Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
the_cauldron / README.md
HugoLaurencon's picture
Upload README.md with huggingface_hub
3a894c8 verified
|
raw
history blame
48.3 kB
metadata
dataset_info:
  - config_name: ai2d
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 435362437.84770346
        num_examples: 2434
    download_size: 438136609
    dataset_size: 435362437.84770346
  - config_name: aokvqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 871997710
        num_examples: 16539
    download_size: 893265070
    dataset_size: 871997710
  - config_name: chart2text
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 1060645471.4167501
        num_examples: 26963
    download_size: 1103295177
    dataset_size: 1060645471.4167501
  - config_name: chartqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 784762327.9534782
        num_examples: 18266
    download_size: 803229473
    dataset_size: 784762327.9534782
  - config_name: clevr
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 11522617868
        num_examples: 70000
    download_size: 13267429872
    dataset_size: 11522617868
  - config_name: cocoqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 2213960474
        num_examples: 46287
    download_size: 2393991009
    dataset_size: 2213960474
  - config_name: datikz
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 481233278
        num_examples: 47974
    download_size: 613100257
    dataset_size: 481233278
  - config_name: diagram_image_to_text
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 18877197
        num_examples: 300
    download_size: 18706661
    dataset_size: 18877197
  - config_name: docvqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 6885686042
        num_examples: 10189
    download_size: 6887803845
    dataset_size: 6885686042
  - config_name: dvqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 3689940101
        num_examples: 200000
    download_size: 4295254110
    dataset_size: 3689940101
  - config_name: figureqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 1901887152
        num_examples: 100000
    download_size: 2220036667
    dataset_size: 1901887152
  - config_name: finqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 135268568
        num_examples: 5276
    download_size: 123698250
    dataset_size: 135268568
  - config_name: geomverse
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 951640204
        num_examples: 9303
    download_size: 323746516
    dataset_size: 951640204
  - config_name: hateful_memes
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 3035059823
        num_examples: 8500
    download_size: 3054208907
    dataset_size: 3035059823
  - config_name: hitab
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 161130580
        num_examples: 2500
    download_size: 158295807
    dataset_size: 161130580
  - config_name: iam
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 1129180352
        num_examples: 5663
    download_size: 1128935602
    dataset_size: 1129180352
  - config_name: iconqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 264523321.3774117
        num_examples: 27308
    download_size: 326653170
    dataset_size: 264523321.3774117
  - config_name: infographic_vqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 291677986
        num_examples: 2118
    download_size: 292351760
    dataset_size: 291677986
  - config_name: intergps
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 24982328.291771192
        num_examples: 1280
    download_size: 24870320
    dataset_size: 24982328.291771192
  - config_name: localized_narratives
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 21380844262.41927
        num_examples: 199998
    download_size: 22164342699
    dataset_size: 21380844262.41927
  - config_name: mapqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 3238062926
        num_examples: 37417
    download_size: 3307676486
    dataset_size: 3238062926
  - config_name: mimic_cgd
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 12592929433
        num_examples: 70939
    download_size: 13147641100
    dataset_size: 12592929433
  - config_name: multihiertt
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 1356766489.046
        num_examples: 7619
    download_size: 1360814135
