File size: 8,517 Bytes
c71fb67
 
9c57e3a
c71fb67
 
 
 
 
 
 
 
 
9c57e3a
 
c71fb67
 
 
9c57e3a
 
 
46921cb
9c57e3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46921cb
 
9c57e3a
 
c71fb67
 
9c57e3a
 
 
 
46921cb
 
9c57e3a
 
 
 
 
 
46921cb
 
 
9c57e3a
 
c71fb67
9c57e3a
 
 
 
 
46921cb
 
9c57e3a
 
 
 
 
 
 
 
 
 
 
 
46921cb
9c57e3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46921cb
 
 
9c57e3a
 
 
 
 
 
 
 
 
 
 
 
 
 
46921cb
9c57e3a
 
 
 
 
 
 
 
 
 
 
 
 
46921cb
 
 
 
 
 
 
 
9c57e3a
46921cb
 
9c57e3a
 
 
 
 
 
 
 
 
 
 
c71fb67
9c57e3a
 
 
 
 
 
c71fb67
9c57e3a
 
 
 
 
 
c71fb67
9c57e3a
 
 
 
 
c71fb67
9c57e3a
 
 
 
 
 
c71fb67
9c57e3a
 
 
 
 
 
c71fb67
9c57e3a
 
 
 
 
 
 
 
 
 
 
46921cb
 
9c57e3a
46921cb
9c57e3a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import argparse
import os
import glob
from helpers import *
from faster_whisper import WhisperModel
import whisperx
import torch
from pydub import AudioSegment
from nemo.collections.asr.models.msdd_models import NeuralDiarizer
import logging
import shutil
import srt
from tqdm import tqdm
import concurrent.futures

mtypes = {"cpu": "int8", "cuda": "float16"}

def setup_logging():
    logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

def process_audio_file(audio_file, args):
    logging.info(f"Processing file: {audio_file}")
    
    if args.stemming:
        # Isolate vocals from the rest of the audio
        logging.info("Performing source separation...")
        return_code = os.system(
            f'python3 -m demucs.separate -n htdemucs --two-stems=vocals "{audio_file}" -o "temp_outputs"'
        )
        if return_code != 0:
            logging.warning("Source splitting failed, using original audio file.")
            vocal_target = audio_file
        else:
            vocal_target = os.path.join(
                "temp_outputs",
                "htdemucs",
                os.path.splitext(os.path.basename(audio_file))[0],
                "vocals.wav",
            )
    else:
        vocal_target = audio_file

    # Transcribe the audio file
    logging.info("Transcribing audio...")
    if args.batch_size != 0:
        from transcription_helpers import transcribe_batched
        whisper_results, language = transcribe_batched(
            vocal_target,
            args.language,
            args.batch_size,
            args.model_name,
            mtypes[args.device],
            args.suppress_numerals,
            args.device,
        )
    else:
        from transcription_helpers import transcribe
        whisper_results, language = transcribe(
            vocal_target,
            args.language,
            args.model_name,
            mtypes[args.device],
            args.suppress_numerals,
            args.device,
        )

    logging.info("Aligning transcription...")
    if language in wav2vec2_langs:
        alignment_model, metadata = whisperx.load_align_model(
            language_code=language, device=args.device
        )
        result_aligned = whisperx.align(
            whisper_results, alignment_model, metadata, vocal_target, args.device
        )
        word_timestamps = filter_missing_timestamps(
            result_aligned["word_segments"],
            initial_timestamp=whisper_results[0].get("start"),
            final_timestamp=whisper_results[-1].get("end"),
        )
        del alignment_model
        torch.cuda.empty_cache()
    else:
        word_timestamps = []
        for segment in whisper_results:
            for word in segment["words"]:
                word_timestamps.append({"word": word[2], "start": word[0], "end": word[1]})

    # Convert audio to mono for NeMo compatibility
    logging.info("Converting audio to mono...")
    sound = AudioSegment.from_file(vocal_target).set_channels(1)
    ROOT = os.getcwd()
    temp_path = os.path.join(ROOT, "temp_outputs")
    os.makedirs(temp_path, exist_ok=True)
    sound.export(os.path.join(temp_path, "mono_file.wav"), format="wav")

    # Initialize NeMo MSDD diarization model
    logging.info("Performing diarization...")
    msdd_model = NeuralDiarizer(cfg=create_config(temp_path)).to(args.device)
    msdd_model.diarize()
    del msdd_model
    torch.cuda.empty_cache()

