Datasets:

id
int64
0
7.97k
query
stringlengths
1.29k
1.31k
answer
stringclasses
2 values
choices
sequence
gold
int64
0
1
text
stringlengths
374
399
200
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.374, V2: -1.115, V3: -0.808, V4: 1.315, V5: -0.240, V6: 0.790, V7: -0.221, V8: 0.112, V9: 0.616, V10: 0.146, V11: 0.430, V12: 1.538, V13: 1.374, V14: -0.180, V15: -0.453, V16: 0.481, V17: -1.044, V18: 0.760, V19: -0.317, V20: 0.468, V21: 0.450, V22: 0.874, V23: -0.215, V24: 0.272, V25: -0.016, V26: -0.541, V27: 0.008, V28: 0.013, Amount: 300.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.374, V2: -1.115, V3: -0.808, V4: 1.315, V5: -0.240, V6: 0.790, V7: -0.221, V8: 0.112, V9: 0.616, V10: 0.146, V11: 0.430, V12: 1.538, V13: 1.374, V14: -0.180, V15: -0.453, V16: 0.481, V17: -1.044, V18: 0.760, V19: -0.317, V20: 0.468, V21: 0.450, V22: 0.874, V23: -0.215, V24: 0.272, V25: -0.016, V26: -0.541, V27: 0.008, V28: 0.013, Amount: 300.000.
201
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.115, V2: -1.056, V3: -0.649, V4: -0.858, V5: -0.967, V6: -0.406, V7: -0.981, V8: -0.083, V9: 0.090, V10: 0.714, V11: -0.849, V12: -0.417, V13: 0.472, V14: -0.541, V15: 0.198, V16: 1.183, V17: 0.083, V18: -1.122, V19: 0.462, V20: 0.078, V21: 0.336, V22: 0.960, V23: 0.135, V24: 0.778, V25: -0.129, V26: -0.125, V27: 0.001, V28: -0.035, Amount: 44.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.115, V2: -1.056, V3: -0.649, V4: -0.858, V5: -0.967, V6: -0.406, V7: -0.981, V8: -0.083, V9: 0.090, V10: 0.714, V11: -0.849, V12: -0.417, V13: 0.472, V14: -0.541, V15: 0.198, V16: 1.183, V17: 0.083, V18: -1.122, V19: 0.462, V20: 0.078, V21: 0.336, V22: 0.960, V23: 0.135, V24: 0.778, V25: -0.129, V26: -0.125, V27: 0.001, V28: -0.035, Amount: 44.000.
202
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.663, V2: -0.416, V3: 1.772, V4: -3.012, V5: -1.801, V6: 0.054, V7: 2.116, V8: -0.805, V9: 1.975, V10: -1.244, V11: 1.348, V12: 0.453, V13: -1.203, V14: -0.796, V15: -0.387, V16: 0.258, V17: -1.252, V18: 0.468, V19: -0.675, V20: -0.331, V21: -0.104, V22: 0.475, V23: -0.193, V24: 0.574, V25: -0.247, V26: -0.511, V27: -0.477, V28: -0.767, Amount: 345.100.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.663, V2: -0.416, V3: 1.772, V4: -3.012, V5: -1.801, V6: 0.054, V7: 2.116, V8: -0.805, V9: 1.975, V10: -1.244, V11: 1.348, V12: 0.453, V13: -1.203, V14: -0.796, V15: -0.387, V16: 0.258, V17: -1.252, V18: 0.468, V19: -0.675, V20: -0.331, V21: -0.104, V22: 0.475, V23: -0.193, V24: 0.574, V25: -0.247, V26: -0.511, V27: -0.477, V28: -0.767, Amount: 345.100.
203
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.345, V2: 0.890, V3: -0.234, V4: 1.044, V5: 0.425, V6: 0.121, V7: 0.827, V8: 0.032, V9: -0.291, V10: -0.170, V11: 0.599, V12: 0.226, V13: -0.089, V14: -0.941, V15: -0.027, V16: 0.319, V17: 0.387, V18: 1.200, V19: 0.855, V20: -0.390, V21: 0.004, V22: 0.340, V23: -0.109, V24: -0.656, V25: -0.501, V26: -0.649, V27: -0.456, V28: -0.035, Amount: 109.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.345, V2: 0.890, V3: -0.234, V4: 1.044, V5: 0.425, V6: 0.121, V7: 0.827, V8: 0.032, V9: -0.291, V10: -0.170, V11: 0.599, V12: 0.226, V13: -0.089, V14: -0.941, V15: -0.027, V16: 0.319, V17: 0.387, V18: 1.200, V19: 0.855, V20: -0.390, V21: 0.004, V22: 0.340, V23: -0.109, V24: -0.656, V25: -0.501, V26: -0.649, V27: -0.456, V28: -0.035, Amount: 109.000.
204
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.067, V2: -0.255, V3: 1.097, V4: 1.532, V5: -0.545, V6: 1.096, V7: -0.694, V8: 0.492, V9: 1.116, V10: -0.226, V11: 0.183, V12: 1.206, V13: -0.964, V14: -0.433, V15: -2.307, V16: -0.823, V17: 0.442, V18: -0.670, V19: 0.593, V20: -0.238, V21: -0.395, V22: -0.720, V23: 0.043, V24: -0.319, V25: 0.418, V26: -0.504, V27: 0.083, V28: 0.013, Amount: 6.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.067, V2: -0.255, V3: 1.097, V4: 1.532, V5: -0.545, V6: 1.096, V7: -0.694, V8: 0.492, V9: 1.116, V10: -0.226, V11: 0.183, V12: 1.206, V13: -0.964, V14: -0.433, V15: -2.307, V16: -0.823, V17: 0.442, V18: -0.670, V19: 0.593, V20: -0.238, V21: -0.395, V22: -0.720, V23: 0.043, V24: -0.319, V25: 0.418, V26: -0.504, V27: 0.083, V28: 0.013, Amount: 6.990.
205
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.234, V2: 0.331, V3: 2.101, V4: 1.446, V5: -0.301, V6: 0.853, V7: -0.171, V8: 0.446, V9: 0.842, V10: 0.108, V11: 0.537, V12: 0.939, V13: -1.247, V14: -0.568, V15: -2.157, V16: -1.349, V17: 0.843, V18: -0.588, V19: 1.232, V20: -0.292, V21: -0.324, V22: -0.226, V23: 0.393, V24: 0.209, V25: -0.481, V26: -0.540, V27: 0.205, V28: 0.148, Amount: 7.480.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.234, V2: 0.331, V3: 2.101, V4: 1.446, V5: -0.301, V6: 0.853, V7: -0.171, V8: 0.446, V9: 0.842, V10: 0.108, V11: 0.537, V12: 0.939, V13: -1.247, V14: -0.568, V15: -2.157, V16: -1.349, V17: 0.843, V18: -0.588, V19: 1.232, V20: -0.292, V21: -0.324, V22: -0.226, V23: 0.393, V24: 0.209, V25: -0.481, V26: -0.540, V27: 0.205, V28: 0.148, Amount: 7.480.
206
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.235, V2: -2.127, V3: 0.840, V4: -0.246, V5: -0.566, V6: -1.185, V7: -0.084, V8: -0.220, V9: -0.355, V10: 1.179, V11: -0.477, V12: -1.649, V13: -0.923, V14: -0.435, V15: 1.386, V16: 1.166, V17: 0.293, V18: -0.798, V19: 1.364, V20: -0.752, V21: -0.169, V22: 1.044, V23: 1.748, V24: 0.380, V25: 0.065, V26: -0.111, V27: 0.231, V28: -0.806, Amount: 143.620.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.235, V2: -2.127, V3: 0.840, V4: -0.246, V5: -0.566, V6: -1.185, V7: -0.084, V8: -0.220, V9: -0.355, V10: 1.179, V11: -0.477, V12: -1.649, V13: -0.923, V14: -0.435, V15: 1.386, V16: 1.166, V17: 0.293, V18: -0.798, V19: 1.364, V20: -0.752, V21: -0.169, V22: 1.044, V23: 1.748, V24: 0.380, V25: 0.065, V26: -0.111, V27: 0.231, V28: -0.806, Amount: 143.620.
207
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.817, V2: 0.327, V3: 1.296, V4: 0.314, V5: 0.821, V6: -0.536, V7: 0.616, V8: 0.144, V9: 0.526, V10: -0.947, V11: -2.058, V12: -0.608, V13: -2.279, V14: 0.014, V15: -2.206, V16: -0.634, V17: 0.039, V18: -0.636, V19: -0.357, V20: -0.307, V21: -0.265, V22: -0.678, V23: -0.142, V24: -0.172, V25: 0.168, V26: -0.895, V27: 0.121, V28: 0.137, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.817, V2: 0.327, V3: 1.296, V4: 0.314, V5: 0.821, V6: -0.536, V7: 0.616, V8: 0.144, V9: 0.526, V10: -0.947, V11: -2.058, V12: -0.608, V13: -2.279, V14: 0.014, V15: -2.206, V16: -0.634, V17: 0.039, V18: -0.636, V19: -0.357, V20: -0.307, V21: -0.265, V22: -0.678, V23: -0.142, V24: -0.172, V25: 0.168, V26: -0.895, V27: 0.121, V28: 0.137, Amount: 1.000.
208
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.906, V2: 0.671, V3: 2.075, V4: 1.091, V5: -0.711, V6: 1.565, V7: 0.130, V8: 0.413, V9: 0.018, V10: 0.089, V11: 1.256, V12: 0.354, V13: -0.798, V14: 0.001, V15: 0.838, V16: -0.547, V17: 0.268, V18: 0.167, V19: 0.232, V20: -0.206, V21: 0.332, V22: 1.143, V23: -0.099, V24: -0.264, V25: -0.444, V26: -0.143, V27: -0.099, V28: 0.101, Amount: 107.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.906, V2: 0.671, V3: 2.075, V4: 1.091, V5: -0.711, V6: 1.565, V7: 0.130, V8: 0.413, V9: 0.018, V10: 0.089, V11: 1.256, V12: 0.354, V13: -0.798, V14: 0.001, V15: 0.838, V16: -0.547, V17: 0.268, V18: 0.167, V19: 0.232, V20: -0.206, V21: 0.332, V22: 1.143, V23: -0.099, V24: -0.264, V25: -0.444, V26: -0.143, V27: -0.099, V28: 0.101, Amount: 107.000.
209
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.130, V2: 0.776, V3: 1.390, V4: 1.096, V5: -0.273, V6: -0.383, V7: 0.351, V8: -0.025, V9: -0.620, V10: -0.004, V11: 0.329, V12: 0.320, V13: 0.502, V14: 0.240, V15: 1.923, V16: -0.771, V17: 0.548, V18: -0.765, V19: 1.073, V20: 0.147, V21: -0.098, V22: -0.226, V23: 0.227, V24: 0.408, V25: -0.773, V26: 0.267, V27: 0.058, V28: 0.028, Amount: 17.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.130, V2: 0.776, V3: 1.390, V4: 1.096, V5: -0.273, V6: -0.383, V7: 0.351, V8: -0.025, V9: -0.620, V10: -0.004, V11: 0.329, V12: 0.320, V13: 0.502, V14: 0.240, V15: 1.923, V16: -0.771, V17: 0.548, V18: -0.765, V19: 1.073, V20: 0.147, V21: -0.098, V22: -0.226, V23: 0.227, V24: 0.408, V25: -0.773, V26: 0.267, V27: 0.058, V28: 0.028, Amount: 17.990.
210
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.017, V2: 1.118, V3: -1.352, V4: -1.503, V5: 2.224, V6: 0.098, V7: 1.501, V8: -0.098, V9: -0.545, V10: -0.532, V11: -0.715, V12: 0.028, V13: 0.269, V14: 0.575, V15: -0.002, V16: -0.672, V17: -0.423, V18: -0.424, V19: -0.215, V20: 0.071, V21: 0.240, V22: 0.767, V23: -0.077, V24: 3.508, V25: -0.246, V26: -0.072, V27: 0.381, V28: 0.302, Amount: 1.460.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.017, V2: 1.118, V3: -1.352, V4: -1.503, V5: 2.224, V6: 0.098, V7: 1.501, V8: -0.098, V9: -0.545, V10: -0.532, V11: -0.715, V12: 0.028, V13: 0.269, V14: 0.575, V15: -0.002, V16: -0.672, V17: -0.423, V18: -0.424, V19: -0.215, V20: 0.071, V21: 0.240, V22: 0.767, V23: -0.077, V24: 3.508, V25: -0.246, V26: -0.072, V27: 0.381, V28: 0.302, Amount: 1.460.
211
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.271, V2: -0.621, V3: 0.708, V4: -1.907, V5: -1.381, V6: -1.099, V7: -0.604, V8: -0.116, V9: 2.432, V10: -1.636, V11: -0.282, V12: 1.122, V13: 0.307, V14: -0.215, V15: 1.630, V16: -0.879, V17: -0.025, V18: 0.379, V19: 1.007, V20: -0.066, V21: 0.154, V22: 0.771, V23: -0.169, V24: 0.443, V25: 0.688, V26: -0.641, V27: 0.106, V28: 0.033, Amount: 11.050.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.271, V2: -0.621, V3: 0.708, V4: -1.907, V5: -1.381, V6: -1.099, V7: -0.604, V8: -0.116, V9: 2.432, V10: -1.636, V11: -0.282, V12: 1.122, V13: 0.307, V14: -0.215, V15: 1.630, V16: -0.879, V17: -0.025, V18: 0.379, V19: 1.007, V20: -0.066, V21: 0.154, V22: 0.771, V23: -0.169, V24: 0.443, V25: 0.688, V26: -0.641, V27: 0.106, V28: 0.033, Amount: 11.050.