    dataset_size: 1356766489.046
  - config_name: nlvr2
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 8375492591
        num_examples: 50426
    download_size: 10838882020
    dataset_size: 8375492591
  - config_name: ocrvqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 5467134439
        num_examples: 165746
    download_size: 6078073015
    dataset_size: 5467134439
  - config_name: plotqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 7837605221
        num_examples: 157070
    download_size: 5320249066
    dataset_size: 7837605221
  - config_name: raven
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 1506550467
        num_examples: 42000
    download_size: 1720691636
    dataset_size: 1506550467
  - config_name: robut_sqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 679135952
        num_examples: 8514
    download_size: 678722272
    dataset_size: 679135952
  - config_name: robut_wikisql
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 5950915477
        num_examples: 74989
    download_size: 6160300141
    dataset_size: 5950915477
  - config_name: robut_wtq
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 4023729236
        num_examples: 38246
    download_size: 4061523247
    dataset_size: 4023729236
  - config_name: scienceqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 284601898.76188564
        num_examples: 4976
    download_size: 283265438
    dataset_size: 284601898.76188564
  - config_name: screen2words
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 1670723783
        num_examples: 15730
    download_size: 1346254268
    dataset_size: 1670723783
  - config_name: spot_the_diff
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 1643123792
        num_examples: 8566
    download_size: 1526740548
    dataset_size: 1643123792
  - config_name: st_vqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 696265340
        num_examples: 17247
    download_size: 720462890
    dataset_size: 696265340
  - config_name: tabmwp
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 265348817.73984778
        num_examples: 22723
    download_size: 306648229
    dataset_size: 265348817.73984778
  - config_name: tallyqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 4267143189
        num_examples: 98680
    download_size: 4662245152
    dataset_size: 4267143189
  - config_name: tat_qa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 73213942
        num_examples: 2199
    download_size: 70862028
    dataset_size: 73213942
  - config_name: textcaps
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 5938676115
        num_examples: 21953
    download_size: 6175419911
    dataset_size: 5938676115
  - config_name: textvqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 5939437331
        num_examples: 21953
    download_size: 6175442839
    dataset_size: 5939437331
  - config_name: tqa
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 380346870.806369
        num_examples: 1493
    download_size: 378238311
    dataset_size: 380346870.806369
  - config_name: vistext
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 541250281
        num_examples: 9969
    download_size: 386023352
    dataset_size: 541250281
  - config_name: visual7w
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 4432168161
        num_examples: 14366
    download_size: 4443083495
    dataset_size: 4432168161
  - config_name: visualmrc
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 2941051627.2639995
        num_examples: 3027
    download_size: 2912911810
    dataset_size: 2941051627.2639995
  - config_name: vqarad
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 16561537
        num_examples: 313
    download_size: 16226241
    dataset_size: 16561537
  - config_name: vqav2
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 10630091683
        num_examples: 82772
    download_size: 13479302437
    dataset_size: 10630091683
  - config_name: vsr
    features:
      - name: images
        sequence: image
      - name: texts
        list:
          - name: user
            dtype: string
          - name: assistant
            dtype: string
          - name: source
            dtype: string
    splits:
      - name: train
        num_bytes: 107489763
        num_examples: 2157
    download_size: 107576214
