dardem's picture
Update README.md
7e66913 verified
|
raw
history blame
1.21 kB
metadata
license: openrail++
language:
  - uk
widget:
  - text: Ти неймовірна!
datasets:
  - ukr-detect/ukr-toxicity-dataset
base_model:
  - FacebookAI/xlm-roberta-base

Binary toxicity classifier for Ukrainian

This is the fine-tuned on the downstream task "xlm-roberta-base" instance.

The evaluation metrics for binary toxicity classification are:

Precision: 0.9130 Recall: 0.9065 F1: 0.9061

The training and evaluation data will be clarified later.

How to use

from transformers import AutoTokenizer, AutoModelForSequenceClassification

# load tokenizer and model weights
tokenizer = AutoTokenizer.from_pretrained('dardem/xlm-roberta-base-uk-toxicity')
model = AutoModelForSequenceClassification.from_pretrained('dardem/xlm-roberta-base-uk-toxicity')

# prepare the input
batch = tokenizer.encode('Ти неймовірна!', return_tensors='pt')

# inference
model(batch)

Citation

@article{dementieva2024toxicity,
  title={Toxicity Classification in Ukrainian},
  author={Dementieva, Daryna and Khylenko, Valeriia and Babakov, Nikolay and Groh, Georg},
  journal={arXiv preprint arXiv:2404.17841},
  year={2024}
}