212
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.506, V2: -3.831, V3: -2.598, V4: -1.185, V5: -5.755, V6: 1.367, V7: 7.924, V8: -2.264, V9: -3.062, V10: 0.411, V11: -0.033, V12: -2.109, V13: -0.355, V14: -0.161, V15: -0.402, V16: -1.369, V17: 0.783, V18: -0.192, V19: -0.031, V20: 0.101, V21: 0.050, V22: 1.316, V23: 1.640, V24: 1.005, V25: 0.785, V26: 0.279, V27: 0.326, V28: -0.631, Amount: 1733.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.506, V2: -3.831, V3: -2.598, V4: -1.185, V5: -5.755, V6: 1.367, V7: 7.924, V8: -2.264, V9: -3.062, V10: 0.411, V11: -0.033, V12: -2.109, V13: -0.355, V14: -0.161, V15: -0.402, V16: -1.369, V17: 0.783, V18: -0.192, V19: -0.031, V20: 0.101, V21: 0.050, V22: 1.316, V23: 1.640, V24: 1.005, V25: 0.785, V26: 0.279, V27: 0.326, V28: -0.631, Amount: 1733.000.
213
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.031, V2: -4.027, V3: 0.803, V4: -0.575, V5: 2.387, V6: -2.403, V7: -1.565, V8: 0.426, V9: -0.914, V10: -0.198, V11: 1.388, V12: -0.444, V13: -1.320, V14: -0.832, V15: -0.970, V16: 1.183, V17: 1.173, V18: -0.848, V19: -0.240, V20: 1.275, V21: 0.559, V22: 0.116, V23: 1.223, V24: 0.073, V25: -0.529, V26: -0.607, V27: -0.014, V28: 0.276, Amount: 225.940.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.031, V2: -4.027, V3: 0.803, V4: -0.575, V5: 2.387, V6: -2.403, V7: -1.565, V8: 0.426, V9: -0.914, V10: -0.198, V11: 1.388, V12: -0.444, V13: -1.320, V14: -0.832, V15: -0.970, V16: 1.183, V17: 1.173, V18: -0.848, V19: -0.240, V20: 1.275, V21: 0.559, V22: 0.116, V23: 1.223, V24: 0.073, V25: -0.529, V26: -0.607, V27: -0.014, V28: 0.276, Amount: 225.940.
214
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.891, V2: -1.378, V3: 0.646, V4: 0.848, V5: -1.410, V6: 1.793, V7: -2.006, V8: 0.646, V9: 1.101, V10: 0.766, V11: -0.769, V12: 1.107, V13: 0.351, V14: -1.274, V15: -2.346, V16: -1.435, V17: -0.176, V18: 2.102, V19: -0.519, V20: -0.575, V21: -0.206, V22: 0.350, V23: 0.154, V24: 0.207, V25: -0.210, V26: -0.496, V27: 0.151, V28: -0.016, Amount: 34.200.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.891, V2: -1.378, V3: 0.646, V4: 0.848, V5: -1.410, V6: 1.793, V7: -2.006, V8: 0.646, V9: 1.101, V10: 0.766, V11: -0.769, V12: 1.107, V13: 0.351, V14: -1.274, V15: -2.346, V16: -1.435, V17: -0.176, V18: 2.102, V19: -0.519, V20: -0.575, V21: -0.206, V22: 0.350, V23: 0.154, V24: 0.207, V25: -0.210, V26: -0.496, V27: 0.151, V28: -0.016, Amount: 34.200.
215
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.697, V2: 0.071, V3: 0.800, V4: -0.341, V5: 1.427, V6: 2.383, V7: 1.080, V8: -0.003, V9: 0.764, V10: 0.390, V11: -0.841, V12: -0.135, V13: 0.078, V14: -0.805, V15: 0.957, V16: -1.392, V17: 0.466, V18: -2.133, V19: -0.588, V20: -0.176, V21: -0.406, V22: 0.034, V23: -0.025, V24: -2.322, V25: -0.086, V26: 0.389, V27: -0.114, V28: -0.101, Amount: 132.420.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.697, V2: 0.071, V3: 0.800, V4: -0.341, V5: 1.427, V6: 2.383, V7: 1.080, V8: -0.003, V9: 0.764, V10: 0.390, V11: -0.841, V12: -0.135, V13: 0.078, V14: -0.805, V15: 0.957, V16: -1.392, V17: 0.466, V18: -2.133, V19: -0.588, V20: -0.176, V21: -0.406, V22: 0.034, V23: -0.025, V24: -2.322, V25: -0.086, V26: 0.389, V27: -0.114, V28: -0.101, Amount: 132.420.
216
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.360, V2: 1.239, V3: -0.464, V4: -0.531, V5: 0.487, V6: -1.096, V7: 0.824, V8: 0.005, V9: 0.566, V10: -0.174, V11: -0.489, V12: -0.855, V13: -1.815, V14: -0.779, V15: -0.002, V16: 0.182, V17: 0.668, V18: -0.271, V19: -0.518, V20: 0.137, V21: -0.388, V22: -0.916, V23: 0.197, V24: 0.929, V25: -0.452, V26: 0.105, V27: 0.427, V28: 0.211, Amount: 4.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.360, V2: 1.239, V3: -0.464, V4: -0.531, V5: 0.487, V6: -1.096, V7: 0.824, V8: 0.005, V9: 0.566, V10: -0.174, V11: -0.489, V12: -0.855, V13: -1.815, V14: -0.779, V15: -0.002, V16: 0.182, V17: 0.668, V18: -0.271, V19: -0.518, V20: 0.137, V21: -0.388, V22: -0.916, V23: 0.197, V24: 0.929, V25: -0.452, V26: 0.105, V27: 0.427, V28: 0.211, Amount: 4.950.
217
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.353, V2: 0.773, V3: 0.367, V4: 0.907, V5: 0.740, V6: 0.031, V7: 0.993, V8: -0.397, V9: -0.338, V10: 0.121, V11: -0.820, V12: 0.098, V13: 0.762, V14: 0.107, V15: 1.391, V16: -1.455, V17: 0.384, V18: -0.100, V19: 3.011, V20: 0.400, V21: -0.177, V22: -0.173, V23: 0.071, V24: 0.487, V25: -0.843, V26: -0.280, V27: 0.085, V28: 0.004, Amount: 34.480.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.353, V2: 0.773, V3: 0.367, V4: 0.907, V5: 0.740, V6: 0.031, V7: 0.993, V8: -0.397, V9: -0.338, V10: 0.121, V11: -0.820, V12: 0.098, V13: 0.762, V14: 0.107, V15: 1.391, V16: -1.455, V17: 0.384, V18: -0.100, V19: 3.011, V20: 0.400, V21: -0.177, V22: -0.173, V23: 0.071, V24: 0.487, V25: -0.843, V26: -0.280, V27: 0.085, V28: 0.004, Amount: 34.480.
218
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.980, V2: 0.382, V3: -1.030, V4: 3.842, V5: 0.766, V6: 0.566, V7: 0.148, V8: -0.029, V9: -0.358, V10: 1.311, V11: -2.708, V12: -0.419, V13: -0.247, V14: -0.200, V15: -2.303, V16: 0.312, V17: -0.558, V18: -0.375, V19: -0.692, V20: -0.309, V21: -0.011, V22: 0.279, V23: -0.118, V24: -0.988, V25: 0.442, V26: 0.253, V27: -0.029, V28: -0.068, Amount: 6.070.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.980, V2: 0.382, V3: -1.030, V4: 3.842, V5: 0.766, V6: 0.566, V7: 0.148, V8: -0.029, V9: -0.358, V10: 1.311, V11: -2.708, V12: -0.419, V13: -0.247, V14: -0.200, V15: -2.303, V16: 0.312, V17: -0.558, V18: -0.375, V19: -0.692, V20: -0.309, V21: -0.011, V22: 0.279, V23: -0.118, V24: -0.988, V25: 0.442, V26: 0.253, V27: -0.029, V28: -0.068, Amount: 6.070.
219
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.371, V2: 2.629, V3: 0.316, V4: 0.024, V5: -1.041, V6: 0.789, V7: -3.206, V8: -7.273, V9: -1.615, V10: -1.845, V11: 1.082, V12: 1.657, V13: -0.592, V14: 1.864, V15: -0.165, V16: 0.951, V17: 0.007, V18: 0.232, V19: -0.274, V20: 1.889, V21: -3.883, V22: 0.757, V23: 0.718, V24: 0.456, V25: -0.432, V26: -0.007, V27: 0.033, V28: 0.158, Amount: 8.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.371, V2: 2.629, V3: 0.316, V4: 0.024, V5: -1.041, V6: 0.789, V7: -3.206, V8: -7.273, V9: -1.615, V10: -1.845, V11: 1.082, V12: 1.657, V13: -0.592, V14: 1.864, V15: -0.165, V16: 0.951, V17: 0.007, V18: 0.232, V19: -0.274, V20: 1.889, V21: -3.883, V22: 0.757, V23: 0.718, V24: 0.456, V25: -0.432, V26: -0.007, V27: 0.033, V28: 0.158, Amount: 8.990.
220
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.197, V2: 1.177, V3: 0.574, V4: 0.958, V5: -0.642, V6: -0.591, V7: 0.941, V8: 0.121, V9: -0.578, V10: -0.096, V11: -0.617, V12: 0.000, V13: 0.125, V14: 0.526, V15: 1.041, V16: -0.159, V17: -0.069, V18: 0.132, V19: 0.422, V20: -0.172, V21: 0.109, V22: 0.510, V23: 0.129, V24: 0.407, V25: -0.127, V26: -0.324, V27: 0.162, V28: 0.082, Amount: 131.840.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.197, V2: 1.177, V3: 0.574, V4: 0.958, V5: -0.642, V6: -0.591, V7: 0.941, V8: 0.121, V9: -0.578, V10: -0.096, V11: -0.617, V12: 0.000, V13: 0.125, V14: 0.526, V15: 1.041, V16: -0.159, V17: -0.069, V18: 0.132, V19: 0.422, V20: -0.172, V21: 0.109, V22: 0.510, V23: 0.129, V24: 0.407, V25: -0.127, V26: -0.324, V27: 0.162, V28: 0.082, Amount: 131.840.
221
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.923, V2: 1.265, V3: 0.865, V4: 0.580, V5: 0.716, V6: -0.244, V7: 1.041, V8: -0.590, V9: -0.092, V10: 0.735, V11: -0.974, V12: -0.099, V13: 0.956, V14: -0.354, V15: 1.092, V16: -0.293, V17: -0.719, V18: 0.199, V19: 0.775, V20: 0.032, V21: 0.061, V22: 0.480, V23: -0.333, V24: -0.414, V25: -0.231, V26: -0.432, V27: -1.109, V28: -0.550, Amount: 12.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.923, V2: 1.265, V3: 0.865, V4: 0.580, V5: 0.716, V6: -0.244, V7: 1.041, V8: -0.590, V9: -0.092, V10: 0.735, V11: -0.974, V12: -0.099, V13: 0.956, V14: -0.354, V15: 1.092, V16: -0.293, V17: -0.719, V18: 0.199, V19: 0.775, V20: 0.032, V21: 0.061, V22: 0.480, V23: -0.333, V24: -0.414, V25: -0.231, V26: -0.432, V27: -1.109, V28: -0.550, Amount: 12.000.
222
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.788, V2: -0.937, V3: 2.551, V4: 0.536, V5: 1.808, V6: 0.482, V7: -0.077, V8: 0.008, V9: 0.786, V10: -0.336, V11: -0.575, V12: 1.150, V13: 0.434, V14: -1.354, V15: -3.084, V16: -0.376, V17: -0.641, V18: -0.068, V19: 0.808, V20: 0.189, V21: -0.466, V22: -0.856, V23: -0.324, V24: -0.828, V25: 0.653, V26: -0.637, V27: -0.442, V28: -0.175, Amount: 26.200.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.788, V2: -0.937, V3: 2.551, V4: 0.536, V5: 1.808, V6: 0.482, V7: -0.077, V8: 0.008, V9: 0.786, V10: -0.336, V11: -0.575, V12: 1.150, V13: 0.434, V14: -1.354, V15: -3.084, V16: -0.376, V17: -0.641, V18: -0.068, V19: 0.808, V20: 0.189, V21: -0.466, V22: -0.856, V23: -0.324, V24: -0.828, V25: 0.653, V26: -0.637, V27: -0.442, V28: -0.175, Amount: 26.200.
223
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.224, V2: 1.322, V3: -0.294, V4: -0.418, V5: -3.919, V6: 0.671, V7: 0.671, V8: 1.335, V9: 0.162, V10: -1.811, V11: -1.629, V12: 0.738, V13: 0.092, V14: 0.431, V15: -1.117, V16: 0.734, V17: 0.411, V18: -0.381, V19: -0.181, V20: -1.010, V21: -0.038, V22: -0.040, V23: 0.304, V24: 0.484, V25: -0.883, V26: 0.628, V27: -0.415, V28: -0.289, Amount: 440.970.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.224, V2: 1.322, V3: -0.294, V4: -0.418, V5: -3.919, V6: 0.671, V7: 0.671, V8: 1.335, V9: 0.162, V10: -1.811, V11: -1.629, V12: 0.738, V13: 0.092, V14: 0.431, V15: -1.117, V16: 0.734, V17: 0.411, V18: -0.381, V19: -0.181, V20: -1.010, V21: -0.038, V22: -0.040, V23: 0.304, V24: 0.484, V25: -0.883, V26: 0.628, V27: -0.415, V28: -0.289, Amount: 440.970.
224
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.038, V2: -0.314, V3: 0.845, V4: 0.432, V5: -0.789, V6: -0.104, V7: -0.447, V8: 0.092, V9: 0.184, V10: 0.015, V11: 1.141, V12: 1.017, V13: 0.630, V14: 0.081, V15: 0.688, V16: 0.942, V17: -0.967, V18: 0.569, V19: 0.012, V20: 0.145, V21: 0.082, V22: 0.049, V23: -0.071, V24: 0.051, V25: 0.150, V26: 0.384, V27: -0.024, V28: 0.029, Amount: 91.060.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.038, V2: -0.314, V3: 0.845, V4: 0.432, V5: -0.789, V6: -0.104, V7: -0.447, V8: 0.092, V9: 0.184, V10: 0.015, V11: 1.141, V12: 1.017, V13: 0.630, V14: 0.081, V15: 0.688, V16: 0.942, V17: -0.967, V18: 0.569, V19: 0.012, V20: 0.145, V21: 0.082, V22: 0.049, V23: -0.071, V24: 0.051, V25: 0.150, V26: 0.384, V27: -0.024, V28: 0.029, Amount: 91.060.
