Edit model card

wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5501
  • Wer: 0.3424

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.5448 1.0 500 2.5044 1.0
1.0167 2.01 1000 0.5435 0.5278
0.4453 3.01 1500 0.4450 0.4534
0.3 4.02 2000 0.4401 0.4245
0.2304 5.02 2500 0.4146 0.4022
0.1889 6.02 3000 0.4241 0.3927
0.1573 7.03 3500 0.4545 0.3878
0.1363 8.03 4000 0.4936 0.3940
0.1213 9.04 4500 0.4964 0.3806
0.108 10.04 5000 0.4931 0.3826
0.0982 11.04 5500 0.5373 0.3778
0.0883 12.05 6000 0.4978 0.3733
0.0835 13.05 6500 0.5189 0.3728
0.0748 14.06 7000 0.4608 0.3692
0.068 15.06 7500 0.4827 0.3608
0.0596 16.06 8000 0.5022 0.3661
0.056 17.07 8500 0.5482 0.3646
0.0565 18.07 9000 0.5158 0.3573
0.0487 19.08 9500 0.4910 0.3513
0.0444 20.08 10000 0.5771 0.3580
0.045 21.08 10500 0.5160 0.3539
0.0363 22.09 11000 0.5367 0.3503
0.0313 23.09 11500 0.5773 0.3500
0.0329 24.1 12000 0.5683 0.3508
0.0297 25.1 12500 0.5355 0.3464
0.0272 26.1 13000 0.5317 0.3450
0.0256 27.11 13500 0.5602 0.3443
0.0242 28.11 14000 0.5586 0.3419
0.0239 29.12 14500 0.5501 0.3424

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.