Introduction
This repo contains pre-trained model using https://github.com/k2-fsa/icefall/pull/248.
It is trained on full LibriSpeech dataset using pruned RNN-T loss from k2.
How to clone this repo
sudo apt-get install git-lfs
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12
cd icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12
git lfs pull
Caution: You have to run git lfs pull
. Otherwise, you will be SAD later.
The model in this repo is trained using the commit 1603744469d167d848e074f2ea98c587153205fa
.
You can use
git clone https://github.com/k2-fsa/icefall
cd icefall
git checkout 1603744469d167d848e074f2ea98c587153205fa
to download icefall
.
The decoder architecture is modified from Rnn-Transducer with Stateless Prediction Network. A Conv1d layer is placed right after the input embedding layer.
Description
This repo provides pre-trained transducer Conformer model for the LibriSpeech dataset using icefall. There are no RNNs in the decoder. The decoder is stateless and contains only an embedding layer and a Conv1d.
The commands for training are:
cd egs/librispeech/ASR/
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
. path.sh
./pruned_transducer_stateless/train.py \
--world-size 8 \
--num-epochs 60 \
--start-epoch 0 \
--exp-dir pruned_transducer_stateless/exp \
--full-libri 1 \
--max-duration 300 \
--prune-range 5 \
--lr-factor 5 \
--lm-scale 0.25
The tensorboard training log can be found at https://tensorboard.dev/experiment/WKRFY5fYSzaVBHahenpNlA/
The command for decoding is:
epoch=42
avg=11
sym=1
# greedy search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless/exp \
--max-duration 100 \
--decoding-method greedy_search \
--beam-size 4 \
--max-sym-per-frame $sym
# modified beam search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless/exp \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
# beam search
# (not recommended)
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless/exp \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
You can find the decoding log for the above command in this
repo (in the folder log
).
The WERs for the test datasets are
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 |
greedy search (max sym per frame 2) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 |
greedy search (max sym per frame 3) | 2.62 | 6.37 | --epoch 42, --avg 11, --max-duration 100 |
modified beam search (beam size 4) | 2.56 | 6.27 | --epoch 42, --avg 11, --max-duration 100 |
beam search (beam size 4) | 2.57 | 6.27 | --epoch 42, --avg 11, --max-duration 100 |
File description
- log, this directory contains the decoding log and decoding results
- test_wavs, this directory contains wave files for testing the pre-trained model
- data, this directory contains files generated by prepare.sh
- exp, this directory contains only one file:
preprained.pt
exp/pretrained.pt
is generated by the following command:
epoch=42
avg=11
./pruned_transducer_stateless/export.py \
--exp-dir ./pruned_transducer_stateless/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch $epoch \
--avg $avg
HINT: To use pretrained.pt
to compute the WER for test-clean and test-other,
just do the following:
cp icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12/exp/pretrained.pt \
/path/to/icefall/egs/librispeech/ASR/pruned_transducer_stateless/exp/epoch-999.pt
and pass --epoch 999 --avg 1
to pruned_transducer_stateless/decode.py
.