225
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.219, V2: 2.716, V3: -5.112, V4: 6.311, V5: -0.848, V6: -0.882, V7: -2.902, V8: 0.939, V9: -3.628, V10: -1.873, V11: 1.204, V12: -6.173, V13: -0.921, V14: -3.942, V15: -0.062, V16: -5.241, V17: -8.153, V18: -3.243, V19: 1.935, V20: 0.382, V21: 1.084, V22: 1.037, V23: 0.062, V24: 0.532, V25: -0.149, V26: 0.640, V27: 0.352, V28: -0.002, Amount: 0.760.' Answer:
yes
[ "no", "yes" ]
1
The client has attributes: V1: 0.219, V2: 2.716, V3: -5.112, V4: 6.311, V5: -0.848, V6: -0.882, V7: -2.902, V8: 0.939, V9: -3.628, V10: -1.873, V11: 1.204, V12: -6.173, V13: -0.921, V14: -3.942, V15: -0.062, V16: -5.241, V17: -8.153, V18: -3.243, V19: 1.935, V20: 0.382, V21: 1.084, V22: 1.037, V23: 0.062, V24: 0.532, V25: -0.149, V26: 0.640, V27: 0.352, V28: -0.002, Amount: 0.760.
226
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.215, V2: 0.273, V3: 0.269, V4: 0.648, V5: -0.228, V6: -0.615, V7: -0.026, V8: -0.037, V9: 0.104, V10: -0.312, V11: 0.071, V12: 0.057, V13: -0.289, V14: -0.161, V15: 1.400, V16: 0.209, V17: 0.301, V18: -0.687, V19: -0.553, V20: -0.146, V21: -0.266, V22: -0.756, V23: 0.166, V24: 0.020, V25: 0.127, V26: 0.126, V27: -0.010, V28: 0.026, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.215, V2: 0.273, V3: 0.269, V4: 0.648, V5: -0.228, V6: -0.615, V7: -0.026, V8: -0.037, V9: 0.104, V10: -0.312, V11: 0.071, V12: 0.057, V13: -0.289, V14: -0.161, V15: 1.400, V16: 0.209, V17: 0.301, V18: -0.687, V19: -0.553, V20: -0.146, V21: -0.266, V22: -0.756, V23: 0.166, V24: 0.020, V25: 0.127, V26: 0.126, V27: -0.010, V28: 0.026, Amount: 0.890.
227
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.806, V2: 0.138, V3: 1.117, V4: -2.158, V5: -0.571, V6: -0.507, V7: -0.234, V8: 0.400, V9: -1.131, V10: -0.570, V11: -0.718, V12: -0.068, V13: 1.107, V14: -0.481, V15: -0.633, V16: 1.267, V17: 0.133, V18: -1.300, V19: -0.399, V20: 0.053, V21: 0.492, V22: 1.185, V23: -0.121, V24: 1.144, V25: 0.003, V26: -0.240, V27: -0.007, V28: 0.062, Amount: 34.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.806, V2: 0.138, V3: 1.117, V4: -2.158, V5: -0.571, V6: -0.507, V7: -0.234, V8: 0.400, V9: -1.131, V10: -0.570, V11: -0.718, V12: -0.068, V13: 1.107, V14: -0.481, V15: -0.633, V16: 1.267, V17: 0.133, V18: -1.300, V19: -0.399, V20: 0.053, V21: 0.492, V22: 1.185, V23: -0.121, V24: 1.144, V25: 0.003, V26: -0.240, V27: -0.007, V28: 0.062, Amount: 34.950.
228
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.903, V2: -0.677, V3: 3.057, V4: -1.447, V5: -0.578, V6: 0.688, V7: -0.784, V8: -0.544, V9: 0.290, V10: -0.141, V11: -0.834, V12: -0.105, V13: -0.777, V14: -1.218, V15: -1.190, V16: -1.747, V17: 0.388, V18: 0.110, V19: -2.922, V20: -1.083, V21: 0.374, V22: -0.385, V23: -0.062, V24: 0.084, V25: 0.121, V26: 0.345, V27: -0.282, V28: -0.035, Amount: 39.700.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.903, V2: -0.677, V3: 3.057, V4: -1.447, V5: -0.578, V6: 0.688, V7: -0.784, V8: -0.544, V9: 0.290, V10: -0.141, V11: -0.834, V12: -0.105, V13: -0.777, V14: -1.218, V15: -1.190, V16: -1.747, V17: 0.388, V18: 0.110, V19: -2.922, V20: -1.083, V21: 0.374, V22: -0.385, V23: -0.062, V24: 0.084, V25: 0.121, V26: 0.345, V27: -0.282, V28: -0.035, Amount: 39.700.
229
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.458, V2: -1.498, V3: -0.815, V4: -2.279, V5: 0.706, V6: 3.639, V7: -1.678, V8: 0.885, V9: -1.500, V10: 1.307, V11: -0.561, V12: -0.745, V13: 0.358, V14: -0.575, V15: -0.303, V16: -0.397, V17: 0.364, V18: -0.000, V19: 0.542, V20: -0.143, V21: -0.549, V22: -1.297, V23: 0.108, V24: 0.959, V25: 0.350, V26: -0.415, V27: 0.049, V28: 0.028, Amount: 52.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.458, V2: -1.498, V3: -0.815, V4: -2.279, V5: 0.706, V6: 3.639, V7: -1.678, V8: 0.885, V9: -1.500, V10: 1.307, V11: -0.561, V12: -0.745, V13: 0.358, V14: -0.575, V15: -0.303, V16: -0.397, V17: 0.364, V18: -0.000, V19: 0.542, V20: -0.143, V21: -0.549, V22: -1.297, V23: 0.108, V24: 0.959, V25: 0.350, V26: -0.415, V27: 0.049, V28: 0.028, Amount: 52.500.
230
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.112, V2: 0.128, V3: 0.327, V4: 1.231, V5: -0.241, V6: -0.404, V7: 0.062, V8: -0.033, V9: 0.079, V10: 0.022, V11: -0.315, V12: -0.098, V13: -0.634, V14: 0.497, V15: 1.267, V16: -0.105, V17: -0.157, V18: -0.427, V19: -0.840, V20: -0.133, V21: 0.114, V22: 0.291, V23: -0.108, V24: 0.069, V25: 0.564, V26: -0.253, V27: 0.023, V28: 0.024, Amount: 44.800.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.112, V2: 0.128, V3: 0.327, V4: 1.231, V5: -0.241, V6: -0.404, V7: 0.062, V8: -0.033, V9: 0.079, V10: 0.022, V11: -0.315, V12: -0.098, V13: -0.634, V14: 0.497, V15: 1.267, V16: -0.105, V17: -0.157, V18: -0.427, V19: -0.840, V20: -0.133, V21: 0.114, V22: 0.291, V23: -0.108, V24: 0.069, V25: 0.564, V26: -0.253, V27: 0.023, V28: 0.024, Amount: 44.800.
231
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.809, V2: -0.980, V3: 0.892, V4: 0.927, V5: 0.272, V6: -0.247, V7: 0.831, V8: -0.347, V9: -1.645, V10: 0.732, V11: -0.503, V12: 0.322, V13: 1.386, V14: -0.269, V15: 0.249, V16: -2.770, V17: 0.574, V18: 0.703, V19: -0.237, V20: 0.403, V21: -0.045, V22: 0.165, V23: 0.629, V24: 0.069, V25: -0.520, V26: -0.289, V27: 0.001, V28: 0.013, Amount: 232.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.809, V2: -0.980, V3: 0.892, V4: 0.927, V5: 0.272, V6: -0.247, V7: 0.831, V8: -0.347, V9: -1.645, V10: 0.732, V11: -0.503, V12: 0.322, V13: 1.386, V14: -0.269, V15: 0.249, V16: -2.770, V17: 0.574, V18: 0.703, V19: -0.237, V20: 0.403, V21: -0.045, V22: 0.165, V23: 0.629, V24: 0.069, V25: -0.520, V26: -0.289, V27: 0.001, V28: 0.013, Amount: 232.000.
232
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.628, V2: 3.051, V3: -3.340, V4: 0.035, V5: 1.670, V6: 3.971, V7: -3.049, V8: -3.605, V9: -0.605, V10: -0.667, V11: -0.156, V12: 0.309, V13: -0.349, V14: -0.184, V15: 1.272, V16: 1.127, V17: 1.192, V18: 1.336, V19: 0.148, V20: 0.953, V21: -2.493, V22: 0.666, V23: 0.690, V24: 0.805, V25: 0.006, V26: -0.444, V27: -1.370, V28: 0.035, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.628, V2: 3.051, V3: -3.340, V4: 0.035, V5: 1.670, V6: 3.971, V7: -3.049, V8: -3.605, V9: -0.605, V10: -0.667, V11: -0.156, V12: 0.309, V13: -0.349, V14: -0.184, V15: 1.272, V16: 1.127, V17: 1.192, V18: 1.336, V19: 0.148, V20: 0.953, V21: -2.493, V22: 0.666, V23: 0.690, V24: 0.805, V25: 0.006, V26: -0.444, V27: -1.370, V28: 0.035, Amount: 1.000.
233
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.268, V2: 1.623, V3: 0.078, V4: -0.483, V5: 0.570, V6: 0.420, V7: 0.211, V8: 0.608, V9: 2.131, V10: 0.339, V11: 0.920, V12: -0.936, V13: 2.309, V14: 0.921, V15: -3.393, V16: -0.608, V17: 0.655, V18: -0.278, V19: 0.591, V20: 0.394, V21: -0.646, V22: -0.769, V23: 0.198, V24: 0.253, V25: 0.341, V26: 0.086, V27: 0.728, V28: 0.539, Amount: 0.010.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.268, V2: 1.623, V3: 0.078, V4: -0.483, V5: 0.570, V6: 0.420, V7: 0.211, V8: 0.608, V9: 2.131, V10: 0.339, V11: 0.920, V12: -0.936, V13: 2.309, V14: 0.921, V15: -3.393, V16: -0.608, V17: 0.655, V18: -0.278, V19: 0.591, V20: 0.394, V21: -0.646, V22: -0.769, V23: 0.198, V24: 0.253, V25: 0.341, V26: 0.086, V27: 0.728, V28: 0.539, Amount: 0.010.
234
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.086, V2: 0.190, V3: -0.094, V4: 1.158, V5: 0.031, V6: -0.502, V7: 0.343, V8: -0.010, V9: -0.416, V10: 0.246, V11: 1.491, V12: 0.300, V13: -1.515, V14: 1.082, V15: 0.337, V16: -0.260, V17: -0.146, V18: -0.220, V19: -0.457, V20: -0.182, V21: 0.106, V22: 0.186, V23: -0.123, V24: 0.208, V25: 0.653, V26: -0.281, V27: -0.014, V28: 0.004, Amount: 45.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.086, V2: 0.190, V3: -0.094, V4: 1.158, V5: 0.031, V6: -0.502, V7: 0.343, V8: -0.010, V9: -0.416, V10: 0.246, V11: 1.491, V12: 0.300, V13: -1.515, V14: 1.082, V15: 0.337, V16: -0.260, V17: -0.146, V18: -0.220, V19: -0.457, V20: -0.182, V21: 0.106, V22: 0.186, V23: -0.123, V24: 0.208, V25: 0.653, V26: -0.281, V27: -0.014, V28: 0.004, Amount: 45.900.
235
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.892, V2: 0.416, V3: -1.023, V4: -1.559, V5: -1.737, V6: -0.686, V7: 1.130, V8: 0.231, V9: -1.460, V10: 0.189, V11: -0.906, V12: -0.355, V13: 0.950, V14: 0.182, V15: -0.268, V16: 1.401, V17: 0.181, V18: -1.382, V19: 0.029, V20: -0.270, V21: 0.209, V22: 0.791, V23: -0.196, V24: 0.127, V25: 0.296, V26: -0.234, V27: 0.204, V28: -0.255, Amount: 279.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.892, V2: 0.416, V3: -1.023, V4: -1.559, V5: -1.737, V6: -0.686, V7: 1.130, V8: 0.231, V9: -1.460, V10: 0.189, V11: -0.906, V12: -0.355, V13: 0.950, V14: 0.182, V15: -0.268, V16: 1.401, V17: 0.181, V18: -1.382, V19: 0.029, V20: -0.270, V21: 0.209, V22: 0.791, V23: -0.196, V24: 0.127, V25: 0.296, V26: -0.234, V27: 0.204, V28: -0.255, Amount: 279.000.
236
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -5.356, V2: -4.994, V3: 1.458, V4: 0.948, V5: 6.190, V6: -4.264, V7: -3.764, V8: 0.356, V9: 0.302, V10: 0.363, V11: 1.580, V12: 0.960, V13: -0.324, V14: -0.084, V15: 0.381, V16: 0.678, V17: -0.229, V18: -0.258, V19: -0.669, V20: -0.987, V21: -0.459, V22: -0.768, V23: -0.891, V24: 0.134, V25: -0.569, V26: -0.030, V27: 1.068, V28: -0.144, Amount: 6.760.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -5.356, V2: -4.994, V3: 1.458, V4: 0.948, V5: 6.190, V6: -4.264, V7: -3.764, V8: 0.356, V9: 0.302, V10: 0.363, V11: 1.580, V12: 0.960, V13: -0.324, V14: -0.084, V15: 0.381, V16: 0.678, V17: -0.229, V18: -0.258, V19: -0.669, V20: -0.987, V21: -0.459, V22: -0.768, V23: -0.891, V24: 0.134, V25: -0.569, V26: -0.030, V27: 1.068, V28: -0.144, Amount: 6.760.