    dataset_size: 107489763
configs:
  - config_name: ai2d
    data_files:
      - split: train
        path: ai2d/train-*
  - config_name: aokvqa
    data_files:
      - split: train
        path: aokvqa/train-*
  - config_name: chart2text
    data_files:
      - split: train
        path: chart2text/train-*
  - config_name: chartqa
    data_files:
      - split: train
        path: chartqa/train-*
  - config_name: clevr
    data_files:
      - split: train
        path: clevr/train-*
  - config_name: cocoqa
    data_files:
      - split: train
        path: cocoqa/train-*
  - config_name: datikz
    data_files:
      - split: train
        path: datikz/train-*
  - config_name: diagram_image_to_text
    data_files:
      - split: train
        path: diagram_image_to_text/train-*
  - config_name: docvqa
    data_files:
      - split: train
        path: docvqa/train-*
  - config_name: dvqa
    data_files:
      - split: train
        path: dvqa/train-*
  - config_name: figureqa
    data_files:
      - split: train
        path: figureqa/train-*
  - config_name: finqa
    data_files:
      - split: train
        path: finqa/train-*
  - config_name: geomverse
    data_files:
      - split: train
        path: geomverse/train-*
  - config_name: hateful_memes
    data_files:
      - split: train
        path: hateful_memes/train-*
  - config_name: hitab
    data_files:
      - split: train
        path: hitab/train-*
  - config_name: iam
    data_files:
      - split: train
        path: iam/train-*
  - config_name: iconqa
    data_files:
      - split: train
        path: iconqa/train-*
  - config_name: infographic_vqa
    data_files:
      - split: train
        path: infographic_vqa/train-*
  - config_name: intergps
    data_files:
      - split: train
        path: intergps/train-*
  - config_name: localized_narratives
    data_files:
      - split: train
        path: localized_narratives/train-*
  - config_name: mapqa
    data_files:
      - split: train
        path: mapqa/train-*
  - config_name: mimic_cgd
    data_files:
      - split: train
        path: mimic_cgd/train-*
  - config_name: multihiertt
    data_files:
      - split: train
        path: multihiertt/train-*
  - config_name: nlvr2
    data_files:
      - split: train
        path: nlvr2/train-*
  - config_name: ocrvqa
    data_files:
      - split: train
        path: ocrvqa/train-*
  - config_name: plotqa
    data_files:
      - split: train
        path: plotqa/train-*
  - config_name: raven
    data_files:
      - split: train
        path: raven/train-*
  - config_name: robut_sqa
    data_files:
      - split: train
        path: robut_sqa/train-*
  - config_name: robut_wikisql
    data_files:
      - split: train
        path: robut_wikisql/train-*
  - config_name: robut_wtq
    data_files:
      - split: train
        path: robut_wtq/train-*
  - config_name: scienceqa
    data_files:
      - split: train
        path: scienceqa/train-*
  - config_name: screen2words
    data_files:
      - split: train
        path: screen2words/train-*
  - config_name: spot_the_diff
    data_files:
      - split: train
        path: spot_the_diff/train-*
  - config_name: st_vqa
    data_files:
      - split: train
        path: st_vqa/train-*
  - config_name: tabmwp
    data_files:
      - split: train
        path: tabmwp/train-*
  - config_name: tallyqa
    data_files:
      - split: train
        path: tallyqa/train-*
  - config_name: tat_qa
    data_files:
      - split: train
        path: tat_qa/train-*
  - config_name: textcaps
    data_files:
      - split: train
        path: textcaps/train-*
  - config_name: textvqa
    data_files:
      - split: train
        path: textvqa/train-*
  - config_name: tqa
    data_files:
      - split: train
        path: tqa/train-*
  - config_name: vistext
    data_files:
      - split: train
        path: vistext/train-*
  - config_name: visual7w
    data_files:
      - split: train
        path: visual7w/train-*
  - config_name: visualmrc
    data_files:
      - split: train
        path: visualmrc/train-*
  - config_name: vqarad
    data_files:
      - split: train
        path: vqarad/train-*
  - config_name: vqav2
    data_files:
      - split: train
        path: vqav2/train-*
  - config_name: vsr
    data_files:
      - split: train
        path: vsr/train-*

