File size: 2,939 Bytes
4e0794b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: peft
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- xsum
model-index:
- name: text-summarization-T5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text-summarization-T5

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6883

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.8764        | 0.0627 | 100  | 3.6376          |
| 3.6129        | 0.1255 | 200  | 3.2631          |
| 3.3392        | 0.1882 | 300  | 3.0248          |
| 3.207         | 0.2509 | 400  | 2.9294          |
| 3.1548        | 0.3137 | 500  | 2.8725          |
| 3.0969        | 0.3764 | 600  | 2.8333          |
| 3.0718        | 0.4391 | 700  | 2.8018          |
| 3.0476        | 0.5018 | 800  | 2.7803          |
| 3.0431        | 0.5646 | 900  | 2.7651          |
| 3.0216        | 0.6273 | 1000 | 2.7538          |
| 3.0003        | 0.6900 | 1100 | 2.7440          |
| 3.0018        | 0.7528 | 1200 | 2.7363          |
| 2.9993        | 0.8155 | 1300 | 2.7289          |
| 2.9833        | 0.8782 | 1400 | 2.7236          |
| 2.9827        | 0.9410 | 1500 | 2.7181          |
| 2.9737        | 1.0037 | 1600 | 2.7145          |
| 2.968         | 1.0664 | 1700 | 2.7107          |
| 2.967         | 1.1291 | 1800 | 2.7074          |
| 2.9709        | 1.1919 | 1900 | 2.7042          |
| 2.9593        | 1.2546 | 2000 | 2.7011          |
| 2.9628        | 1.3173 | 2100 | 2.6987          |
| 2.9573        | 1.3801 | 2200 | 2.6969          |
| 2.955         | 1.4428 | 2300 | 2.6947          |
| 2.9483        | 1.5055 | 2400 | 2.6934          |
| 2.9546        | 1.5683 | 2500 | 2.6923          |
| 2.9492        | 1.6310 | 2600 | 2.6910          |
| 2.9493        | 1.6937 | 2700 | 2.6903          |
| 2.9482        | 1.7564 | 2800 | 2.6896          |
| 2.9524        | 1.8192 | 2900 | 2.6890          |
| 2.9399        | 1.8819 | 3000 | 2.6886          |
| 2.9347        | 1.9446 | 3100 | 2.6883          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1