d. |
|
|
|
The commands for training are: |
|
|
|
```bash |
|
cd egs/aishell/ASR |
|
./prepare.sh --stop-stage 6 |
|
./prepare_aidatatang_200zh.sh |
|
|
|
export CUDA_VISIBLE_DEVICES="0,1,2" |
|
|
|
./transducer_stateless_modified-2/train.py \ |
|
--world-size 3 \ |
|
--num-epochs 90 \ |
|
--start-epoch 0 \ |
|
--exp-dir transducer_stateless_modified-2/exp-2 \ |
|
--max-duration 250 \ |
|
--lr-factor 2.0 \ |
|
--context-size 2 \ |
|
--modified-transducer-prob 0.25 \ |
|
--datatang-prob 0.2 |
|
``` |
|
|
|
The tensorboard training log can be found at |
|
<https://tensorboard.dev/experiment/oG72ZlWaSGua6fXkcGRRjA/> |
|
|
|
The commands for decoding are |
|
|
|
```bash |
|
# greedy search |
|
for epoch in 89; do |
|
for avg in 38; do |
|
./transducer_stateless_modified-2/decode.py \ |
|
--epoch $epoch \ |
|
--avg $avg \ |
|
--exp-dir transducer_stateless_modified-2/exp-2 \ |
|
--max-duration 100 \ |
|
--context-size 2 \ |
|
--decoding-method greedy_search \ |
|
--max-sym-per-frame 1 |
|
done |
|
done |
|
|
|
# modified beam search |
|
for epoch in 89; do |
|
for avg in 38; do |
|
./transducer_stateless_modified-2/decode.py \ |
|
--epoch $epoch \ |
|
--avg $avg \ |
|
--exp-dir transducer_stateless_modified-2/exp-2 \ |
|
--max-duration 100 \ |
|
--context-size 2 \ |
|
--decoding-method modified_beam_search \ |
|
--beam-size 4 |
|
done |
|
done |
|
``` |
|
|
|
You can find the decoding log for the above command in this |
|
repo (in the folder [log][log]). |
|
|
|
The WER for the test dataset is |
|
|
|
| | test |comment | |
|
|------------------------|------|----------------------------------------------------------------| |
|
| greedy search | 4.94 |--epoch 89, --avg 38, --max-duration 100, --max-sym-per-frame 1 | |
|
| modified beam search | 4.68 |--epoch 89, --avg 38, --max-duration 100 --beam-size 4 | |
|
|
|
# File description |
|
|
|
- [log][log], this directory contains the decoding log and decoding results |
|
- [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model |
|
- [data][data], this directory contains files generated by [prepare.sh][prepare] |
|
- [exp][exp], this directory contains only one file: `preprained.pt` |
|
|
|
`exp/pretrained.pt` is generated by the following command: |
|
|
|
```bash |
|
epoch=89 |
|
avg=38 |
|
|
|
./transducer_stateless_modified-2/export.py \ |
|
--exp-dir ./transducer_stateless_modified-2/exp-2 \ |
|
--lang-dir ./data/lang_char \ |
|
--epoch $epoch \ |
|
--avg $avg |
|
``` |
|
|
|
**HINT**: To use `pretrained.pt` to compute the WER for the `test` dataset, |
|
just do the following: |
|
|
|
```bash |
|
cp icefall-aishell-transducer-stateless-modified-2-2022-03-01/exp/pretrained.pt \ |
|
/path/to/icefall/egs/aishell/ASR/transducer_stateless_modified-2/exp/epoch-999.pt |
|
``` |
|
and pass `--epoch 999 --avg 1` to `transducer_stateless_modified-2/decode.py`. |
|
|
|
|
|
[icefall]: https://github.com/k2-fsa/icefall |
|
[prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/aishell/ASR/prepare.sh |
|
[exp]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/exp |
|
[data]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/data |
|
[test_wavs]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/test_wavs |
|
[log]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/log |
|
[icefall]: https://github.com/k2-fsa/icefall |
|
|