Dataset Card for The Cauldron

image/png

Dataset description

The Cauldron is part of the Idefics2 release.

It is a massive collection of 50 vision-language datasets (training sets only) that were used for the fine-tuning of the vision-language model Idefics2.

Load the dataset

To load the dataset, install the library datasets with pip install datasets. Then,

from datasets import load_dataset
ds = load_dataset("HuggingFaceM4/the_cauldron", "ai2d")

to download and load the config ai2d for example.

Data fields

An example of a sample looks as follows:

{
    "images" = [PIL.Image]
    "texts" = [
        {
            "user": "Question: How many actions are depicted in the diagram?\nChoices:\nA. 6.\nB. 4.\nC. 8.\nD. 7.\nAnswer with the letter.",
            "assistant": "Answer: D",
            "source": "TQA"
        }
    ]
}

In images, there is a list of images, to be placed before the text. In texts, there is a conversation between a user and an assistant about the images that is represented by a list of turns.

Stats about the datasets in The Cauldron

Dataset # images # Q/A pairs # tokens
General visual question answering
VQAv2 82,772 443,757 1,595,929
COCO-QA 46,287 78,736 286,982
Visual7W 14,366 69,817 279,268
A-OKVQA 16,539 17,056 236,492
TallyQA 98,680 183,986 738,254
OK-VQA 8,998 9,009 38,853
HatefulMemes 8,500 8,500 25,500
VQA-RAD 313 1,793 8,418
Captioning
LNarratives 507,444 507,444 21,328,731
Screen2Words 15,730 15,743 143,103
VSR 2,157 3,354 10,062
OCR, document understanding, text transcription
RenderedText 999,000 999,000 27,207,774
DocVQA 10,189 39,463 337,829
TextCaps 21,953 21,953 389,658
TextVQA 21,953 34,602 181,918
ST-VQA 17,247 23,121 127,846
OCR-VQA 165,746 801,579 6,073,824
VisualMRC 3,027 11,988 168,828
IAM 5,663 5,663 144,216
InfoVQA 2,118 10,074 61,048
Diagram image-to-text 300 300 22,196
Chart/figure understanding
Chart2Text 26,985 30,242 2,852,827
DVQA 200,000 2,325,316 8,346,234
VisText 7,057 9,969 1,245,485
ChartQA 18,271 28,299 185,835
PlotQA 157,070 20,249,479 8478299.278
FigureQA 100,000 1,327,368 3,982,104
MapQA 37,417 483,416 6,470,485
Table understanding
TabMWP 22,729 23,059 1,948,166
TAT-QA 2,199 13,215 283,776
HiTab 2,500 7,782 351,299
MultiHiertt 7,619 7,830 267,615
FinQA 5,276 6,251 242,561
WikiSQL 74,989 86,202 9,680,673
SQA 8,514 34,141 1,894,824
WTQ 38,246 44,096 6,677,013
Reasoning, logic, maths
GeomVerse 9,303 9,339 2,489,459
CLEVR-Math 70,000 788,650 3,184,656
CLEVR 70,000 699,989 2,396,781
IconQA 27,315 29,859 112,969
RAVEN 42,000 42,000 105,081
Inter-GPs 1,451 2,101 8,404
Textbook/academic questions
AI2D 3,099 9,708 38,832
TQA 1,496 6,501 26,004
ScienceQA 4,985 6,218 24,872
Differences between 2 images
NLVR2 50,426 86,373 259,119
GSD 70,939 141,869 4,637,229
Spot the diff 8,566 9,524 221,477
Screenshot to code
WebSight 500,000 500,000 276,743,299
DaTikz 47,974 48,296 59,556,252

Decontamination

The Cauldron contains only the train split of each sub-datasets. On top of that, we removed the few examples containing an image also present in the test splits of MMMU, MathVista or MMBench.

References to the original datasets

References to the original datasets

@misc{AI2D, title={A Diagram Is Worth A Dozen Images}, author={Aniruddha Kembhavi and Mike Salvato and Eric Kolve and Minjoon Seo and Hannaneh Hajishirzi and Ali Farhadi}, year={2016}, eprint={1603.07396}, archivePrefix={arXiv}, primaryClass={cs.CV} }

@misc{A-OKVQA, title={A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge}, author={Dustin Schwenk and Apoorv Khandelwal and Christopher Clark and Kenneth Marino and Roozbeh Mottaghi}, year={2022}, eprint={2206.01718}, archivePrefix={arXiv}, primaryClass={cs.CV} }

@inproceedings{Chart2Text, title = "Chart-to-Text: Generating Natural Language Descriptions for Charts by Adapting the Transformer Model", author = "Obeid, Jason and Hoque, Enamul", editor = "Davis, Brian and Graham, Yvette and Kelleher, John and Sripada, Yaji", booktitle = "Proceedings of the 13th International Conference on Natural Language Generation", month = dec, year = "2020", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.inlg-1.20", doi = "10.18653/v1/2020.inlg-1.20", pages = "138--147", }

@inproceedings{ChartQA, title = "{C}hart{QA}: A Benchmark for Question Answering about Charts with Visual and Logical Reasoning", author = "Masry, Ahmed and Long, Do and Tan, Jia Qing and Joty, Shafiq and Hoque, Enamul", booktitle = "Findings of the Association for Computational Linguistics: ACL 2022", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-acl.177", doi = "10.18653/v1/2022.findings-acl.177", pages = "2263--2279", }

@misc{CLEVR-Math, doi = {10.48550/ARXIV.2208.05358}, url = {https://arxiv.org/abs/2208.05358}, author = {Lindström, Adam Dahlgren}, keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2.7; I.2.10; I.2.6; I.4.8; I.1.4}, title = {CLEVR-Math: A Dataset for Compositional Language, Visual, and Mathematical Reasoning}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Share Alike 4.0 International} }

