Update README.md
Browse files
README.md
CHANGED
@@ -33,8 +33,9 @@ model = AutoGPTQForCausalLM.from_quantized(
|
|
33 |
use_safetensors=True,
|
34 |
device="cuda:0")
|
35 |
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
tokens = tokenizer(prompt_template, return_tensors="pt").to("cuda:0").input_ids
|
40 |
output = model.generate(input_ids=tokens, max_new_tokens=100, do_sample=True, temperature=0.8)
|
@@ -51,7 +52,7 @@ Also, the score may change as a result of tuning after this.
|
|
51 |
|
52 |
* **Japanese benchmark**
|
53 |
|
54 |
-
- *We used [Stability-AI/lm-evaluation-harness](https://github.com/
|
55 |
- *The 4-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, and JSQuAD-1.1.*
|
56 |
- *model loading is performed with gptq_use_triton=True, and evaluation is performed with template version 0.3 using the few-shot in-context learning.*
|
57 |
- *The number of few-shots is 3,3,3,2.*
|
|
|
33 |
use_safetensors=True,
|
34 |
device="cuda:0")
|
35 |
|
36 |
+
|
37 |
+
prompt_text = "スタジオジブリの作品を5つ教えてください"
|
38 |
+
prompt_template = f'以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n{prompt_text}\n\n### 応答:'
|
39 |
|
40 |
tokens = tokenizer(prompt_template, return_tensors="pt").to("cuda:0").input_ids
|
41 |
output = model.generate(input_ids=tokens, max_new_tokens=100, do_sample=True, temperature=0.8)
|
|
|
52 |
|
53 |
* **Japanese benchmark**
|
54 |
|
55 |
+
- *We used [Stability-AI/lm-evaluation-harness + gptq patch](https://github.com/webbigdata-jp/lm-evaluation-harness) for evaluation.*
|
56 |
- *The 4-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, and JSQuAD-1.1.*
|
57 |
- *model loading is performed with gptq_use_triton=True, and evaluation is performed with template version 0.3 using the few-shot in-context learning.*
|
58 |
- *The number of few-shots is 3,3,3,2.*
|