|
--- |
|
license: openrail |
|
language: |
|
- en |
|
library_name: transformers |
|
tags: |
|
- history |
|
- quotes |
|
- gpt2 |
|
datasets: |
|
- A-Roucher/english_historical_quotes |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Model Description |
|
|
|
This model was finetuned on the Dataset[A-Roucher/english_historical_quotes](https://huggingface.co/datasets/A-Roucher/english_historical_quotes) |
|
using the model [gpt2-large](https://huggingface.co/gpt2-large]) |
|
|
|
|
|
# Example Use cases |
|
<pre> |
|
<code> |
|
<span style="color:#4CAF50">from</span> transformers <span style="color:#4CAF50">import</span> pipeline |
|
pipe = pipeline("text-generation", model="damerajee/gpt2-large-hist-quotes-2")</span> |
|
prompt = "write a quote based on business" |
|
generated_quote = pipe(prompt,top_k=2, temperature=2.0,repetition_penalty=2.0)[0]['generated_text'] |
|
print('\n\n', generated_quote) |
|
</code> |
|
</pre> |
|
|
|
# Streaming option |
|
|
|
<pre> |
|
<code> |
|
<span style="color:#4CAF50">from</span> transformers <span style="color:#4CAF50">import</span> import AutoModelForCausalLM, AutoTokenizer, TextStreamer, pipeline |
|
streamer = TextStreamer(tokenzier, skip_prompt=True) |
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenzier, |
|
max_length=40, |
|
temperature=0.6, |
|
pad_token_id=tokenzier.eos_token_id, |
|
top_p=0.95, |
|
repetition_penalty=1.2, |
|
streamer=streamer |
|
) |
|
pipe("write a quote based on war and business") |
|
|
|
</code> |
|
</pre> |