237
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.224, V2: 1.132, V3: -2.393, V4: -4.895, V5: 2.066, V6: 2.377, V7: -0.436, V8: 1.907, V9: 0.896, V10: -2.435, V11: -0.351, V12: 1.065, V13: -0.327, V14: 1.371, V15: 0.590, V16: -0.449, V17: -0.219, V18: -0.420, V19: -0.214, V20: -0.515, V21: -0.034, V22: -0.606, V23: -0.167, V24: 0.672, V25: 0.357, V26: -1.299, V27: -0.486, V28: -0.088, Amount: 6.140.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.224, V2: 1.132, V3: -2.393, V4: -4.895, V5: 2.066, V6: 2.377, V7: -0.436, V8: 1.907, V9: 0.896, V10: -2.435, V11: -0.351, V12: 1.065, V13: -0.327, V14: 1.371, V15: 0.590, V16: -0.449, V17: -0.219, V18: -0.420, V19: -0.214, V20: -0.515, V21: -0.034, V22: -0.606, V23: -0.167, V24: 0.672, V25: 0.357, V26: -1.299, V27: -0.486, V28: -0.088, Amount: 6.140.
238
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.074, V2: -0.136, V3: -1.654, V4: -0.045, V5: 0.447, V6: -0.324, V7: 0.009, V8: -0.080, V9: 0.621, V10: 0.089, V11: 0.397, V12: 0.483, V13: -0.561, V14: 0.765, V15: 0.305, V16: 0.108, V17: -0.950, V18: 0.849, V19: 0.301, V20: -0.239, V21: 0.276, V22: 0.878, V23: -0.054, V24: 0.201, V25: 0.369, V26: -0.438, V27: -0.005, V28: -0.064, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.074, V2: -0.136, V3: -1.654, V4: -0.045, V5: 0.447, V6: -0.324, V7: 0.009, V8: -0.080, V9: 0.621, V10: 0.089, V11: 0.397, V12: 0.483, V13: -0.561, V14: 0.765, V15: 0.305, V16: 0.108, V17: -0.950, V18: 0.849, V19: 0.301, V20: -0.239, V21: 0.276, V22: 0.878, V23: -0.054, V24: 0.201, V25: 0.369, V26: -0.438, V27: -0.005, V28: -0.064, Amount: 1.000.
239
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.701, V2: 0.652, V3: -1.280, V4: 0.274, V5: 1.861, V6: 3.818, V7: 0.513, V8: 1.233, V9: -0.782, V10: -0.208, V11: -0.687, V12: -0.068, V13: -0.078, V14: 0.683, V15: 0.372, V16: -0.383, V17: -0.134, V18: 0.414, V19: 1.226, V20: 0.525, V21: 0.171, V22: 0.218, V23: 0.325, V24: 1.001, V25: -0.160, V26: -0.250, V27: 0.281, V28: 0.204, Amount: 185.010.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.701, V2: 0.652, V3: -1.280, V4: 0.274, V5: 1.861, V6: 3.818, V7: 0.513, V8: 1.233, V9: -0.782, V10: -0.208, V11: -0.687, V12: -0.068, V13: -0.078, V14: 0.683, V15: 0.372, V16: -0.383, V17: -0.134, V18: 0.414, V19: 1.226, V20: 0.525, V21: 0.171, V22: 0.218, V23: 0.325, V24: 1.001, V25: -0.160, V26: -0.250, V27: 0.281, V28: 0.204, Amount: 185.010.
240
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.536, V2: 0.845, V3: 1.976, V4: 2.269, V5: -0.269, V6: 1.075, V7: -0.385, V8: 0.466, V9: -0.543, V10: 1.066, V11: 0.649, V12: -0.713, V13: -1.621, V14: 0.302, V15: 1.038, V16: 0.793, V17: -0.543, V18: 0.860, V19: -0.172, V20: -0.184, V21: 0.291, V22: 0.647, V23: 0.072, V24: -0.360, V25: -0.860, V26: 0.042, V27: -0.263, V28: 0.097, Amount: 13.310.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.536, V2: 0.845, V3: 1.976, V4: 2.269, V5: -0.269, V6: 1.075, V7: -0.385, V8: 0.466, V9: -0.543, V10: 1.066, V11: 0.649, V12: -0.713, V13: -1.621, V14: 0.302, V15: 1.038, V16: 0.793, V17: -0.543, V18: 0.860, V19: -0.172, V20: -0.184, V21: 0.291, V22: 0.647, V23: 0.072, V24: -0.360, V25: -0.860, V26: 0.042, V27: -0.263, V28: 0.097, Amount: 13.310.
241
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.499, V2: 0.937, V3: 1.754, V4: 0.468, V5: 0.507, V6: -0.058, V7: 0.833, V8: -0.146, V9: -0.777, V10: 0.046, V11: 1.747, V12: 0.999, V13: 0.544, V14: 0.071, V15: 0.219, V16: -0.241, V17: -0.503, V18: -0.044, V19: -0.453, V20: -0.007, V21: 0.216, V22: 0.789, V23: -0.275, V24: 0.244, V25: 0.063, V26: -0.366, V27: -0.208, V28: -0.168, Amount: 8.400.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.499, V2: 0.937, V3: 1.754, V4: 0.468, V5: 0.507, V6: -0.058, V7: 0.833, V8: -0.146, V9: -0.777, V10: 0.046, V11: 1.747, V12: 0.999, V13: 0.544, V14: 0.071, V15: 0.219, V16: -0.241, V17: -0.503, V18: -0.044, V19: -0.453, V20: -0.007, V21: 0.216, V22: 0.789, V23: -0.275, V24: 0.244, V25: 0.063, V26: -0.366, V27: -0.208, V28: -0.168, Amount: 8.400.
242
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.188, V2: -0.123, V3: 2.700, V4: 3.433, V5: 0.196, V6: 1.409, V7: -0.418, V8: 0.569, V9: -1.201, V10: 0.645, V11: 0.837, V12: 0.646, V13: 0.647, V14: -0.207, V15: 0.433, V16: -0.398, V17: 0.383, V18: 0.422, V19: 1.697, V20: 0.740, V21: 0.185, V22: 0.304, V23: 0.211, V24: -0.284, V25: -0.050, V26: 0.371, V27: 0.093, V28: 0.115, Amount: 130.770.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.188, V2: -0.123, V3: 2.700, V4: 3.433, V5: 0.196, V6: 1.409, V7: -0.418, V8: 0.569, V9: -1.201, V10: 0.645, V11: 0.837, V12: 0.646, V13: 0.647, V14: -0.207, V15: 0.433, V16: -0.398, V17: 0.383, V18: 0.422, V19: 1.697, V20: 0.740, V21: 0.185, V22: 0.304, V23: 0.211, V24: -0.284, V25: -0.050, V26: 0.371, V27: 0.093, V28: 0.115, Amount: 130.770.
243
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.835, V2: 0.321, V3: -1.196, V4: 4.732, V5: -0.426, V6: 0.963, V7: 1.051, V8: 0.725, V9: -2.568, V10: 1.504, V11: 0.357, V12: 0.058, V13: 0.319, V14: 1.300, V15: 0.177, V16: 0.438, V17: -0.009, V18: 0.958, V19: 1.161, V20: 0.073, V21: 0.463, V22: 1.344, V23: 0.907, V24: 0.794, V25: -1.044, V26: 0.347, V27: 0.517, V28: -0.330, Amount: 283.740.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.835, V2: 0.321, V3: -1.196, V4: 4.732, V5: -0.426, V6: 0.963, V7: 1.051, V8: 0.725, V9: -2.568, V10: 1.504, V11: 0.357, V12: 0.058, V13: 0.319, V14: 1.300, V15: 0.177, V16: 0.438, V17: -0.009, V18: 0.958, V19: 1.161, V20: 0.073, V21: 0.463, V22: 1.344, V23: 0.907, V24: 0.794, V25: -1.044, V26: 0.347, V27: 0.517, V28: -0.330, Amount: 283.740.
244
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.177, V2: 0.001, V3: 1.146, V4: 1.253, V5: -0.753, V6: 0.020, V7: -0.526, V8: 0.080, V9: 0.825, V10: -0.219, V11: -1.009, V12: 0.682, V13: 0.696, V14: -0.500, V15: 0.139, V16: 0.155, V17: -0.413, V18: -0.019, V19: -0.080, V20: -0.083, V21: -0.079, V22: 0.009, V23: -0.056, V24: 0.052, V25: 0.483, V26: -0.389, V27: 0.076, V28: 0.036, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.177, V2: 0.001, V3: 1.146, V4: 1.253, V5: -0.753, V6: 0.020, V7: -0.526, V8: 0.080, V9: 0.825, V10: -0.219, V11: -1.009, V12: 0.682, V13: 0.696, V14: -0.500, V15: 0.139, V16: 0.155, V17: -0.413, V18: -0.019, V19: -0.080, V20: -0.083, V21: -0.079, V22: 0.009, V23: -0.056, V24: 0.052, V25: 0.483, V26: -0.389, V27: 0.076, V28: 0.036, Amount: 9.990.
245
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.779, V2: 1.088, V3: 0.844, V4: -0.090, V5: 0.064, V6: 1.353, V7: -0.059, V8: 1.077, V9: 0.493, V10: -0.121, V11: -0.283, V12: -0.318, V13: -2.012, V14: 0.439, V15: 0.890, V16: -1.505, V17: 1.503, V18: -2.248, V19: -1.203, V20: -0.099, V21: -0.117, V22: 0.012, V23: 0.095, V24: -0.985, V25: -0.268, V26: 0.376, V27: 0.361, V28: 0.214, Amount: 37.210.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.779, V2: 1.088, V3: 0.844, V4: -0.090, V5: 0.064, V6: 1.353, V7: -0.059, V8: 1.077, V9: 0.493, V10: -0.121, V11: -0.283, V12: -0.318, V13: -2.012, V14: 0.439, V15: 0.890, V16: -1.505, V17: 1.503, V18: -2.248, V19: -1.203, V20: -0.099, V21: -0.117, V22: 0.012, V23: 0.095, V24: -0.985, V25: -0.268, V26: 0.376, V27: 0.361, V28: 0.214, Amount: 37.210.
246
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.209, V2: 1.210, V3: -0.623, V4: -0.903, V5: 1.188, V6: -0.282, V7: 0.997, V8: -0.099, V9: 0.337, V10: 0.181, V11: 0.653, V12: 0.049, V13: -0.605, V14: -1.081, V15: -0.786, V16: 0.556, V17: -0.132, V18: 0.433, V19: 0.173, V20: 0.335, V21: -0.436, V22: -0.868, V23: 0.016, V24: 0.067, V25: -0.336, V26: 0.104, V27: 0.260, V28: -0.032, Amount: 0.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.209, V2: 1.210, V3: -0.623, V4: -0.903, V5: 1.188, V6: -0.282, V7: 0.997, V8: -0.099, V9: 0.337, V10: 0.181, V11: 0.653, V12: 0.049, V13: -0.605, V14: -1.081, V15: -0.786, V16: 0.556, V17: -0.132, V18: 0.433, V19: 0.173, V20: 0.335, V21: -0.436, V22: -0.868, V23: 0.016, V24: 0.067, V25: -0.336, V26: 0.104, V27: 0.260, V28: -0.032, Amount: 0.990.
247
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.737, V2: -0.815, V3: -0.683, V4: -0.159, V5: 0.011, V6: 1.270, V7: -0.784, V8: 0.544, V9: 1.172, V10: -0.179, V11: 1.086, V12: 0.879, V13: -0.812, V14: 0.417, V15: 0.933, V16: -0.364, V17: 0.032, V18: -1.002, V19: -0.658, V20: -0.221, V21: -0.081, V22: -0.189, V23: 0.381, V24: -1.552, V25: -0.761, V26: -0.203, V27: 0.039, V28: -0.054, Amount: 67.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.737, V2: -0.815, V3: -0.683, V4: -0.159, V5: 0.011, V6: 1.270, V7: -0.784, V8: 0.544, V9: 1.172, V10: -0.179, V11: 1.086, V12: 0.879, V13: -0.812, V14: 0.417, V15: 0.933, V16: -0.364, V17: 0.032, V18: -1.002, V19: -0.658, V20: -0.221, V21: -0.081, V22: -0.189, V23: 0.381, V24: -1.552, V25: -0.761, V26: -0.203, V27: 0.039, V28: -0.054, Amount: 67.000.
248
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.355, V2: -0.441, V3: 2.219, V4: -2.177, V5: -0.834, V6: 0.428, V7: -0.562, V8: 0.288, V9: 0.385, V10: 0.126, V11: -0.303, V12: -0.731, V13: -1.445, V14: -1.143, V15: -2.277, V16: 1.329, V17: -0.176, V18: -0.486, V19: 0.553, V20: 0.094, V21: 0.127, V22: 0.770, V23: -0.266, V24: -0.345, V25: -0.331, V26: -0.312, V27: 0.254, V28: -0.020, Amount: 2.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.355, V2: -0.441, V3: 2.219, V4: -2.177, V5: -0.834, V6: 0.428, V7: -0.562, V8: 0.288, V9: 0.385, V10: 0.126, V11: -0.303, V12: -0.731, V13: -1.445, V14: -1.143, V15: -2.277, V16: 1.329, V17: -0.176, V18: -0.486, V19: 0.553, V20: 0.094, V21: 0.127, V22: 0.770, V23: -0.266, V24: -0.345, V25: -0.331, V26: -0.312, V27: 0.254, V28: -0.020, Amount: 2.000.
249
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.928, V2: -0.306, V3: 3.061, V4: -0.651, V5: -0.560, V6: 2.003, V7: -0.838, V8: 0.738, V9: -0.088, V10: -0.428, V11: -0.866, V12: 0.997, V13: 0.833, V14: -1.550, V15: -3.012, V16: -1.300, V17: -0.427, V18: 2.118, V19: -1.063, V20: -0.436, V21: -0.197, V22: 0.243, V23: -0.418, V24: 0.219, V25: 0.708, V26: -0.457, V27: 0.158, V28: 0.079, Amount: 30.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.928, V2: -0.306, V3: 3.061, V4: -0.651, V5: -0.560, V6: 2.003, V7: -0.838, V8: 0.738, V9: -0.088, V10: -0.428, V11: -0.866, V12: 0.997, V13: 0.833, V14: -1.550, V15: -3.012, V16: -1.300, V17: -0.427, V18: 2.118, V19: -1.063, V20: -0.436, V21: -0.197, V22: 0.243, V23: -0.418, V24: 0.219, V25: 0.708, V26: -0.457, V27: 0.158, V28: 0.079, Amount: 30.000.
