File size: 2,939 Bytes
4e0794b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
library_name: peft
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- xsum
model-index:
- name: text-summarization-T5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# text-summarization-T5
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6883
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.8764 | 0.0627 | 100 | 3.6376 |
| 3.6129 | 0.1255 | 200 | 3.2631 |
| 3.3392 | 0.1882 | 300 | 3.0248 |
| 3.207 | 0.2509 | 400 | 2.9294 |
| 3.1548 | 0.3137 | 500 | 2.8725 |
| 3.0969 | 0.3764 | 600 | 2.8333 |
| 3.0718 | 0.4391 | 700 | 2.8018 |
| 3.0476 | 0.5018 | 800 | 2.7803 |
| 3.0431 | 0.5646 | 900 | 2.7651 |
| 3.0216 | 0.6273 | 1000 | 2.7538 |
| 3.0003 | 0.6900 | 1100 | 2.7440 |
| 3.0018 | 0.7528 | 1200 | 2.7363 |
| 2.9993 | 0.8155 | 1300 | 2.7289 |
| 2.9833 | 0.8782 | 1400 | 2.7236 |
| 2.9827 | 0.9410 | 1500 | 2.7181 |
| 2.9737 | 1.0037 | 1600 | 2.7145 |
| 2.968 | 1.0664 | 1700 | 2.7107 |
| 2.967 | 1.1291 | 1800 | 2.7074 |
| 2.9709 | 1.1919 | 1900 | 2.7042 |
| 2.9593 | 1.2546 | 2000 | 2.7011 |
| 2.9628 | 1.3173 | 2100 | 2.6987 |
| 2.9573 | 1.3801 | 2200 | 2.6969 |
| 2.955 | 1.4428 | 2300 | 2.6947 |
| 2.9483 | 1.5055 | 2400 | 2.6934 |
| 2.9546 | 1.5683 | 2500 | 2.6923 |
| 2.9492 | 1.6310 | 2600 | 2.6910 |
| 2.9493 | 1.6937 | 2700 | 2.6903 |
| 2.9482 | 1.7564 | 2800 | 2.6896 |
| 2.9524 | 1.8192 | 2900 | 2.6890 |
| 2.9399 | 1.8819 | 3000 | 2.6886 |
| 2.9347 | 1.9446 | 3100 | 2.6883 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1 |