@misc{CLEVR, title={CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning}, author={Justin Johnson and Bharath Hariharan and Laurens van der Maaten and Li Fei-Fei and C. Lawrence Zitnick and Ross Girshick}, year={2016}, eprint={1612.06890}, archivePrefix={arXiv}, primaryClass={cs.CV} }

@inproceedings{CocoQA, author = {Ren, Mengye and Kiros, Ryan and Zemel, Richard}, booktitle = {Advances in Neural Information Processing Systems}, editor = {C. Cortes and N. Lawrence and D. Lee and M. Sugiyama and R. Garnett}, pages = {}, publisher = {Curran Associates, Inc.}, title = {Exploring Models and Data for Image Question Answering}, url = {https://proceedings.neurips.cc/paper_files/paper/2015/file/831c2f88a604a07ca94314b56a4921b8-Paper.pdf}, volume = {28}, year = {2015} }

@misc{DaTikz, title={AutomaTikZ: Text-Guided Synthesis of Scientific Vector Graphics with TikZ}, author={Jonas Belouadi and Anne Lauscher and Steffen Eger}, year={2024}, eprint={2310.00367}, archivePrefix={arXiv}, primaryClass={cs.CL} }

Diagram image to text: https://huggingface.co/datasets/Kamizuru00/diagram_image_to_text by @Kamizuru00

@INPROCEEDINGS{DocVQA, author={Mathew, Minesh and Karatzas, Dimosthenis and Jawahar, C. V.}, booktitle={2021 IEEE Winter Conference on Applications of Computer Vision (WACV)}, title={DocVQA: A Dataset for VQA on Document Images}, year={2021}, volume={}, number={}, pages={2199-2208}, keywords={Visualization;Computer vision;Text analysis;Image recognition;Image analysis;Conferences;Layout}, doi={10.1109/WACV48630.2021.00225}}

@inproceedings{DVQA, title={DVQA: Understanding Data Visualizations via Question Answering}, author={Kafle, Kushal and Cohen, Scott and Price, Brian and Kanan, Christopher}, booktitle={CVPR}, year={2018} }

@misc{FigureQA, title={FigureQA: An Annotated Figure Dataset for Visual Reasoning}, author={Samira Ebrahimi Kahou and Vincent Michalski and Adam Atkinson and Akos Kadar and Adam Trischler and Yoshua Bengio}, year={2018}, eprint={1710.07300}, archivePrefix={arXiv}, primaryClass={cs.CV} }

@inproceedings{FinQA, title = "{F}in{QA}: A Dataset of Numerical Reasoning over Financial Data", author = "Chen, Zhiyu and Chen, Wenhu and Smiley, Charese and Shah, Sameena and Borova, Iana and Langdon, Dylan and Moussa, Reema and Beane, Matt and Huang, Ting-Hao and Routledge, Bryan and Wang, William Yang", editor = "Moens, Marie-Francine and Huang, Xuanjing and Specia, Lucia and Yih, Scott Wen-tau", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.300", doi = "10.18653/v1/2021.emnlp-main.300", pages = "3697--3711", }

@misc{GeomVerse, title={GeomVerse: A Systematic Evaluation of Large Models for Geometric Reasoning}, author={Mehran Kazemi and Hamidreza Alvari and Ankit Anand and Jialin Wu and Xi Chen and Radu Soricut}, year={2023}, eprint={2312.12241}, archivePrefix={arXiv}, primaryClass={cs.CV} }

@inproceedings{hatefulmeme, author = {Kiela, Douwe and Firooz, Hamed and Mohan, Aravind and Goswami, Vedanuj and Singh, Amanpreet and Ringshia, Pratik and Testuggine, Davide}, booktitle = {Advances in Neural Information Processing Systems}, editor = {H. Larochelle and M. Ranzato and R. Hadsell and M.F. Balcan and H. Lin}, pages = {2611--2624}, publisher = {Curran Associates, Inc.}, title = {The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes}, url = {https://proceedings.neurips.cc/paper_files/paper/2020/file/1b84c4cee2b8b3d823b30e2d604b1878-Paper.pdf}, volume = {33}, year = {2020} }

