Datasets:
Fineweb train configuration
#39
by
nezhazheng
- opened
May i ask when will the configuration and hyper-parameters for training Fineweb be open-sourced?
We are currently waiting for some changes on the nanotron
codebase to be completed, but here are the main arguments (not sure if it would run on the current state of nanotron):
model_config = LlamaConfig(
bos_token_id=1,
eos_token_id=2,
hidden_act="silu",
hidden_size=2048,
initializer_range=0.02,
intermediate_size=8192,
max_position_embeddings=2048,
num_attention_heads=32,
num_hidden_layers=24,
num_key_value_heads=32,
pretraining_tp=1,
rms_norm_eps=1e-05,
rope_scaling=None,
tie_word_embeddings=True,
use_cache=True,
vocab_size=50272, # GPT2 tokenizer rounded to next multiple of 8
)
parallelism = ParallelismArgs(
dp=64,
pp=1,
tp=1,
pp_engine="1f1b",
tp_mode="REDUCE_SCATTER",
tp_linear_async_communication=True,
)
tokens = TokensArgs(
batch_accumulation_per_replica=4,
micro_batch_size=4,
sequence_length=2048,
train_steps=args.train_steps,
val_check_interval=100,
)
model = ModelArgs(
model_config=model_config,
make_vocab_size_divisible_by=1,
init_method=RandomInit(
std=0.02,
# std=1
# / math.sqrt(model_config.hidden_size) # 0.01275 # Basically 1/sqrt(N),
# path="/fsx/shared-falcon-180B/brrr-falcon-180B"
),
dtype=torch.bfloat16,
)
optimizer = OptimizerArgs(
accumulate_grad_in_fp32=True,
adam_beta1=0.9,
adam_beta2=0.95,
adam_eps=1.0e-8,
clip_grad=1.0,
torch_adam_is_fused=True,
weight_decay=0.1,
zero_stage=0,
learning_rate_scheduler=LRSchedulerArgs(
learning_rate=3e-4,
lr_warmup_steps=500,
lr_warmup_style="linear",
lr_decay_style="cosine",
# lr_decay_steps=10000-500, # Keeping it to 10k for comparision for now
min_decay_lr=3.0e-5
)
)
Is there a specific reason for weight decay 0.1?
Does lr_decay_steps
being commented out mean you trained with constant LR at 3e-4
after the warmup was complete?