250
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.968, V2: -0.748, V3: 1.140, V4: 0.120, V5: -1.261, V6: 0.209, V7: -0.840, V8: 0.357, V9: 0.973, V10: -0.267, V11: 1.270, V12: 0.715, V13: -1.161, V14: 0.025, V15: -0.038, V16: 0.067, V17: 0.093, V18: -0.260, V19: 0.069, V20: -0.007, V21: 0.008, V22: -0.012, V23: 0.048, V24: 0.274, V25: -0.084, V26: 0.986, V27: -0.043, V28: 0.016, Amount: 84.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.968, V2: -0.748, V3: 1.140, V4: 0.120, V5: -1.261, V6: 0.209, V7: -0.840, V8: 0.357, V9: 0.973, V10: -0.267, V11: 1.270, V12: 0.715, V13: -1.161, V14: 0.025, V15: -0.038, V16: 0.067, V17: 0.093, V18: -0.260, V19: 0.069, V20: -0.007, V21: 0.008, V22: -0.012, V23: 0.048, V24: 0.274, V25: -0.084, V26: 0.986, V27: -0.043, V28: 0.016, Amount: 84.950.
251
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.291, V2: -1.725, V3: 1.502, V4: -0.426, V5: -0.853, V6: 1.330, V7: -1.798, V8: 1.165, V9: 0.540, V10: -0.382, V11: -1.113, V12: 0.795, V13: -0.043, V14: -0.849, V15: -2.286, V16: -1.674, V17: 0.217, V18: 2.433, V19: 0.184, V20: -0.111, V21: 0.089, V22: 0.557, V23: 0.223, V24: 0.226, V25: -0.911, V26: -0.237, V27: 0.220, V28: 0.022, Amount: 105.350.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.291, V2: -1.725, V3: 1.502, V4: -0.426, V5: -0.853, V6: 1.330, V7: -1.798, V8: 1.165, V9: 0.540, V10: -0.382, V11: -1.113, V12: 0.795, V13: -0.043, V14: -0.849, V15: -2.286, V16: -1.674, V17: 0.217, V18: 2.433, V19: 0.184, V20: -0.111, V21: 0.089, V22: 0.557, V23: 0.223, V24: 0.226, V25: -0.911, V26: -0.237, V27: 0.220, V28: 0.022, Amount: 105.350.
252
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -10.255, V2: -12.040, V3: 1.244, V4: 4.725, V5: 8.575, V6: -6.193, V7: -6.184, V8: 1.501, V9: -0.720, V10: 0.318, V11: 0.207, V12: 0.838, V13: -0.136, V14: 1.318, V15: 0.112, V16: 1.559, V17: -0.880, V18: 1.280, V19: -1.477, V20: 3.462, V21: 1.398, V22: -0.772, V23: -0.458, V24: 0.088, V25: 0.311, V26: -0.111, V27: 0.122, V28: -1.986, Amount: 10.620.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -10.255, V2: -12.040, V3: 1.244, V4: 4.725, V5: 8.575, V6: -6.193, V7: -6.184, V8: 1.501, V9: -0.720, V10: 0.318, V11: 0.207, V12: 0.838, V13: -0.136, V14: 1.318, V15: 0.112, V16: 1.559, V17: -0.880, V18: 1.280, V19: -1.477, V20: 3.462, V21: 1.398, V22: -0.772, V23: -0.458, V24: 0.088, V25: 0.311, V26: -0.111, V27: 0.122, V28: -1.986, Amount: 10.620.
253
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.353, V2: 1.962, V3: 1.183, V4: -2.244, V5: 0.465, V6: -0.108, V7: 1.417, V8: -0.947, V9: 2.942, V10: 4.149, V11: 1.861, V12: -0.169, V13: -0.872, V14: -1.833, V15: 0.520, V16: -0.088, V17: -1.500, V18: -0.486, V19: -0.973, V20: 1.687, V21: -0.706, V22: -0.164, V23: -0.149, V24: -0.328, V25: -0.015, V26: 0.566, V27: -0.328, V28: -1.207, Amount: 0.920.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.353, V2: 1.962, V3: 1.183, V4: -2.244, V5: 0.465, V6: -0.108, V7: 1.417, V8: -0.947, V9: 2.942, V10: 4.149, V11: 1.861, V12: -0.169, V13: -0.872, V14: -1.833, V15: 0.520, V16: -0.088, V17: -1.500, V18: -0.486, V19: -0.973, V20: 1.687, V21: -0.706, V22: -0.164, V23: -0.149, V24: -0.328, V25: -0.015, V26: 0.566, V27: -0.328, V28: -1.207, Amount: 0.920.
254
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.093, V2: -0.327, V3: 1.291, V4: 0.363, V5: -1.581, V6: 0.762, V7: 1.390, V8: -0.076, V9: -0.175, V10: -0.489, V11: 0.800, V12: 0.163, V13: -0.388, V14: 0.010, V15: 0.372, V16: 0.274, V17: -0.422, V18: 0.975, V19: 0.876, V20: 0.087, V21: 0.273, V22: 0.888, V23: -0.161, V24: 0.152, V25: 0.564, V26: 0.743, V27: 0.001, V28: -0.139, Amount: 406.350.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.093, V2: -0.327, V3: 1.291, V4: 0.363, V5: -1.581, V6: 0.762, V7: 1.390, V8: -0.076, V9: -0.175, V10: -0.489, V11: 0.800, V12: 0.163, V13: -0.388, V14: 0.010, V15: 0.372, V16: 0.274, V17: -0.422, V18: 0.975, V19: 0.876, V20: 0.087, V21: 0.273, V22: 0.888, V23: -0.161, V24: 0.152, V25: 0.564, V26: 0.743, V27: 0.001, V28: -0.139, Amount: 406.350.
255
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.161, V2: -1.339, V3: -2.725, V4: -1.555, V5: -0.139, V6: -1.277, V7: 0.209, V8: -0.655, V9: -2.156, V10: 1.669, V11: -0.992, V12: -0.933, V13: 0.427, V14: 0.264, V15: -0.598, V16: -1.435, V17: 0.791, V18: -0.430, V19: -0.068, V20: -0.170, V21: 0.190, V22: 0.788, V23: -0.240, V24: 0.674, V25: 0.633, V26: 0.264, V27: -0.095, V28: -0.059, Amount: 145.480.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.161, V2: -1.339, V3: -2.725, V4: -1.555, V5: -0.139, V6: -1.277, V7: 0.209, V8: -0.655, V9: -2.156, V10: 1.669, V11: -0.992, V12: -0.933, V13: 0.427, V14: 0.264, V15: -0.598, V16: -1.435, V17: 0.791, V18: -0.430, V19: -0.068, V20: -0.170, V21: 0.190, V22: 0.788, V23: -0.240, V24: 0.674, V25: 0.633, V26: 0.264, V27: -0.095, V28: -0.059, Amount: 145.480.
256
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.990, V2: -0.302, V3: 3.079, V4: -1.588, V5: -1.251, V6: 0.925, V7: -0.860, V8: 0.573, V9: 0.579, V10: 0.388, V11: 0.267, V12: -0.975, V13: -2.604, V14: -1.165, V15: -2.093, V16: 0.610, V17: 0.723, V18: -0.989, V19: 0.387, V20: 0.201, V21: 0.109, V22: 0.823, V23: -0.397, V24: 0.020, V25: 0.393, V26: -0.116, V27: 0.288, V28: -0.052, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.990, V2: -0.302, V3: 3.079, V4: -1.588, V5: -1.251, V6: 0.925, V7: -0.860, V8: 0.573, V9: 0.579, V10: 0.388, V11: 0.267, V12: -0.975, V13: -2.604, V14: -1.165, V15: -2.093, V16: 0.610, V17: 0.723, V18: -0.989, V19: 0.387, V20: 0.201, V21: 0.109, V22: 0.823, V23: -0.397, V24: 0.020, V25: 0.393, V26: -0.116, V27: 0.288, V28: -0.052, Amount: 1.980.
257
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.807, V2: 1.151, V3: 0.646, V4: 1.133, V5: 0.478, V6: 0.571, V7: 0.302, V8: 0.548, V9: -0.537, V10: -0.367, V11: -1.512, V12: 0.489, V13: 1.031, V14: 0.095, V15: 0.156, V16: -0.845, V17: 0.380, V18: -0.417, V19: 1.085, V20: 0.199, V21: -0.024, V22: 0.136, V23: -0.191, V24: -0.886, V25: 0.106, V26: -0.164, V27: 0.306, V28: 0.111, Amount: 29.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.807, V2: 1.151, V3: 0.646, V4: 1.133, V5: 0.478, V6: 0.571, V7: 0.302, V8: 0.548, V9: -0.537, V10: -0.367, V11: -1.512, V12: 0.489, V13: 1.031, V14: 0.095, V15: 0.156, V16: -0.845, V17: 0.380, V18: -0.417, V19: 1.085, V20: 0.199, V21: -0.024, V22: 0.136, V23: -0.191, V24: -0.886, V25: 0.106, V26: -0.164, V27: 0.306, V28: 0.111, Amount: 29.000.
258
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.643, V2: -0.817, V3: 2.310, V4: 0.055, V5: 1.307, V6: -1.199, V7: -0.148, V8: -0.509, V9: 0.767, V10: -0.028, V11: -0.610, V12: 0.691, V13: 1.105, V14: -1.189, V15: -0.585, V16: -0.054, V17: -0.689, V18: -0.350, V19: -0.569, V20: -0.327, V21: -0.008, V22: 0.750, V23: -0.583, V24: 0.538, V25: -0.275, V26: 0.224, V27: -0.290, V28: -0.246, Amount: 14.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.643, V2: -0.817, V3: 2.310, V4: 0.055, V5: 1.307, V6: -1.199, V7: -0.148, V8: -0.509, V9: 0.767, V10: -0.028, V11: -0.610, V12: 0.691, V13: 1.105, V14: -1.189, V15: -0.585, V16: -0.054, V17: -0.689, V18: -0.350, V19: -0.569, V20: -0.327, V21: -0.008, V22: 0.750, V23: -0.583, V24: 0.538, V25: -0.275, V26: 0.224, V27: -0.290, V28: -0.246, Amount: 14.900.
259
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.243, V2: 0.307, V3: 1.516, V4: 1.002, V5: -0.235, V6: 0.983, V7: -0.128, V8: 0.868, V9: -0.615, V10: -0.625, V11: 1.262, V12: 1.234, V13: 0.414, V14: 0.353, V15: 0.334, V16: -0.595, V17: 0.393, V18: -0.038, V19: 0.004, V20: 0.208, V21: 0.475, V22: 1.160, V23: 0.076, V24: -0.244, V25: -0.183, V26: -0.154, V27: 0.061, V28: 0.018, Amount: 111.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.243, V2: 0.307, V3: 1.516, V4: 1.002, V5: -0.235, V6: 0.983, V7: -0.128, V8: 0.868, V9: -0.615, V10: -0.625, V11: 1.262, V12: 1.234, V13: 0.414, V14: 0.353, V15: 0.334, V16: -0.595, V17: 0.393, V18: -0.038, V19: 0.004, V20: 0.208, V21: 0.475, V22: 1.160, V23: 0.076, V24: -0.244, V25: -0.183, V26: -0.154, V27: 0.061, V28: 0.018, Amount: 111.000.
260
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.190, V2: 0.864, V3: 0.028, V4: -0.432, V5: 0.767, V6: -1.099, V7: 1.274, V8: -0.507, V9: 0.104, V10: -0.083, V11: -0.821, V12: -0.035, V13: 0.183, V14: 0.179, V15: 0.517, V16: -0.575, V17: -0.557, V18: 0.042, V19: -0.005, V20: 0.063, V21: 0.323, V22: 1.395, V23: -0.173, V24: -0.038, V25: -0.815, V26: -0.242, V27: 0.351, V28: 0.099, Amount: 3.870.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.190, V2: 0.864, V3: 0.028, V4: -0.432, V5: 0.767, V6: -1.099, V7: 1.274, V8: -0.507, V9: 0.104, V10: -0.083, V11: -0.821, V12: -0.035, V13: 0.183, V14: 0.179, V15: 0.517, V16: -0.575, V17: -0.557, V18: 0.042, V19: -0.005, V20: 0.063, V21: 0.323, V22: 1.395, V23: -0.173, V24: -0.038, V25: -0.815, V26: -0.242, V27: 0.351, V28: 0.099, Amount: 3.870.
261
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.333, V2: -0.124, V3: 1.627, V4: 0.277, V5: 1.424, V6: -1.084, V7: 0.171, V8: 0.085, V9: -0.483, V10: -0.640, V11: -0.337, V12: 0.355, V13: 0.410, V14: 0.180, V15: 0.599, V16: -0.022, V17: -0.457, V18: -0.537, V19: -1.256, V20: 0.148, V21: 0.179, V22: 0.183, V23: 0.084, V24: 0.064, V25: -0.028, V26: -0.594, V27: 0.091, V28: 0.153, Amount: 18.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.333, V2: -0.124, V3: 1.627, V4: 0.277, V5: 1.424, V6: -1.084, V7: 0.171, V8: 0.085, V9: -0.483, V10: -0.640, V11: -0.337, V12: 0.355, V13: 0.410, V14: 0.180, V15: 0.599, V16: -0.022, V17: -0.457, V18: -0.537, V19: -1.256, V20: 0.148, V21: 0.179, V22: 0.183, V23: 0.084, V24: 0.064, V25: -0.028, V26: -0.594, V27: 0.091, V28: 0.153, Amount: 18.000.