    # Reading timestamps <> Speaker Labels mapping
    speaker_ts = []
    with open(os.path.join(temp_path, "pred_rttms", "mono_file.rttm"), "r") as f:
        lines = f.readlines()
        for line in lines:
            line_list = line.split(" ")
            s = int(float(line_list[5]) * 1000)
            e = s + int(float(line_list[8]) * 1000)
            speaker_ts.append([s, e, int(line_list[11].split("_")[-1])])

    wsm = get_words_speaker_mapping(word_timestamps, speaker_ts, "start")
    wsm = get_realigned_ws_mapping_with_punctuation(wsm)
    ssm = get_sentences_speaker_mapping(wsm, speaker_ts)

    # Create the autodiarization directory structure
    autodiarization_dir = "autodiarization"
    os.makedirs(autodiarization_dir, exist_ok=True)

    # Get the base name of the audio file
    base_name = os.path.splitext(os.path.basename(audio_file))[0]

    # Create a subdirectory for the current audio file
    audio_dir = os.path.join(autodiarization_dir, base_name)
    os.makedirs(audio_dir, exist_ok=True)

    # Create a dictionary to store speaker-specific metadata
    speaker_metadata = {}

    # Generate the SRT file
    srt_file = f"{os.path.splitext(audio_file)[0]}.srt"
    with open(srt_file, "w", encoding="utf-8") as f:
        write_srt(ssm, f)

    # Read the generated SRT file
    with open(srt_file, "r", encoding="utf-8") as f:
        srt_data = f.read()

    # Parse the SRT data
    srt_segments = list(srt.parse(srt_data))

    # Process each segment in the SRT data
    logging.info("Processing audio segments...")
    for segment in tqdm(srt_segments, desc="Processing segments"):
        start_time = segment.start.total_seconds() * 1000
        end_time = segment.end.total_seconds() * 1000
        speaker_name, transcript = segment.content.split(": ", 1)

        # Extract the speaker ID from the speaker name
        speaker_id = int(speaker_name.split(" ")[-1])

        # Split the audio segment
        segment_audio = sound[start_time:end_time]
        segment_path = os.path.join(audio_dir, f"speaker_{speaker_id}", f"speaker_{speaker_id}_{segment.index:03d}.wav")
        os.makedirs(os.path.dirname(segment_path), exist_ok=True)
        segment_audio.export(segment_path, format="wav")

        # Store the metadata for each speaker
        if speaker_name not in speaker_metadata:
            speaker_metadata[speaker_name] = []
        speaker_metadata[speaker_name].append(f"speaker_{speaker_id}_{segment.index:03d}|{speaker_name}|{transcript}")

    # Write the metadata.csv file for each speaker
    for speaker_name, metadata in speaker_metadata.items():
        speaker_id = int(speaker_name.split(" ")[-1])
        speaker_dir = os.path.join(audio_dir, f"speaker_{speaker_id}")
        with open(os.path.join(speaker_dir, "metadata.csv"), "w", encoding="utf-8") as f:
            f.write("\n".join(metadata))

    # Clean up temporary files
    cleanup(temp_path)
    logging.info(f"Finished processing {audio_file}")

def main():
    setup_logging()
    
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-a", "--audio", help="name of the target audio file or directory", required=True
    )
    parser.add_argument(
        "--no-stem",
        action="store_false",
        dest="stemming",
        default=True,
        help="Disables source separation. This helps with long files that don't contain a lot of music.",
    )
    parser.add_argument(
        "--suppress_numerals",
        action="store_true",
        dest="suppress_numerals",
        default=False,
        help="Suppresses Numerical Digits. This helps the diarization accuracy but converts all digits into written text.",
    )
    parser.add_argument(
        "--whisper-model",
        dest="model_name",
        default="medium.en",
        help="name of the Whisper model to use",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        dest="batch_size",
        default=8,
        help="Batch size for batched inference, reduce if you run out of memory, set to 0 for non-batched inference",
    )
    parser.add_argument(
        "--language",
        type=str,
        default=None,
        choices=whisper_langs,
        help="Language spoken in the audio, specify None to perform language detection",
    )
    parser.add_argument(
        "--device",
        dest="device",
        default="cuda" if torch.cuda.is_available() else "cpu",
        help="if you have a GPU use 'cuda', otherwise 'cpu'",
    )
    args = parser.parse_args()

    if os.path.isdir(args.audio):
        audio_files = glob.glob(os.path.join(args.audio, "*.wav")) + glob.glob(os.path.join(args.audio, "*.mp3"))
        logging.info(f"Found {len(audio_files)} audio files in the directory.")
        with concurrent.futures.ThreadPoolExecutor() as executor:
            list(tqdm(executor.map(lambda f: process_audio_file(f, args), audio_files), total=len(audio_files), desc="Processing files"))
    else:
        process_audio_file(args.audio, args)

if __name__ == "__main__":
    main()