audio
audioduration (s) 0.83
21
| transcription
stringlengths 3
127
| LaTeX
stringlengths 7
142
| Source
stringclasses 89
values |
---|---|---|---|
one over n cubed | $\frac{1}{n^{3}}$ | https://www.youtube.com/watch?v=MK_0QHbUnIA |
|
one plus one over two plus all the way up to one over n minus one plus 1 over n | $1+\frac{1}{2}+\mathrm{\ldots}+\frac{1}{n-1}+\frac{1}{n}$ | https://www.youtube.com/watch?v=MK_0QHbUnIA |
|
a half plus a third | $\frac{1}{2}+\frac{1}{3}$ | https://www.youtube.com/watch?v=MK_0QHbUnIA |
|
1 over n squared plus 1 square root | $\frac{1}{n^{2} + 1}$ | https://www.youtube.com/watch?v=MK_0QHbUnIA |
|
sum one over n to the five-halves | $\sum\frac{1}{n^{5/2}}$ | https://www.youtube.com/watch?v=MK_0QHbUnIA |
|
one times one plus two times minus two plus minus three times one | $1\times1+2\times(-2)+(-3)\times1$ | https://www.youtube.com/watch?v=U1EcnfTKXJ0 |
|
x plus 3y plus z equals zero | $x+3y+z=0$ | https://www.youtube.com/watch?v=U1EcnfTKXJ0 |
|
minus 2x minus z will be x plus 3y plus z | $-2x-z\operatorname{=}x+3y+z$ | https://www.youtube.com/watch?v=U1EcnfTKXJ0 |
|
x equals minus 3t | $x=-3t$ | https://www.youtube.com/watch?v=U1EcnfTKXJ0 |
|
y equals 3t | $y=3\mathfrak{t}$ | https://www.youtube.com/watch?v=U1EcnfTKXJ0 |
|
z equals negative 6t | $z\!=\!-6t$ | https://www.youtube.com/watch?v=U1EcnfTKXJ0 |
|
dr dt dot r plus r dot dr dt | $\displaystyle \frac{dr}{dt}\cdot{r}+r\cdot\frac{dr}{dt}$ | https://www.youtube.com/watch?v=U1EcnfTKXJ0 |
|
d by dt of r dot r is zero | $\displaystyle \frac{d}{dt}(\mathbf{r}\cdot\mathbf{r})=0$ | https://www.youtube.com/watch?v=U1EcnfTKXJ0 |
|
minus v dot v | $-\mathbf{v}\cdot\mathbf{v}$ | https://www.youtube.com/watch?v=U1EcnfTKXJ0 |
|
f of x y equals one over x plus y | $f(x,y)=\frac{1}{x+y}$ | https://www.youtube.com/watch?v=dK3NEf13nPc |
|
f of x y equals one minus x squared minus y squared | $f(x,y)=1-x^{2}-y^{2}$ | https://www.youtube.com/watch?v=dK3NEf13nPc |
|
z equals one minus x squared minus y squared | $z=1-x^{2}-y^{2}$ | https://www.youtube.com/watch?v=dK3NEf13nPc |
|
x squared plus y squared equals one | $x^{2}+y^{2}=1$ | https://www.youtube.com/watch?v=dK3NEf13nPc |
|
f prime at x0 times delta x | $ f^{\prime}(x_{0})\Delta x$ | https://www.youtube.com/watch?v=dK3NEf13nPc |
|
d dy of y to the n times dy dx | $\displaystyle (\frac{d}{dy}y^{n})\frac{dy}{dx}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
m x to the n minus one | $(mx^{m-1})$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
n y to the n minus 1 | $(ny^{n-1})$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
x to the m minus one | $\mathcal{x}^{m-1}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
x to the m over n times n minus 1 | $x^\frac{m}{n}{(n-1)}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
minus one plus m over n | $-1+\frac{m}{n}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
a minus one | $\mathsf{a}-1$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
a x to the a minus one | $(ax^{a-1})$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
y is equal to plus or minus square root of 1 minus x squared | $y =\pm\sqrt{1-x^{2}}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
2 x plus 2 y y prime | $2x+2yy^{\prime}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
y to the fourth plus xy squared minus two is equal to zero | $y^{4}+xy^{2}-2=0$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
four y cubed y prime | $4y^{3}y^{\prime}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
minus y squared divided by 4y cubed plus 2xy | $-\frac{y^{2}}{4y^{3}+2xy}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
y to the fourth plus xy squared minus 2 is equal to zero | $y^{4}+xy^{2}-2=0$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
minus 1 squared divided by 4 times 1 cubed plus 2 times 1 times 1 | $\frac{(-1)^2}{4\times1^{3}+2\times1\times1}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
tan inverse x is equal to pi over two | $\operatorname{\tan}^{-1}x=\frac{\pi}{2}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
d by dy tan y times dy dx | $\displaystyle \frac{d}{dy}\tan(y)\frac{dy}{dx}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
d by dx of tan inverse of x | $\frac{d}{dx}(tan^{-1}(x))$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
cosine squared of tan inverse x | $\cos^{2}(tan^{-1}x)$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
one over 1 plus x squared | $\frac{1}{1+x^{2}}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
d by dx of tan inverse x is equal to one over 1 plus x squared | $\frac{d}{dx}(tan^{-1}x)=\frac{1}{1 + x^{2}}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
1 over square root of 1 minus x squared | $\frac{1}{\sqrt{1-x^{2}}}$ | https://www.youtube.com/watch?v=5q_3FDOkVRQ |
|
a to the x1 plus x2 is a to the x1 times a to the x2 | $\displaystyle a^{x_1 + x_2} = a^{x_{1}}\cdot a^{x_{2}}$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
a to the x plus delta x | $a^{x+\Delta x}$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
M of a is equal to the limit as delta x goes to 0 of a to the delta x minus 1 divided by delta x | $M(a)=\lim_{\Delta x\to 0}\frac{a^{\Delta x}-1}{\Delta x}$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
k times f prime of kx | $k\cdot f^{\prime}(kx)$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
e to the log x is equal to x | $\mathrm{e}^{\log x}=x$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
d by dx e to the w | $\frac{d}{dx}\mathbf{e}^{w}$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
e to the power log a to the power x | $(e^{\ln a})^{x}$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
d by dx of a to the x is equal to d by dx of e to the x log a | $\frac{d}{dx}(a^{x})=\frac{d}{dx}(e^{x}\log a)$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
log a times e to the x log a | $\log a\,\mathrm{e}^{x\log a}$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