@inproceedings{Hitab, title = "{H}i{T}ab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation", author = "Cheng, Zhoujun and Dong, Haoyu and Wang, Zhiruo and Jia, Ran and Guo, Jiaqi and Gao, Yan and Han, Shi and Lou, Jian-Guang and Zhang, Dongmei", editor = "Muresan, Smaranda and Nakov, Preslav and Villavicencio, Aline", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-long.78", doi = "10.18653/v1/2022.acl-long.78", pages = "1094--1110", }

@article{IAM, author = {Marti, Urs-Viktor and Bunke, H.}, year = {2002}, month = {11}, pages = {39-46}, title = {The IAM-database: An English sentence database for offline handwriting recognition}, volume = {5}, journal = {International Journal on Document Analysis and Recognition}, doi = {10.1007/s100320200071} }

@inproceedings{IconQA, title = {IconQA: A New Benchmark for Abstract Diagram Understanding and Visual Language Reasoning}, author = {Lu, Pan and Qiu, Liang and Chen, Jiaqi and Xia, Tony and Zhao, Yizhou and Zhang, Wei and Yu, Zhou and Liang, Xiaodan and Zhu, Song-Chun}, booktitle = {The 35th Conference on Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks}, year = {2021} }

@INPROCEEDINGS{InfographicVQA, author={Mathew, Minesh and Bagal, Viraj and Tito, Rubèn and Karatzas, Dimosthenis and Valveny, Ernest and Jawahar, C. V.}, booktitle={2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)}, title={InfographicVQA}, year={2022}, volume={}, number={}, pages={2582-2591}, keywords={Visualization;Computer vision;Computational modeling;Layout;Data visualization;Benchmark testing;Brain modeling;Document Analysis Datasets;Evaluation and Comparison of Vision Algorithms;Vision and Languages}, doi={10.1109/WACV51458.2022.00264} }

@inproceedings{Inter-GPS, title = {Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning}, author = {Lu, Pan and Gong, Ran and Jiang, Shibiao and Qiu, Liang and Huang, Siyuan and Liang, Xiaodan and Zhu, Song-Chun}, booktitle = {The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)}, year = {2021} }

@misc{LocalizedNarratives, title={Connecting Vision and Language with Localized Narratives}, author={Jordi Pont-Tuset and Jasper Uijlings and Soravit Changpinyo and Radu Soricut and Vittorio Ferrari}, year={2020}, eprint={1912.03098}, archivePrefix={arXiv}, primaryClass={cs.CV} }

@misc{MapQA, title={MapQA: A Dataset for Question Answering on Choropleth Maps}, author={Shuaichen Chang and David Palzer and Jialin Li and Eric Fosler-Lussier and Ningchuan Xiao}, year={2022}, eprint={2211.08545}, archivePrefix={arXiv}, primaryClass={cs.CV} }

@misc{MIMIC-IT-General-Scene-Difference, title={MIMIC-IT: Multi-Modal In-Context Instruction Tuning}, author={Bo Li and Yuanhan Zhang and Liangyu Chen and Jinghao Wang and Fanyi Pu and Jingkang Yang and Chunyuan Li and Ziwei Liu}, year={2023}, eprint={2306.05425}, archivePrefix={arXiv}, primaryClass={cs.CV} }

@inproceedings{Multihiertt, title = "{M}ulti{H}iertt: Numerical Reasoning over Multi Hierarchical Tabular and Textual Data", author = "Zhao, Yilun and Li, Yunxiang and Li, Chenying and Zhang, Rui", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-long.454", pages = "6588--6600", }

@inproceedings{NLVR2, title = "A Corpus for Reasoning about Natural Language Grounded in Photographs", author = "Suhr, Alane and Zhou, Stephanie and Zhang, Ally and Zhang, Iris and Bai, Huajun and Artzi, Yoav", editor = "Korhonen, Anna and Traum, David and M{`a}rquez, Llu{'\i}s", booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2019", address = "Florence, Italy", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P19-1644", doi = "10.18653/v1/P19-1644", pages = "6418--6428", }