262
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.586, V2: 1.393, V3: 0.912, V4: 1.279, V5: 0.524, V6: 0.352, V7: -0.348, V8: -2.944, V9: -0.938, V10: -0.253, V11: -1.056, V12: 0.019, V13: 0.609, V14: 0.431, V15: 1.557, V16: -0.397, V17: -0.116, V18: 0.437, V19: 1.577, V20: 0.864, V21: -1.221, V22: 0.843, V23: -0.086, V24: -0.440, V25: -0.144, V26: -0.140, V27: 0.002, V28: -0.054, Amount: 0.400.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.586, V2: 1.393, V3: 0.912, V4: 1.279, V5: 0.524, V6: 0.352, V7: -0.348, V8: -2.944, V9: -0.938, V10: -0.253, V11: -1.056, V12: 0.019, V13: 0.609, V14: 0.431, V15: 1.557, V16: -0.397, V17: -0.116, V18: 0.437, V19: 1.577, V20: 0.864, V21: -1.221, V22: 0.843, V23: -0.086, V24: -0.440, V25: -0.144, V26: -0.140, V27: 0.002, V28: -0.054, Amount: 0.400.
263
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.163, V2: 0.119, V3: -2.731, V4: -0.071, V5: 1.211, V6: -0.841, V7: 0.835, V8: -0.418, V9: -0.348, V10: 0.398, V11: 0.435, V12: 0.580, V13: -0.196, V14: 0.981, V15: -0.861, V16: -0.412, V17: -0.534, V18: -0.051, V19: 0.598, V20: -0.189, V21: 0.265, V22: 0.890, V23: -0.210, V24: 0.312, V25: 0.678, V26: 0.998, V27: -0.156, V28: -0.106, Amount: 2.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.163, V2: 0.119, V3: -2.731, V4: -0.071, V5: 1.211, V6: -0.841, V7: 0.835, V8: -0.418, V9: -0.348, V10: 0.398, V11: 0.435, V12: 0.580, V13: -0.196, V14: 0.981, V15: -0.861, V16: -0.412, V17: -0.534, V18: -0.051, V19: 0.598, V20: -0.189, V21: 0.265, V22: 0.890, V23: -0.210, V24: 0.312, V25: 0.678, V26: 0.998, V27: -0.156, V28: -0.106, Amount: 2.000.
264
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.177, V2: 0.576, V3: 0.936, V4: 0.961, V5: 0.580, V6: 0.277, V7: -0.034, V8: 0.793, V9: -0.828, V10: -0.450, V11: 1.048, V12: 0.369, V13: -1.435, V14: 1.056, V15: 0.110, V16: -1.009, V17: 0.734, V18: -0.372, V19: 0.330, V20: -0.099, V21: 0.245, V22: 0.523, V23: -0.207, V24: -0.282, V25: 0.043, V26: -0.178, V27: 0.031, V28: -0.046, Amount: 5.150.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.177, V2: 0.576, V3: 0.936, V4: 0.961, V5: 0.580, V6: 0.277, V7: -0.034, V8: 0.793, V9: -0.828, V10: -0.450, V11: 1.048, V12: 0.369, V13: -1.435, V14: 1.056, V15: 0.110, V16: -1.009, V17: 0.734, V18: -0.372, V19: 0.330, V20: -0.099, V21: 0.245, V22: 0.523, V23: -0.207, V24: -0.282, V25: 0.043, V26: -0.178, V27: 0.031, V28: -0.046, Amount: 5.150.
265
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.054, V2: 1.021, V3: -0.297, V4: -0.717, V5: 0.980, V6: -0.490, V7: 1.030, V8: -0.129, V9: 0.100, V10: -0.141, V11: 1.192, V12: 0.270, V13: -0.653, V14: -0.983, V15: -0.797, V16: 0.357, V17: 0.133, V18: 0.172, V19: -0.079, V20: 0.180, V21: -0.366, V22: -0.715, V23: 0.081, V24: 0.584, V25: -0.476, V26: 0.071, V27: 0.167, V28: -0.093, Amount: 8.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.054, V2: 1.021, V3: -0.297, V4: -0.717, V5: 0.980, V6: -0.490, V7: 1.030, V8: -0.129, V9: 0.100, V10: -0.141, V11: 1.192, V12: 0.270, V13: -0.653, V14: -0.983, V15: -0.797, V16: 0.357, V17: 0.133, V18: 0.172, V19: -0.079, V20: 0.180, V21: -0.366, V22: -0.715, V23: 0.081, V24: 0.584, V25: -0.476, V26: 0.071, V27: 0.167, V28: -0.093, Amount: 8.990.
266
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.980, V2: -0.046, V3: -1.812, V4: 0.582, V5: 0.297, V6: -0.460, V7: -0.153, V8: 0.044, V9: 0.726, V10: -0.486, V11: 0.979, V12: 0.160, V13: -1.411, V14: -1.278, V15: -0.908, V16: 0.326, V17: 1.099, V18: 0.752, V19: 0.104, V20: -0.216, V21: 0.010, V22: 0.215, V23: 0.081, V24: 0.603, V25: 0.020, V26: 0.592, V27: -0.055, V28: -0.035, Amount: 8.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.980, V2: -0.046, V3: -1.812, V4: 0.582, V5: 0.297, V6: -0.460, V7: -0.153, V8: 0.044, V9: 0.726, V10: -0.486, V11: 0.979, V12: 0.160, V13: -1.411, V14: -1.278, V15: -0.908, V16: 0.326, V17: 1.099, V18: 0.752, V19: 0.104, V20: -0.216, V21: 0.010, V22: 0.215, V23: 0.081, V24: 0.603, V25: 0.020, V26: 0.592, V27: -0.055, V28: -0.035, Amount: 8.490.
267
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.949, V2: 1.832, V3: 0.513, V4: -0.488, V5: 0.111, V6: -0.477, V7: 0.822, V8: -0.054, V9: 0.684, V10: 1.515, V11: -0.826, V12: 0.241, V13: 1.185, V14: -0.553, V15: 0.928, V16: 0.315, V17: -0.829, V18: -0.304, V19: 0.175, V20: 0.758, V21: -0.530, V22: -0.772, V23: 0.076, V24: -0.465, V25: 0.315, V26: 0.160, V27: 0.955, V28: 0.542, Amount: 34.570.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.949, V2: 1.832, V3: 0.513, V4: -0.488, V5: 0.111, V6: -0.477, V7: 0.822, V8: -0.054, V9: 0.684, V10: 1.515, V11: -0.826, V12: 0.241, V13: 1.185, V14: -0.553, V15: 0.928, V16: 0.315, V17: -0.829, V18: -0.304, V19: 0.175, V20: 0.758, V21: -0.530, V22: -0.772, V23: 0.076, V24: -0.465, V25: 0.315, V26: 0.160, V27: 0.955, V28: 0.542, Amount: 34.570.
268
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.324, V2: -0.131, V3: 1.074, V4: -1.665, V5: 0.648, V6: 0.324, V7: 0.197, V8: -0.108, V9: -1.376, V10: 0.505, V11: -0.333, V12: -1.145, V13: -0.336, V14: -0.245, V15: -0.183, V16: 0.924, V17: -0.126, V18: -0.217, V19: 2.587, V20: 0.407, V21: 0.123, V22: 0.402, V23: -0.616, V24: -1.357, V25: 0.715, V26: 0.181, V27: -0.139, V28: -0.189, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.324, V2: -0.131, V3: 1.074, V4: -1.665, V5: 0.648, V6: 0.324, V7: 0.197, V8: -0.108, V9: -1.376, V10: 0.505, V11: -0.333, V12: -1.145, V13: -0.336, V14: -0.245, V15: -0.183, V16: 0.924, V17: -0.126, V18: -0.217, V19: 2.587, V20: 0.407, V21: 0.123, V22: 0.402, V23: -0.616, V24: -1.357, V25: 0.715, V26: 0.181, V27: -0.139, V28: -0.189, Amount: 15.000.
269
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.203, V2: 1.066, V3: 1.455, V4: -0.888, V5: 0.348, V6: 0.690, V7: 0.272, V8: 0.339, V9: 0.409, V10: -0.116, V11: 0.133, V12: 0.090, V13: -0.664, V14: -0.003, V15: 0.187, V16: 0.345, V17: -0.848, V18: 0.810, V19: 0.936, V20: 0.216, V21: -0.233, V22: -0.620, V23: -0.258, V24: 0.028, V25: 0.451, V26: -0.430, V27: 0.145, V28: 0.188, Amount: 7.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.203, V2: 1.066, V3: 1.455, V4: -0.888, V5: 0.348, V6: 0.690, V7: 0.272, V8: 0.339, V9: 0.409, V10: -0.116, V11: 0.133, V12: 0.090, V13: -0.664, V14: -0.003, V15: 0.187, V16: 0.345, V17: -0.848, V18: 0.810, V19: 0.936, V20: 0.216, V21: -0.233, V22: -0.620, V23: -0.258, V24: 0.028, V25: 0.451, V26: -0.430, V27: 0.145, V28: 0.188, Amount: 7.980.
270
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.948, V2: 2.950, V3: -0.397, V4: -0.718, V5: 0.012, V6: 1.740, V7: -2.091, V8: -4.991, V9: -0.252, V10: 0.285, V11: 0.223, V12: 1.337, V13: 0.628, V14: 0.763, V15: 0.279, V16: 0.716, V17: -0.367, V18: 0.139, V19: 0.128, V20: 0.416, V21: 1.521, V22: -1.282, V23: 0.580, V24: -1.432, V25: 0.094, V26: 0.189, V27: 0.571, V28: 0.297, Amount: 8.940.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.948, V2: 2.950, V3: -0.397, V4: -0.718, V5: 0.012, V6: 1.740, V7: -2.091, V8: -4.991, V9: -0.252, V10: 0.285, V11: 0.223, V12: 1.337, V13: 0.628, V14: 0.763, V15: 0.279, V16: 0.716, V17: -0.367, V18: 0.139, V19: 0.128, V20: 0.416, V21: 1.521, V22: -1.282, V23: 0.580, V24: -1.432, V25: 0.094, V26: 0.189, V27: 0.571, V28: 0.297, Amount: 8.940.
271
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.207, V2: -1.457, V3: -0.825, V4: -1.568, V5: -0.460, V6: 0.047, V7: -0.267, V8: -0.243, V9: -2.215, V10: 1.299, V11: -1.301, V12: -0.852, V13: 1.301, V14: -0.183, V15: 0.607, V16: -0.544, V17: 0.392, V18: -0.593, V19: 0.132, V20: 0.131, V21: -0.439, V22: -1.316, V23: -0.178, V24: -1.349, V25: 0.401, V26: -0.357, V27: -0.017, V28: 0.035, Amount: 218.880.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.207, V2: -1.457, V3: -0.825, V4: -1.568, V5: -0.460, V6: 0.047, V7: -0.267, V8: -0.243, V9: -2.215, V10: 1.299, V11: -1.301, V12: -0.852, V13: 1.301, V14: -0.183, V15: 0.607, V16: -0.544, V17: 0.392, V18: -0.593, V19: 0.132, V20: 0.131, V21: -0.439, V22: -1.316, V23: -0.178, V24: -1.349, V25: 0.401, V26: -0.357, V27: -0.017, V28: 0.035, Amount: 218.880.
272
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.316, V2: 0.853, V3: 1.347, V4: 1.225, V5: -0.531, V6: -0.854, V7: 0.054, V8: -1.011, V9: -0.396, V10: -0.089, V11: 0.234, V12: 0.642, V13: 0.435, V14: 0.389, V15: 1.176, V16: -0.196, V17: -0.050, V18: -0.457, V19: 0.052, V20: -0.151, V21: 0.606, V22: -0.721, V23: 0.043, V24: 0.899, V25: 0.410, V26: -0.555, V27: 0.216, V28: 0.257, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.316, V2: 0.853, V3: 1.347, V4: 1.225, V5: -0.531, V6: -0.854, V7: 0.054, V8: -1.011, V9: -0.396, V10: -0.089, V11: 0.234, V12: 0.642, V13: 0.435, V14: 0.389, V15: 1.176, V16: -0.196, V17: -0.050, V18: -0.457, V19: 0.052, V20: -0.151, V21: 0.606, V22: -0.721, V23: 0.043, V24: 0.899, V25: 0.410, V26: -0.555, V27: 0.216, V28: 0.257, Amount: 9.990.
273
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.770, V2: 0.636, V3: 1.217, V4: -2.260, V5: 0.243, V6: -0.888, V7: 0.849, V8: -0.117, V9: 0.330, V10: -1.430, V11: 1.032, V12: 1.005, V13: 0.088, V14: 0.337, V15: 0.240, V16: -0.133, V17: -0.890, V18: 0.722, V19: 0.251, V20: -0.138, V21: 0.209, V22: 0.599, V23: -0.461, V24: 0.039, V25: 0.532, V26: -0.763, V27: -0.020, V28: 0.071, Amount: 18.280.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.770, V2: 0.636, V3: 1.217, V4: -2.260, V5: 0.243, V6: -0.888, V7: 0.849, V8: -0.117, V9: 0.330, V10: -1.430, V11: 1.032, V12: 1.005, V13: 0.088, V14: 0.337, V15: 0.240, V16: -0.133, V17: -0.890, V18: 0.722, V19: 0.251, V20: -0.138, V21: 0.209, V22: 0.599, V23: -0.461, V24: 0.039, V25: 0.532, V26: -0.763, V27: -0.020, V28: 0.071, Amount: 18.280.
274
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.286, V2: -0.252, V3: 1.256, V4: 0.907, V5: 0.445, V6: -0.845, V7: 0.363, V8: -0.354, V9: -0.037, V10: 0.546, V11: 0.270, V12: 0.035, V13: 0.069, V14: -0.011, V15: 1.799, V16: -0.471, V17: 0.225, V18: -0.853, V19: 0.755, V20: -1.154, V21: -0.392, V22: -0.051, V23: 1.078, V24: 0.418, V25: -0.536, V26: 0.174, V27: -0.253, V28: 0.086, Amount: 3.880.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.286, V2: -0.252, V3: 1.256, V4: 0.907, V5: 0.445, V6: -0.845, V7: 0.363, V8: -0.354, V9: -0.037, V10: 0.546, V11: 0.270, V12: 0.035, V13: 0.069, V14: -0.011, V15: 1.799, V16: -0.471, V17: 0.225, V18: -0.853, V19: 0.755, V20: -1.154, V21: -0.392, V22: -0.051, V23: 1.078, V24: 0.418, V25: -0.536, V26: 0.174, V27: -0.253, V28: 0.086, Amount: 3.880.
