File size: 1,253 Bytes
29bdfa3 de01b17 11912af de01b17 11912af 3849685 40f8719 3849685 40f8719 3849685 40f8719 3849685 40f8719 3849685 40f8719 3849685 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
inference: false
---
original model [weblab-10b-instruction-sft](https://huggingface.co/matsuo-lab/weblab-10b-instruction-sft)
This is 4bit GPTQ Version.
The size is smaller and the execution speed is faster, but the inference performance may be a little worse.
Benchmark results are in progress.
I will upload it at a later date.
### sample code
```
pip install auto-gptq
```
```
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
quantized_model_dir = "dahara1/weblab-10b-instruction-sft-GPTQ"
model_basename = "gptq_model-4bit-128g"
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir)
model = AutoGPTQForCausalLM.from_quantized(
quantized_model_dir,
model_basename=model_basename,
use_safetensors=True,
device="cuda:0")
prompt = "スタジオジブリの作品を5つ教えてください"
prompt_template = f"### Instruction: {prompt}\n### Response:"
tokens = tokenizer(prompt_template, return_tensors="pt").to("cuda:0").input_ids
output = model.generate(input_ids=tokens, max_new_tokens=100, do_sample=True, temperature=0.8)
print(tokenizer.decode(output[0]))
```
### See Also
https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/01-Quick-Start.md |