GBI-16-2D-Legacy / GBI-16-2D-Legacy.py
anonuser7251's picture
Add dataset
246fca2
import os
import random
from glob import glob
import json
from huggingface_hub import hf_hub_download
from astropy.io import fits
import datasets
from datasets import DownloadManager
from fsspec.core import url_to_fs
_DESCRIPTION = (
"GBI-16-2D-Legacy is a Huggingface `dataset` wrapper around a compression "
"dataset assembled by Maireles-González et al. (Publications of the "
"Astronomical Society of the Pacific, 135:094502, 2023 September; doi: "
"[https://doi.org/10.1088/1538-3873/acf6e0](https://doi.org/10.1088/1538-3873/"
"acf6e0)). It contains 226 FITS images from 5 different ground-based "
"telescope/cameras with a varying amount of entropy per image."
)
_HOMEPAGE = "https://google.github.io/AstroCompress"
_LICENSE = "CC BY 4.0"
_URL = "https://huggingface.co/datasets/AstroCompress/GBI-16-2D-Legacy/resolve/main/"
_URLS = {
"tiny": {
"train": "./splits/tiny_train.jsonl",
"test": "./splits/tiny_test.jsonl",
},
"full": {
"train": "./splits/full_train.jsonl",
"test": "./splits/full_test.jsonl",
}
}
_REPO_ID = "AstroCompress/GBI-16-2D-Legacy"
class GBI_16_2D_Legacy(datasets.GeneratorBasedBuilder):
"""GBI-16-2D-Legacy Dataset"""
VERSION = datasets.Version("1.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="tiny",
version=VERSION,
description="A small subset of the data, to test downsteam workflows.",
),
datasets.BuilderConfig(
name="full",
version=VERSION,
description="The full dataset",
),
]
DEFAULT_CONFIG_NAME = "tiny"
def __init__(self, **kwargs):
super().__init__(version=self.VERSION, **kwargs)
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
# Images are variable size across the dataset
# so use the Image type here, returning as
# numpy uint16
"image": datasets.Image(decode=True, mode="I;16"),
"telescope": datasets.Value("string"),
"image_id": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation="TBD",
)
def _split_generators(self, dl_manager: DownloadManager):
ret = []
base_path = dl_manager._base_path
locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT)
_, path = url_to_fs(base_path)
for split in ["train", "test"]:
if locally_run:
split_file_location = os.path.normpath(os.path.join(path, _URLS[self.config.name][split]))
split_file = dl_manager.download_and_extract(split_file_location)
else:
split_file = hf_hub_download(repo_id=_REPO_ID, filename=_URLS[self.config.name][split], repo_type="dataset")
with open(split_file, encoding="utf-8") as f:
data_filenames = []
data_metadata = []
for line in f:
item = json.loads(line)
data_filenames.append(item["image"])
data_metadata.append({"telescope": item["telescope"],
"image_id": item["image_id"]})
if locally_run:
data_urls = [os.path.normpath(os.path.join(path,data_filename)) for data_filename in data_filenames]
data_files = [dl_manager.download(data_url) for data_url in data_urls]
else:
data_urls = data_filenames
data_files = [hf_hub_download(repo_id=_REPO_ID, filename=data_url, repo_type="dataset") for data_url in data_urls]
ret.append(
datasets.SplitGenerator(
name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST,
gen_kwargs={"filepaths": data_files,
"split_file": split_file,
"split": split,
"data_metadata": data_metadata},
),
)
return ret
def _generate_examples(self, filepaths, split_file, split, data_metadata):
"""Generate GBI-16-2D-Legacy examples"""
for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)):
task_instance_key = f"{self.config.name}-{split}-{idx}"
with fits.open(filepath, memmap=False) as hdul:
# this data is natively formatted like (1, 4200, 2154)
# just use the 2D image
image_data = hdul[0].data[0,:,:].tolist()
yield task_instance_key, {**{"image": image_data}, **item}