daekeun-ml commited on
Commit
c725882
·
1 Parent(s): 6ab8bd8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -7
README.md CHANGED
@@ -40,21 +40,26 @@ You need to install librosa package in order to convert wave to Mel Spectrogram.
40
 
41
  ```python
42
  import librosa
 
 
 
 
43
  file = "nlp-voice-3922/data/0002d3428f0ddfa5a48eec5cc351daa8.wav"
44
- arr, sampling_rate = librosa.load(file, sr=16000)
45
 
46
- from transformers import WhisperProcessor, WhisperForConditionalGeneration
47
- from datasets import load_dataset
48
- import torch
49
 
50
- # load model and processor
51
  processor = WhisperProcessor.from_pretrained("openai/whisper-small")
52
  model = WhisperForConditionalGeneration.from_pretrained("daekeun-ml/whisper-small-ko-finetuned-single-speaker-3922samples")
53
 
 
54
  input_features = processor(arr, return_tensors="pt", sampling_rate=sampling_rate).input_features
 
 
55
  forced_decoder_ids = processor.get_decoder_prompt_ids(language="ko", task="transcribe")
56
- predicted_ids = model.generate(input_features, forced_decoder_ids = forced_decoder_ids)
57
- transcription = processor.batch_decode(predicted_ids, skip_special_tokens = True)
58
 
59
  print(transcription)
60
  ```
 
40
 
41
  ```python
42
  import librosa
43
+ import torch
44
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
45
+
46
+ # prepare your sample data (.wav)
47
  file = "nlp-voice-3922/data/0002d3428f0ddfa5a48eec5cc351daa8.wav"
 
48
 
49
+ # Convert to Mel Spectrogram
50
+ arr, sampling_rate = librosa.load(file, sr=16000)
 
51
 
52
+ # Load whisper model and processor
53
  processor = WhisperProcessor.from_pretrained("openai/whisper-small")
54
  model = WhisperForConditionalGeneration.from_pretrained("daekeun-ml/whisper-small-ko-finetuned-single-speaker-3922samples")
55
 
56
+ # Preprocessing
57
  input_features = processor(arr, return_tensors="pt", sampling_rate=sampling_rate).input_features
58
+
59
+ # Prediction
60
  forced_decoder_ids = processor.get_decoder_prompt_ids(language="ko", task="transcribe")
61
+ predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
62
+ transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
63
 
64
  print(transcription)
65
  ```