275
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.223, V2: -0.928, V3: -2.780, V4: -1.949, V5: 1.991, V6: 3.129, V7: -0.859, V8: 0.699, V9: -0.633, V10: 0.814, V11: 0.065, V12: -0.414, V13: -0.087, V14: 0.168, V15: 0.100, V16: 0.549, V17: 0.307, V18: -1.998, V19: 0.704, V20: 0.007, V21: 0.019, V22: -0.002, V23: 0.239, V24: 0.711, V25: 0.028, V26: -0.257, V27: -0.019, V28: -0.071, Amount: 4.130.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.223, V2: -0.928, V3: -2.780, V4: -1.949, V5: 1.991, V6: 3.129, V7: -0.859, V8: 0.699, V9: -0.633, V10: 0.814, V11: 0.065, V12: -0.414, V13: -0.087, V14: 0.168, V15: 0.100, V16: 0.549, V17: 0.307, V18: -1.998, V19: 0.704, V20: 0.007, V21: 0.019, V22: -0.002, V23: 0.239, V24: 0.711, V25: 0.028, V26: -0.257, V27: -0.019, V28: -0.071, Amount: 4.130.
276
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.003, V2: 0.658, V3: -0.812, V4: -0.991, V5: 1.870, V6: 1.240, V7: 0.722, V8: 0.465, V9: -0.259, V10: -0.963, V11: 0.802, V12: 0.058, V13: -1.048, V14: -0.465, V15: -0.200, V16: -0.168, V17: 0.734, V18: -0.686, V19: -0.756, V20: -0.239, V21: -0.093, V22: -0.203, V23: 0.258, V24: -1.068, V25: -1.575, V26: 0.058, V27: 0.250, V28: 0.264, Amount: 17.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.003, V2: 0.658, V3: -0.812, V4: -0.991, V5: 1.870, V6: 1.240, V7: 0.722, V8: 0.465, V9: -0.259, V10: -0.963, V11: 0.802, V12: 0.058, V13: -1.048, V14: -0.465, V15: -0.200, V16: -0.168, V17: 0.734, V18: -0.686, V19: -0.756, V20: -0.239, V21: -0.093, V22: -0.203, V23: 0.258, V24: -1.068, V25: -1.575, V26: 0.058, V27: 0.250, V28: 0.264, Amount: 17.990.
277
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.907, V2: -2.789, V3: -0.200, V4: -0.598, V5: -3.152, V6: 1.839, V7: 3.735, V8: -0.245, V9: -1.666, V10: -0.733, V11: 0.054, V12: 0.393, V13: 1.008, V14: -0.178, V15: -1.113, V16: -1.136, V17: -0.415, V18: 1.719, V19: 0.110, V20: 1.935, V21: -0.050, V22: -1.455, V23: 2.611, V24: -0.659, V25: -0.422, V26: 0.162, V27: -0.228, V28: 0.232, Amount: 1070.300.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.907, V2: -2.789, V3: -0.200, V4: -0.598, V5: -3.152, V6: 1.839, V7: 3.735, V8: -0.245, V9: -1.666, V10: -0.733, V11: 0.054, V12: 0.393, V13: 1.008, V14: -0.178, V15: -1.113, V16: -1.136, V17: -0.415, V18: 1.719, V19: 0.110, V20: 1.935, V21: -0.050, V22: -1.455, V23: 2.611, V24: -0.659, V25: -0.422, V26: 0.162, V27: -0.228, V28: 0.232, Amount: 1070.300.
278
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.979, V2: -0.436, V3: -0.456, V4: 0.276, V5: -0.509, V6: -0.071, V7: -0.708, V8: 0.120, V9: 1.186, V10: 0.045, V11: 0.410, V12: 0.851, V13: -0.161, V14: 0.112, V15: 0.075, V16: 0.389, V17: -0.886, V18: 0.868, V19: 0.045, V20: -0.239, V21: 0.303, V22: 1.095, V23: 0.029, V24: -0.439, V25: -0.030, V26: -0.127, V27: 0.036, V28: -0.055, Amount: 0.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.979, V2: -0.436, V3: -0.456, V4: 0.276, V5: -0.509, V6: -0.071, V7: -0.708, V8: 0.120, V9: 1.186, V10: 0.045, V11: 0.410, V12: 0.851, V13: -0.161, V14: 0.112, V15: 0.075, V16: 0.389, V17: -0.886, V18: 0.868, V19: 0.045, V20: -0.239, V21: 0.303, V22: 1.095, V23: 0.029, V24: -0.439, V25: -0.030, V26: -0.127, V27: 0.036, V28: -0.055, Amount: 0.000.
279
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.178, V2: 1.407, V3: 0.024, V4: 1.060, V5: -0.142, V6: -1.392, V7: 0.633, V8: 0.158, V9: -0.665, V10: -0.006, V11: -0.447, V12: 0.052, V13: -0.361, V14: 0.897, V15: 0.640, V16: -0.515, V17: 0.160, V18: -0.150, V19: 0.258, V20: -0.099, V21: 0.193, V22: 0.631, V23: 0.108, V24: 0.718, V25: -0.743, V26: -0.432, V27: 0.313, V28: 0.170, Amount: 1.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.178, V2: 1.407, V3: 0.024, V4: 1.060, V5: -0.142, V6: -1.392, V7: 0.633, V8: 0.158, V9: -0.665, V10: -0.006, V11: -0.447, V12: 0.052, V13: -0.361, V14: 0.897, V15: 0.640, V16: -0.515, V17: 0.160, V18: -0.150, V19: 0.258, V20: -0.099, V21: 0.193, V22: 0.631, V23: 0.108, V24: 0.718, V25: -0.743, V26: -0.432, V27: 0.313, V28: 0.170, Amount: 1.490.
280
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.399, V2: -1.626, V3: 1.049, V4: 1.184, V5: -1.264, V6: 1.484, V7: -0.770, V8: 0.586, V9: 1.351, V10: -0.445, V11: 0.748, V12: 1.063, V13: -1.098, V14: -0.404, V15: -1.254, V16: -0.752, V17: 0.674, V18: -0.535, V19: -0.261, V20: 0.414, V21: 0.311, V22: 0.613, V23: -0.363, V24: -0.200, V25: 0.211, V26: 0.597, V27: 0.001, V28: 0.059, Amount: 328.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.399, V2: -1.626, V3: 1.049, V4: 1.184, V5: -1.264, V6: 1.484, V7: -0.770, V8: 0.586, V9: 1.351, V10: -0.445, V11: 0.748, V12: 1.063, V13: -1.098, V14: -0.404, V15: -1.254, V16: -0.752, V17: 0.674, V18: -0.535, V19: -0.261, V20: 0.414, V21: 0.311, V22: 0.613, V23: -0.363, V24: -0.200, V25: 0.211, V26: 0.597, V27: 0.001, V28: 0.059, Amount: 328.790.
281
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.164, V2: 0.933, V3: -0.780, V4: 0.341, V5: 0.075, V6: -1.004, V7: 0.316, V8: 0.300, V9: 0.208, V10: -1.087, V11: -1.149, V12: -0.409, V13: -1.053, V14: -0.821, V15: -0.591, V16: -0.059, V17: 1.158, V18: 0.248, V19: 0.006, V20: -0.315, V21: 0.127, V22: 0.475, V23: -0.018, V24: -0.083, V25: -0.439, V26: 0.415, V27: -0.101, V28: -0.056, Amount: 9.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.164, V2: 0.933, V3: -0.780, V4: 0.341, V5: 0.075, V6: -1.004, V7: 0.316, V8: 0.300, V9: 0.208, V10: -1.087, V11: -1.149, V12: -0.409, V13: -1.053, V14: -0.821, V15: -0.591, V16: -0.059, V17: 1.158, V18: 0.248, V19: 0.006, V20: -0.315, V21: 0.127, V22: 0.475, V23: -0.018, V24: -0.083, V25: -0.439, V26: 0.415, V27: -0.101, V28: -0.056, Amount: 9.000.
282
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.037, V2: 0.709, V3: 1.192, V4: -0.230, V5: -0.170, V6: -0.773, V7: 0.004, V8: -0.782, V9: -0.359, V10: -0.596, V11: 1.536, V12: 0.478, V13: -0.949, V14: 0.123, V15: -0.043, V16: 0.935, V17: -0.351, V18: 0.180, V19: -0.783, V20: -0.325, V21: 0.522, V22: -1.156, V23: -0.179, V24: 0.464, V25: 0.720, V26: 0.019, V27: 0.073, V28: 0.192, Amount: 4.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.037, V2: 0.709, V3: 1.192, V4: -0.230, V5: -0.170, V6: -0.773, V7: 0.004, V8: -0.782, V9: -0.359, V10: -0.596, V11: 1.536, V12: 0.478, V13: -0.949, V14: 0.123, V15: -0.043, V16: 0.935, V17: -0.351, V18: 0.180, V19: -0.783, V20: -0.325, V21: 0.522, V22: -1.156, V23: -0.179, V24: 0.464, V25: 0.720, V26: 0.019, V27: 0.073, V28: 0.192, Amount: 4.490.
283
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.887, V2: -1.362, V3: -0.106, V4: -0.458, V5: -1.393, V6: 0.250, V7: -1.341, V8: 0.243, V9: 0.093, V10: 0.929, V11: 0.532, V12: 0.457, V13: -0.065, V14: -0.156, V15: -0.004, V16: -0.617, V17: -0.597, V18: 1.920, V19: -0.785, V20: -0.403, V21: -0.259, V22: -0.416, V23: 0.371, V24: 0.734, V25: -0.777, V26: 0.399, V27: -0.016, V28: -0.022, Amount: 94.520.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.887, V2: -1.362, V3: -0.106, V4: -0.458, V5: -1.393, V6: 0.250, V7: -1.341, V8: 0.243, V9: 0.093, V10: 0.929, V11: 0.532, V12: 0.457, V13: -0.065, V14: -0.156, V15: -0.004, V16: -0.617, V17: -0.597, V18: 1.920, V19: -0.785, V20: -0.403, V21: -0.259, V22: -0.416, V23: 0.371, V24: 0.734, V25: -0.777, V26: 0.399, V27: -0.016, V28: -0.022, Amount: 94.520.
284
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.412, V2: -0.675, V3: -0.341, V4: -1.200, V5: -0.016, V6: 0.710, V7: -0.714, V8: 0.177, V9: -0.890, V10: 0.761, V11: 0.069, V12: -0.554, V13: 0.075, V14: 0.037, V15: 0.436, V16: 1.529, V17: -0.329, V18: -0.731, V19: 1.096, V20: 0.126, V21: 0.120, V22: 0.223, V23: -0.254, V24: -1.686, V25: 0.608, V26: -0.090, V27: 0.009, V28: -0.013, Amount: 30.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.412, V2: -0.675, V3: -0.341, V4: -1.200, V5: -0.016, V6: 0.710, V7: -0.714, V8: 0.177, V9: -0.890, V10: 0.761, V11: 0.069, V12: -0.554, V13: 0.075, V14: 0.037, V15: 0.436, V16: 1.529, V17: -0.329, V18: -0.731, V19: 1.096, V20: 0.126, V21: 0.120, V22: 0.223, V23: -0.254, V24: -1.686, V25: 0.608, V26: -0.090, V27: 0.009, V28: -0.013, Amount: 30.000.
285
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.979, V2: -0.177, V3: -0.250, V4: 0.353, V5: -0.401, V6: -0.282, V7: -0.624, V8: -0.035, V9: 2.329, V10: -0.435, V11: 1.689, V12: -1.268, V13: 1.982, V14: 1.629, V15: -0.381, V16: 0.468, V17: -0.307, V18: 0.850, V19: 0.058, V20: -0.248, V21: -0.235, V22: -0.310, V23: 0.309, V24: -0.448, V25: -0.368, V26: -0.963, V27: 0.030, V28: -0.046, Amount: 2.120.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.979, V2: -0.177, V3: -0.250, V4: 0.353, V5: -0.401, V6: -0.282, V7: -0.624, V8: -0.035, V9: 2.329, V10: -0.435, V11: 1.689, V12: -1.268, V13: 1.982, V14: 1.629, V15: -0.381, V16: 0.468, V17: -0.307, V18: 0.850, V19: 0.058, V20: -0.248, V21: -0.235, V22: -0.310, V23: 0.309, V24: -0.448, V25: -0.368, V26: -0.963, V27: 0.030, V28: -0.046, Amount: 2.120.
286
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.409, V2: 0.337, V3: 0.078, V4: 4.610, V5: 2.459, V6: -0.432, V7: 0.261, V8: -0.173, V9: -2.192, V10: 2.299, V11: -0.003, V12: -0.908, V13: -1.399, V14: 1.012, V15: -0.407, V16: -0.506, V17: 0.122, V18: 0.484, V19: 1.942, V20: -0.406, V21: 0.123, V22: 0.631, V23: -0.653, V24: -0.353, V25: -0.141, V26: 0.568, V27: -0.161, V28: 0.389, Amount: 9.430.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.409, V2: 0.337, V3: 0.078, V4: 4.610, V5: 2.459, V6: -0.432, V7: 0.261, V8: -0.173, V9: -2.192, V10: 2.299, V11: -0.003, V12: -0.908, V13: -1.399, V14: 1.012, V15: -0.407, V16: -0.506, V17: 0.122, V18: 0.484, V19: 1.942, V20: -0.406, V21: 0.123, V22: 0.631, V23: -0.653, V24: -0.353, V25: -0.141, V26: 0.568, V27: -0.161, V28: 0.389, Amount: 9.430.
