dasolj commited on
Commit
bf71c57
1 Parent(s): 3078054

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-base-timit-demo-google-colab
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-base-timit-demo-google-colab
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.5501
18
+ - Wer: 0.3424
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 1000
44
+ - num_epochs: 30
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
51
+ | 3.5448 | 1.0 | 500 | 2.5044 | 1.0 |
52
+ | 1.0167 | 2.01 | 1000 | 0.5435 | 0.5278 |
53
+ | 0.4453 | 3.01 | 1500 | 0.4450 | 0.4534 |
54
+ | 0.3 | 4.02 | 2000 | 0.4401 | 0.4245 |
55
+ | 0.2304 | 5.02 | 2500 | 0.4146 | 0.4022 |
56
+ | 0.1889 | 6.02 | 3000 | 0.4241 | 0.3927 |
57
+ | 0.1573 | 7.03 | 3500 | 0.4545 | 0.3878 |
58
+ | 0.1363 | 8.03 | 4000 | 0.4936 | 0.3940 |
59
+ | 0.1213 | 9.04 | 4500 | 0.4964 | 0.3806 |
60
+ | 0.108 | 10.04 | 5000 | 0.4931 | 0.3826 |
61
+ | 0.0982 | 11.04 | 5500 | 0.5373 | 0.3778 |
62
+ | 0.0883 | 12.05 | 6000 | 0.4978 | 0.3733 |
63
+ | 0.0835 | 13.05 | 6500 | 0.5189 | 0.3728 |
64
+ | 0.0748 | 14.06 | 7000 | 0.4608 | 0.3692 |
65
+ | 0.068 | 15.06 | 7500 | 0.4827 | 0.3608 |
66
+ | 0.0596 | 16.06 | 8000 | 0.5022 | 0.3661 |
67
+ | 0.056 | 17.07 | 8500 | 0.5482 | 0.3646 |
68
+ | 0.0565 | 18.07 | 9000 | 0.5158 | 0.3573 |
69
+ | 0.0487 | 19.08 | 9500 | 0.4910 | 0.3513 |
70
+ | 0.0444 | 20.08 | 10000 | 0.5771 | 0.3580 |
71
+ | 0.045 | 21.08 | 10500 | 0.5160 | 0.3539 |
72
+ | 0.0363 | 22.09 | 11000 | 0.5367 | 0.3503 |
73
+ | 0.0313 | 23.09 | 11500 | 0.5773 | 0.3500 |
74
+ | 0.0329 | 24.1 | 12000 | 0.5683 | 0.3508 |
75
+ | 0.0297 | 25.1 | 12500 | 0.5355 | 0.3464 |
76
+ | 0.0272 | 26.1 | 13000 | 0.5317 | 0.3450 |
77
+ | 0.0256 | 27.11 | 13500 | 0.5602 | 0.3443 |
78
+ | 0.0242 | 28.11 | 14000 | 0.5586 | 0.3419 |
79
+ | 0.0239 | 29.12 | 14500 | 0.5501 | 0.3424 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.17.0
85
+ - Pytorch 1.11.0+cu113
86
+ - Datasets 1.18.3
87
+ - Tokenizers 0.12.1