Datasets:
metadata
dataset_info:
- config_name: default
features:
- name: utterance
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 924830
num_examples: 11514
download_size: 347436
dataset_size: 924830
- config_name: intents
features:
- name: id
dtype: int64
- name: name
dtype: string
- name: tags
sequence: 'null'
- name: regexp_full_match
sequence: 'null'
- name: regexp_partial_match
sequence: 'null'
- name: description
dtype: 'null'
splits:
- name: intents
num_bytes: 2266
num_examples: 60
download_size: 3945
dataset_size: 2266
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- config_name: intents
data_files:
- split: intents
path: intents/intents-*
task_categories:
- text-classification
language:
- ru
Russian massive
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our AutoIntent Library.
Usage
It is intended to be used with our AutoIntent Library:
from autointent import Dataset
massive_ru = Dataset.from_datasets("AutoIntent/massive_ru")
Source
This dataset is taken from mteb/amazon_massive_intent
and formatted with our AutoIntent Library:
from datasets import load_dataset
def convert_massive(massive_train):
intent_names = sorted(massive_train.unique("label"))
name_to_id = dict(zip(intent_names, range(len(intent_names)), strict=False))
n_classes = len(intent_names)
classwise_utterance_records = [[] for _ in range(n_classes)]
intents = [
{
"id": i,
"name": name,
}
for i, name in enumerate(intent_names)
]
for batch in massive_train.iter(batch_size=16, drop_last_batch=False):
for txt, name in zip(batch["text"], batch["label"], strict=False):
intent_id = name_to_id[name]
target_list = classwise_utterance_records[intent_id]
target_list.append({"utterance": txt, "label": intent_id})
utterances = [rec for lst in classwise_utterance_records for rec in lst]
return Dataset.from_dict({"intents": intents, "train": utterances})
massive = load_dataset("mteb/amazon_massive_intent", "ru")
massive_converted = convert_massive(massive["train"])