287
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.285, V2: 2.106, V3: -0.702, V4: 0.739, V5: -0.217, V6: -0.616, V7: 0.116, V8: 0.865, V9: -0.634, V10: 0.796, V11: 1.417, V12: 1.391, V13: 0.402, V14: 1.064, V15: 0.122, V16: -0.551, V17: 0.240, V18: -0.170, V19: 0.135, V20: 0.206, V21: 0.224, V22: 0.821, V23: 0.185, V24: 0.240, V25: -0.626, V26: -0.399, V27: 0.527, V28: 0.273, Amount: 5.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.285, V2: 2.106, V3: -0.702, V4: 0.739, V5: -0.217, V6: -0.616, V7: 0.116, V8: 0.865, V9: -0.634, V10: 0.796, V11: 1.417, V12: 1.391, V13: 0.402, V14: 1.064, V15: 0.122, V16: -0.551, V17: 0.240, V18: -0.170, V19: 0.135, V20: 0.206, V21: 0.224, V22: 0.821, V23: 0.185, V24: 0.240, V25: -0.626, V26: -0.399, V27: 0.527, V28: 0.273, Amount: 5.000.
288
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.298, V2: -3.211, V3: -1.872, V4: 0.548, V5: -0.255, V6: 2.091, V7: 0.323, V8: 0.398, V9: 0.834, V10: -0.407, V11: 0.719, V12: 1.005, V13: -0.292, V14: 0.368, V15: 0.141, V16: -0.249, V17: 0.111, V18: -1.216, V19: -0.510, V20: 1.412, V21: 0.145, V22: -1.276, V23: -0.218, V24: -0.935, V25: -1.080, V26: 0.140, V27: -0.162, V28: 0.075, Amount: 832.630.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.298, V2: -3.211, V3: -1.872, V4: 0.548, V5: -0.255, V6: 2.091, V7: 0.323, V8: 0.398, V9: 0.834, V10: -0.407, V11: 0.719, V12: 1.005, V13: -0.292, V14: 0.368, V15: 0.141, V16: -0.249, V17: 0.111, V18: -1.216, V19: -0.510, V20: 1.412, V21: 0.145, V22: -1.276, V23: -0.218, V24: -0.935, V25: -1.080, V26: 0.140, V27: -0.162, V28: 0.075, Amount: 832.630.
289
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.804, V2: 0.626, V3: 0.279, V4: -0.114, V5: 1.111, V6: -0.452, V7: 1.802, V8: -0.132, V9: -0.924, V10: -0.727, V11: 0.043, V12: 0.108, V13: -1.032, V14: 0.662, V15: -1.743, V16: -0.101, V17: -0.779, V18: 0.239, V19: -0.362, V20: 0.035, V21: 0.115, V22: 0.077, V23: -0.366, V24: -0.440, V25: 1.499, V26: -0.446, V27: -0.153, V28: -0.088, Amount: 119.960.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.804, V2: 0.626, V3: 0.279, V4: -0.114, V5: 1.111, V6: -0.452, V7: 1.802, V8: -0.132, V9: -0.924, V10: -0.727, V11: 0.043, V12: 0.108, V13: -1.032, V14: 0.662, V15: -1.743, V16: -0.101, V17: -0.779, V18: 0.239, V19: -0.362, V20: 0.035, V21: 0.115, V22: 0.077, V23: -0.366, V24: -0.440, V25: 1.499, V26: -0.446, V27: -0.153, V28: -0.088, Amount: 119.960.
290
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.988, V2: 0.032, V3: -2.049, V4: 0.419, V5: 0.470, V6: -1.098, V7: 0.370, V8: -0.392, V9: 0.566, V10: -0.512, V11: -0.893, V12: 0.066, V13: 0.557, V14: -0.842, V15: 0.909, V16: 0.392, V17: 0.123, V18: 0.685, V19: -0.195, V20: -0.032, V21: 0.192, V22: 0.617, V23: -0.165, V24: -0.704, V25: 0.338, V26: -0.069, V27: -0.012, V28: -0.027, Amount: 64.760.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.988, V2: 0.032, V3: -2.049, V4: 0.419, V5: 0.470, V6: -1.098, V7: 0.370, V8: -0.392, V9: 0.566, V10: -0.512, V11: -0.893, V12: 0.066, V13: 0.557, V14: -0.842, V15: 0.909, V16: 0.392, V17: 0.123, V18: 0.685, V19: -0.195, V20: -0.032, V21: 0.192, V22: 0.617, V23: -0.165, V24: -0.704, V25: 0.338, V26: -0.069, V27: -0.012, V28: -0.027, Amount: 64.760.
291
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.993, V2: -0.143, V3: -0.758, V4: 0.343, V5: -0.549, V6: -0.951, V7: -0.475, V8: -0.050, V9: 1.367, V10: -0.697, V11: -0.457, V12: -0.001, V13: -0.556, V14: -1.172, V15: 0.916, V16: 0.575, V17: 0.541, V18: 0.245, V19: -0.218, V20: -0.231, V21: -0.266, V22: -0.610, V23: 0.388, V24: -0.161, V25: -0.534, V26: -0.278, V27: 0.025, V28: -0.012, Amount: 0.770.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.993, V2: -0.143, V3: -0.758, V4: 0.343, V5: -0.549, V6: -0.951, V7: -0.475, V8: -0.050, V9: 1.367, V10: -0.697, V11: -0.457, V12: -0.001, V13: -0.556, V14: -1.172, V15: 0.916, V16: 0.575, V17: 0.541, V18: 0.245, V19: -0.218, V20: -0.231, V21: -0.266, V22: -0.610, V23: 0.388, V24: -0.161, V25: -0.534, V26: -0.278, V27: 0.025, V28: -0.012, Amount: 0.770.
292
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.093, V2: -0.483, V3: 1.192, V4: 0.445, V5: -1.056, V6: 0.124, V7: -0.830, V8: 0.153, V9: 2.617, V10: -0.859, V11: 0.223, V12: -2.319, V13: 0.709, V14: 1.094, V15: -0.685, V16: -0.395, V17: 1.208, V18: -0.697, V19: -0.103, V20: -0.128, V21: -0.343, V22: -0.579, V23: 0.097, V24: 0.078, V25: -0.005, V26: 0.932, V27: -0.057, V28: 0.010, Amount: 48.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.093, V2: -0.483, V3: 1.192, V4: 0.445, V5: -1.056, V6: 0.124, V7: -0.830, V8: 0.153, V9: 2.617, V10: -0.859, V11: 0.223, V12: -2.319, V13: 0.709, V14: 1.094, V15: -0.685, V16: -0.395, V17: 1.208, V18: -0.697, V19: -0.103, V20: -0.128, V21: -0.343, V22: -0.579, V23: 0.097, V24: 0.078, V25: -0.005, V26: 0.932, V27: -0.057, V28: 0.010, Amount: 48.780.
293
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.170, V2: 0.201, V3: 0.242, V4: 1.156, V5: -0.361, V6: -0.968, V7: 0.230, V8: -0.210, V9: 0.066, V10: 0.014, V11: -0.491, V12: -0.118, V13: -0.576, V14: 0.513, V15: 0.988, V16: 0.081, V17: -0.391, V18: -0.073, V19: -0.379, V20: -0.103, V21: 0.044, V22: 0.059, V23: -0.126, V24: 0.384, V25: 0.654, V26: -0.331, V27: 0.003, V28: 0.026, Amount: 42.810.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.170, V2: 0.201, V3: 0.242, V4: 1.156, V5: -0.361, V6: -0.968, V7: 0.230, V8: -0.210, V9: 0.066, V10: 0.014, V11: -0.491, V12: -0.118, V13: -0.576, V14: 0.513, V15: 0.988, V16: 0.081, V17: -0.391, V18: -0.073, V19: -0.379, V20: -0.103, V21: 0.044, V22: 0.059, V23: -0.126, V24: 0.384, V25: 0.654, V26: -0.331, V27: 0.003, V28: 0.026, Amount: 42.810.
294
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.087, V2: -0.858, V3: -1.612, V4: -1.075, V5: -0.268, V6: -0.749, V7: -0.265, V8: -0.174, V9: -0.863, V10: 1.013, V11: 1.113, V12: -0.256, V13: -0.670, V14: 0.510, V15: -0.288, V16: 1.049, V17: 0.040, V18: -1.240, V19: 0.875, V20: 0.051, V21: 0.127, V22: 0.093, V23: 0.211, V24: 0.684, V25: -0.140, V26: -0.368, V27: -0.068, V28: -0.058, Amount: 65.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.087, V2: -0.858, V3: -1.612, V4: -1.075, V5: -0.268, V6: -0.749, V7: -0.265, V8: -0.174, V9: -0.863, V10: 1.013, V11: 1.113, V12: -0.256, V13: -0.670, V14: 0.510, V15: -0.288, V16: 1.049, V17: 0.040, V18: -1.240, V19: 0.875, V20: 0.051, V21: 0.127, V22: 0.093, V23: 0.211, V24: 0.684, V25: -0.140, V26: -0.368, V27: -0.068, V28: -0.058, Amount: 65.490.
295
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.310, V2: -0.946, V3: 1.173, V4: -0.331, V5: -1.873, V6: -0.424, V7: -1.219, V8: 0.141, V9: 0.258, V10: 0.536, V11: -1.223, V12: -0.878, V13: -1.545, V14: -0.222, V15: 0.310, V16: -1.213, V17: 0.269, V18: 1.192, V19: -0.586, V20: -0.585, V21: -0.498, V22: -0.882, V23: 0.160, V24: 0.356, V25: -0.061, V26: 0.966, V27: -0.019, V28: 0.019, Amount: 14.480.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.310, V2: -0.946, V3: 1.173, V4: -0.331, V5: -1.873, V6: -0.424, V7: -1.219, V8: 0.141, V9: 0.258, V10: 0.536, V11: -1.223, V12: -0.878, V13: -1.545, V14: -0.222, V15: 0.310, V16: -1.213, V17: 0.269, V18: 1.192, V19: -0.586, V20: -0.585, V21: -0.498, V22: -0.882, V23: 0.160, V24: 0.356, V25: -0.061, V26: 0.966, V27: -0.019, V28: 0.019, Amount: 14.480.
296
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.192, V2: -0.212, V3: 1.371, V4: 1.364, V5: -0.513, V6: -0.013, V7: -1.325, V8: 1.242, V9: -0.223, V10: -0.527, V11: 0.881, V12: 0.895, V13: -0.547, V14: 0.726, V15: 0.363, V16: 0.042, V17: 0.319, V18: 0.600, V19: 0.238, V20: -0.289, V21: 0.426, V22: 0.960, V23: -0.401, V24: 0.275, V25: -0.583, V26: -0.268, V27: 0.056, V28: -0.296, Amount: 44.360.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.192, V2: -0.212, V3: 1.371, V4: 1.364, V5: -0.513, V6: -0.013, V7: -1.325, V8: 1.242, V9: -0.223, V10: -0.527, V11: 0.881, V12: 0.895, V13: -0.547, V14: 0.726, V15: 0.363, V16: 0.042, V17: 0.319, V18: 0.600, V19: 0.238, V20: -0.289, V21: 0.426, V22: 0.960, V23: -0.401, V24: 0.275, V25: -0.583, V26: -0.268, V27: 0.056, V28: -0.296, Amount: 44.360.
297
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.951, V2: -0.512, V3: -3.151, V4: -0.626, V5: 2.639, V6: 3.150, V7: -0.063, V8: 0.639, V9: 0.227, V10: 0.098, V11: -0.130, V12: 0.328, V13: -0.339, V14: 0.637, V15: -0.012, V16: -0.630, V17: -0.152, V18: -0.948, V19: 0.054, V20: -0.033, V21: 0.001, V22: -0.050, V23: 0.061, V24: 0.765, V25: 0.190, V26: 0.575, V27: -0.090, V28: -0.072, Amount: 69.520.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.951, V2: -0.512, V3: -3.151, V4: -0.626, V5: 2.639, V6: 3.150, V7: -0.063, V8: 0.639, V9: 0.227, V10: 0.098, V11: -0.130, V12: 0.328, V13: -0.339, V14: 0.637, V15: -0.012, V16: -0.630, V17: -0.152, V18: -0.948, V19: 0.054, V20: -0.033, V21: 0.001, V22: -0.050, V23: 0.061, V24: 0.765, V25: 0.190, V26: 0.575, V27: -0.090, V28: -0.072, Amount: 69.520.
298
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.363, V2: -3.169, V3: 0.445, V4: -0.702, V5: -2.653, V6: 1.533, V7: 2.588, V8: -1.618, V9: 1.405, V10: -0.490, V11: 0.272, V12: -3.043, V13: 2.197, V14: -0.156, V15: -1.714, V16: 1.093, V17: 0.982, V18: -1.365, V19: 0.608, V20: -1.434, V21: -0.056, V22: 0.225, V23: 2.426, V24: 1.074, V25: 0.154, V26: -0.359, V27: 1.307, V28: -0.665, Amount: 806.060.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.363, V2: -3.169, V3: 0.445, V4: -0.702, V5: -2.653, V6: 1.533, V7: 2.588, V8: -1.618, V9: 1.405, V10: -0.490, V11: 0.272, V12: -3.043, V13: 2.197, V14: -0.156, V15: -1.714, V16: 1.093, V17: 0.982, V18: -1.365, V19: 0.608, V20: -1.434, V21: -0.056, V22: 0.225, V23: 2.426, V24: 1.074, V25: 0.154, V26: -0.359, V27: 1.307, V28: -0.665, Amount: 806.060.
299
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.581, V2: -1.791, V3: 0.321, V4: -1.875, V5: -1.355, V6: 0.245, V7: -0.574, V8: 0.314, V9: 2.337, V10: -1.650, V11: 1.642, V12: 1.269, V13: -1.136, V14: 0.377, V15: 1.624, V16: -1.171, V17: 0.375, V18: 0.195, V19: 0.489, V20: 0.382, V21: 0.421, V22: 0.850, V23: -0.359, V24: -0.234, V25: 0.358, V26: -0.626, V27: 0.072, V28: 0.064, Amount: 300.030.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.581, V2: -1.791, V3: 0.321, V4: -1.875, V5: -1.355, V6: 0.245, V7: -0.574, V8: 0.314, V9: 2.337, V10: -1.650, V11: 1.642, V12: 1.269, V13: -1.136, V14: 0.377, V15: 1.624, V16: -1.171, V17: 0.375, V18: 0.195, V19: 0.489, V20: 0.382, V21: 0.421, V22: 0.850, V23: -0.359, V24: -0.234, V25: 0.358, V26: -0.626, V27: 0.072, V28: 0.064, Amount: 300.030.