|
import os |
|
import random |
|
from glob import glob |
|
import json |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
from astropy.io import fits |
|
import datasets |
|
from datasets import DownloadManager |
|
from fsspec.core import url_to_fs |
|
|
|
_DESCRIPTION = ( |
|
"GBI-16-2D-Legacy is a Huggingface `dataset` wrapper around a compression " |
|
"dataset assembled by Maireles-González et al. (Publications of the " |
|
"Astronomical Society of the Pacific, 135:094502, 2023 September; doi: " |
|
"[https://doi.org/10.1088/1538-3873/acf6e0](https://doi.org/10.1088/1538-3873/" |
|
"acf6e0)). It contains 226 FITS images from 5 different ground-based " |
|
"telescope/cameras with a varying amount of entropy per image." |
|
) |
|
|
|
_HOMEPAGE = "https://google.github.io/AstroCompress" |
|
|
|
_LICENSE = "CC BY 4.0" |
|
|
|
_URL = "https://huggingface.co/datasets/AstroCompress/GBI-16-2D-Legacy/resolve/main/" |
|
|
|
_URLS = { |
|
"tiny": { |
|
"train": "./splits/tiny_train.jsonl", |
|
"test": "./splits/tiny_test.jsonl", |
|
}, |
|
"full": { |
|
"train": "./splits/full_train.jsonl", |
|
"test": "./splits/full_test.jsonl", |
|
} |
|
} |
|
|
|
_REPO_ID = "AstroCompress/GBI-16-2D-Legacy" |
|
|
|
class GBI_16_2D_Legacy(datasets.GeneratorBasedBuilder): |
|
"""GBI-16-2D-Legacy Dataset""" |
|
|
|
VERSION = datasets.Version("1.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="tiny", |
|
version=VERSION, |
|
description="A small subset of the data, to test downsteam workflows.", |
|
), |
|
datasets.BuilderConfig( |
|
name="full", |
|
version=VERSION, |
|
description="The full dataset", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "tiny" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(version=self.VERSION, **kwargs) |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
|
|
|
|
|
|
"image": datasets.Image(decode=True, mode="I;16"), |
|
"telescope": datasets.Value("string"), |
|
"image_id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation="TBD", |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager): |
|
|
|
ret = [] |
|
base_path = dl_manager._base_path |
|
locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT) |
|
_, path = url_to_fs(base_path) |
|
|
|
for split in ["train", "test"]: |
|
if locally_run: |
|
split_file_location = os.path.normpath(os.path.join(path, _URLS[self.config.name][split])) |
|
split_file = dl_manager.download_and_extract(split_file_location) |
|
else: |
|
split_file = hf_hub_download(repo_id=_REPO_ID, filename=_URLS[self.config.name][split], repo_type="dataset") |
|
with open(split_file, encoding="utf-8") as f: |
|
data_filenames = [] |
|
data_metadata = [] |
|
for line in f: |
|
item = json.loads(line) |
|
data_filenames.append(item["image"]) |
|
data_metadata.append({"telescope": item["telescope"], |
|
"image_id": item["image_id"]}) |
|
if locally_run: |
|
data_urls = [os.path.normpath(os.path.join(path,data_filename)) for data_filename in data_filenames] |
|
data_files = [dl_manager.download(data_url) for data_url in data_urls] |
|
else: |
|
data_urls = data_filenames |
|
data_files = [hf_hub_download(repo_id=_REPO_ID, filename=data_url, repo_type="dataset") for data_url in data_urls] |
|
ret.append( |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST, |
|
gen_kwargs={"filepaths": data_files, |
|
"split_file": split_file, |
|
"split": split, |
|
"data_metadata": data_metadata}, |
|
), |
|
) |
|
return ret |
|
|
|
def _generate_examples(self, filepaths, split_file, split, data_metadata): |
|
"""Generate GBI-16-2D-Legacy examples""" |
|
|
|
for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)): |
|
task_instance_key = f"{self.config.name}-{split}-{idx}" |
|
with fits.open(filepath, memmap=False) as hdul: |
|
|
|
|
|
image_data = hdul[0].data[0,:,:].tolist() |
|
yield task_instance_key, {**{"image": image_data}, **item} |