Zekrom997/cat_vs_dogs
Image Classification
•
Updated
image
imagewidth (px) 57
1.05k
| labels
class label 2
classes |
---|---|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
|
0cat
|
A dataset from kaggle with duplicate data removed.
The data instances have the following fields:
image
: A PIL.Image.Image
object containing the image. Note that when accessing the image column: dataset[0]["image"]
the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image"
column, i.e. dataset[0]["image"]
should always be preferred over dataset["image"][0]
.labels
: an int
classification label.{
"cat": 0,
"dog": 1,
}
train | test | |
---|---|---|
# of examples | 8000 | 2000 |
>>> from datasets import load_dataset
>>> dataset = load_dataset("Bingsu/Cat_and_Dog")
>>> dataset
DatasetDict({
train: Dataset({
features: ['image', 'labels'],
num_rows: 8000
})
test: Dataset({
features: ['image', 'labels'],
num_rows: 2000
})
})
>>> dataset["train"].features
{'image': Image(decode=True, id=None), 'labels': ClassLabel(num_classes=2, names=['cat', 'dog'], id=None)}