The derivative with respect to x of 2 to the x is log 2 times 2 to the x | $\frac{d}{dx}(2^{x})=\log{2}(2^{x})$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
log 10 times 10 to the x | $\log 10\times 10^{x}$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
log u prime is equal to u primie over u | $\log u^{\prime}=u^{\prime}/u$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
u prime is equal to u times log a | $u^{\prime}=u\cdot\log a$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
v prime is equal to v times 1 plus log x | $v^{\prime}=v(1+\log x)$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
d by dx x to the x | $(\frac{d}{dx}(x^{x}))$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
one plus one over n to the power n | $(1+\frac{1}{n})^{n}$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
n log one plus one over n | $n\log(1+1/n)$ | https://www.youtube.com/watch?v=9v25gg2qJYE |
|
one plus one over k to the kth power | $(1+\frac{1}{k})^{k}$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
ln of one plus one over k | $\ln(1+\frac{1}{k})$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
e to the r log x prime | $\mathrm{e}^{r}\log x^{\prime}$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
u times r divided by x | $u\times\mathbb{r}/x$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
r x to the r minus one | $rx^{r-1}$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
y is ten x plus b | $y=10x+b$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
fifty t plus ten a plus b | $50t+10a+b$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
minus v to the minus 2 times v prime | $-v^{-2}v^{\prime}$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
x to the ten plus eight x | $x^{10}+8x$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
e to the x tan inverse x | $\mathrm{e}^{x}{\tan^{-1}x}$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
x divided by 1 plus x squared | $\frac{x}{1+x^{2}}$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
the limit as delta x goes to 0 of f of x plus delta x minus f of x divided by delta x | $\displaystyle \lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
one over one plus y squared times y prime | $\frac{1}{1+y^{2}}y^{\prime}$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
one divided by the square root of one plus x squared | $1/\sqrt{1+x^{2}}$ | https://www.youtube.com/watch?v=eHJuAByQf5A |
|
x zero plus f prime of x zero x minus x zero | $\displaystyle x_{0}+f^{\prime}(x_{0})(x - x_{0})$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
y equals cosine x | $y=\cos x$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
y equals e to the x | $y=\mathrm{e}^{x}$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
y equals one plus x | $\displaystyle y=1+x$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
f prime is one over one plus x | $f^{\prime}=\frac{1}{1+x}$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
r one plus x to the r minus 1 | $(r\cdot{1+x}^{r-1})$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
e to the minus 3x divided by square root 1 plus x | $e^{-3x}/\sqrt{1+x}$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
e to the minus three x one plus x to the minus a half | $e^{-3x}(1+x^{-1/2})$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
one minus three x minus a half of x plus three halves x squared. | $1-3x-\frac{1}{2}x+\frac{3}{2}x^{2}$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
t prime is equal to t divided by the square root of 1 minus v squared over c squared | $t^{\prime}= t/\sqrt{1-v^{2}/c^{2}}$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
v squared over c squared | $\frac{v^{2}}{c^{2}}$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
t times 1 plus a half v squared over c squared | $t(1+\frac{1}{2}\frac{v^{2}}{c^{2}})$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
y equals one minus a half x squared | $y=1-\frac{1}{2}x^{2}$ | https://www.youtube.com/watch?v=BSAA0akmPEU |
|
one plus a half v squared over c squared | $1+\frac{1}{2}v^{2}/c^{2}$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
f double prime of zero divided by two | $f^{\prime\prime}(0)/2$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
sine x is approximately x | $\sin x\approx x$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
cosine x is approximately one minus a half x squared | $\cos x\approx 1-\frac{1}{2}x^{2}$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
e to the x is approximately one plus x plus a half x squared | $e^{x}\approx 1+x+\frac{1}{2}x^{2}$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
x minus a half x squared | $x-\frac{1}{2}x^{2}$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
1 plus x to the power r | $(1+x^{r})$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
one plus rx plus r times r minus one divided by two x squared | $1+rx+\frac{r(r-1)}{2}x^{2}$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
e to the minus three x one plus x to the minus a half | $e^{-3x}(1+x)^{-1/2}$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
one minus a half x plus a half times minus a half times minus three halves x squared | $1-\frac{1}{2}x+\frac{1}{2}\times(-\frac{1}{2})\times(-\frac{3}{2})x^{2}$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
f double prime is minus one over one plus x squared | $f^{\prime\prime}=-\frac{1}{1 + x^{2}}$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
r one plus x to the r minus one | $(r\cdot 1+x^{r-1})$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
r times r minus one x plus one to the r minus two | $r(r-1)(x+1)^{r-2}$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
3 times 1 minus x times 1 plus x | $3(1-x)(1+x)$ | https://www.youtube.com/watch?v=eRCN3daFCmU |
|
one minus x times 1 plus x is zero | $(1 - x)(1 + x) = 0$ | https://www.youtube.com/watch?v=eRCN3daFCmU |