@INPROCEEDINGS{OCR-VQA, author={Mishra, Anand and Shekhar, Shashank and Singh, Ajeet Kumar and Chakraborty, Anirban}, booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)}, title={OCR-VQA: Visual Question Answering by Reading Text in Images}, year={2019}, volume={}, number={}, pages={947-952}, keywords={Optical character recognition software;Visualization;Task analysis;Knowledge discovery;Text analysis;Text recognition;Character recognition;Optical Character Recognition (OCR), Visual Question Answering (VQA), Document image analysis, textVQA}, doi={10.1109/ICDAR.2019.00156} }

@InProceedings{okvqa, author = {Kenneth Marino and Mohammad Rastegari and Ali Farhadi and Roozbeh Mottaghi}, title = {OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge}, booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2019}, }

@InProceedings{PlotQA, author = {Methani, Nitesh and Ganguly, Pritha and Khapra, Mitesh M. and Kumar, Pratyush}, title = {PlotQA: Reasoning over Scientific Plots}, booktitle = {The IEEE Winter Conference on Applications of Computer Vision (WACV)}, month = {March}, year = {2020} }

@inproceedings{RAVEN, title={RAVEN: A Dataset for Relational and Analogical Visual rEasoNing}, author={Zhang, Chi and Gao, Feng and Jia, Baoxiong and Zhu, Yixin and Zhu, Song-Chun}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2019} }

RenderedText: https://huggingface.co/datasets/wendlerc/RenderedText by @wendlerc

@inproceedings{Robut, title = "{R}obu{T}: A Systematic Study of Table {QA} Robustness Against Human-Annotated Adversarial Perturbations", author = "Zhao, Yilun and Zhao, Chen and Nan, Linyong and Qi, Zhenting and Zhang, Wenlin and Tang, Xiangru and Mi, Boyu and Radev, Dragomir", editor = "Rogers, Anna and Boyd-Graber, Jordan and Okazaki, Naoaki", booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.acl-long.334", doi = "10.18653/v1/2023.acl-long.334", pages = "6064--6081", }

@inproceedings{SQA, title = "Search-based Neural Structured Learning for Sequential Question Answering", author = "Iyyer, Mohit and Yih, Wen-tau and Chang, Ming-Wei", editor = "Barzilay, Regina and Kan, Min-Yen", booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = jul, year = "2017", address = "Vancouver, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P17-1167", doi = "10.18653/v1/P17-1167", pages = "1821--1831", }

@misc{WikiSQL, title={Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning}, author={Victor Zhong and Caiming Xiong and Richard Socher}, year={2017}, eprint={1709.00103}, archivePrefix={arXiv}, primaryClass={cs.CL} }

@inproceedings{WTQ, title = "Compositional Semantic Parsing on Semi-Structured Tables", author = "Pasupat, Panupong and Liang, Percy", editor = "Zong, Chengqing and Strube, Michael", booktitle = "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = jul, year = "2015", address = "Beijing, China", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P15-1142", doi = "10.3115/v1/P15-1142", pages = "1470--1480", }

@inproceedings{ScienceQA, author = {Lu, Pan and Mishra, Swaroop and Xia, Tanglin and Qiu, Liang and Chang, Kai-Wei and Zhu, Song-Chun and Tafjord, Oyvind and Clark, Peter and Kalyan, Ashwin}, booktitle = {Advances in Neural Information Processing Systems}, editor = {S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh}, pages = {2507--2521}, publisher = {Curran Associates, Inc.}, title = {Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering}, url = {https://proceedings.neurips.cc/paper_files/paper/2022/file/11332b6b6cf4485b84afadb1352d3a9a-Paper-Conference.pdf}, volume = {35}, year = {2022} }

@inproceedings{screen2words, author = {Wang, Bryan and Li, Gang and Zhou, Xin and Chen, Zhourong and Grossman, Tovi and Li, Yang}, title = {Screen2Words: Automatic Mobile UI Summarization with Multimodal Learning}, year = {2021}, isbn = {9781450386357}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3472749.3474765}, doi = {10.1145/3472749.3474765}, booktitle = {The 34th Annual ACM Symposium on User Interface Software and Technology}, pages = {498–510}, numpages = {13}, keywords = {Mobile UI summarization, dataset., deep learning, language-based UI, screen understanding}, location = {Virtual Event, USA}, series = {UIST '21} }

@inproceedings{SpotTheDiff, title = "Learning to Describe Differences Between Pairs of Similar Images", author = "Jhamtani, Harsh and others", editor = "Riloff, Ellen and Chiang, David and Hockenmaier, Julia and Tsujii, Jun{'}ichi", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", month = oct # "-" # nov, year = "2018", address = "Brussels, Belgium", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/D18-1436", doi = "10.18653/v1/D18-1436", pages = "4024--4034", }

@INPROCEEDINGS{STVQA, author={Biten, Ali Furkan and Tito, Rubèn and Mafla, Andrés and Gomez, Lluis and Rusiñol, Marçal and Jawahar, C.V. and Valveny, Ernest and Karatzas, Dimosthenis}, booktitle={2019 IEEE/CVF International Conference on Computer Vision (ICCV)}, title={Scene Text Visual Question Answering}, year={2019}, volume={}, number={}, pages={4290-4300}, keywords={Visualization;Task analysis;Knowledge discovery;Text recognition;Cognition;Computer vision;Semantics}, doi={10.1109/ICCV.2019.00439} }

@inproceedings{TabMWP, title={Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning}, author={Lu, Pan and Qiu, Liang and Chang, Kai-Wei and Wu, Ying Nian and Zhu, Song-Chun and Rajpurohit, Tanmay and Clark, Peter and Kalyan, Ashwin}, booktitle={International Conference on Learning Representations (ICLR)}, year={2023} }

@inproceedings{TallyQA, title={TallyQA: Answering Complex Counting Questions}, author={Acharya, Manoj and Kafle, Kushal and Kanan, Christopher}, booktitle={AAAI}, year={2019} }

@inproceedings{TAT-QA, title = "{TAT}-{QA}: A Question Answering Benchmark on a Hybrid of Tabular and Textual Content in Finance", author = "Zhu, Fengbin and Lei, Wenqiang and Huang, Youcheng and Wang, Chao and Zhang, Shuo and Lv, Jiancheng and Feng, Fuli and Chua, Tat-Seng", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.254", doi = "10.18653/v1/2021.acl-long.254", pages = "3277--3287" }

@misc{textcaps, title={TextCaps: a Dataset for Image Captioning with Reading Comprehension}, author={Oleksii Sidorov and Ronghang Hu and Marcus Rohrbach and Amanpreet Singh}, year={2020}, eprint={2003.12462}, archivePrefix={arXiv}, primaryClass={cs.CV} }

@inproceedings{textvqa, title={Towards VQA Models That Can Read}, author={Singh, Amanpreet and Natarjan, Vivek and Shah, Meet and Jiang, Yu and Chen, Xinlei and Parikh, Devi and Rohrbach, Marcus}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={8317-8326}, year={2019} }

@INPROCEEDINGS{TQA, author={Kembhavi, Aniruddha and Seo, Minjoon and Schwenk, Dustin and Choi, Jonghyun and Farhadi, Ali and Hajishirzi, Hannaneh}, booktitle={2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, title={Are You Smarter Than a Sixth Grader? Textbook Question Answering for Multimodal Machine Comprehension}, year={2017}, volume={}, number={}, pages={5376-5384}, keywords={Knowledge discovery;Visualization;Cognition;Training;Natural languages;Computer vision}, doi={10.1109/CVPR.2017.571} }

@inproceedings{VisText, title = {{VisText: A Benchmark for Semantically Rich Chart Captioning}}, author = {Benny J. Tang AND Angie Boggust AND Arvind Satyanarayan}, booktitle = {The Annual Meeting of the Association for Computational Linguistics (ACL)}, year = {2023}, url = {http://vis.csail.mit.edu/pubs/vistext} }

@InProceedings{Visual7w, title = {{Visual7W: Grounded Question Answering in Images}}, author = {Yuke Zhu and Oliver Groth and Michael Bernstein and Li Fei-Fei}, booktitle = {{IEEE Conference on Computer Vision and Pattern Recognition}}, year = 2016, }

@inproceedings{VisualMRC, author = {Ryota Tanaka and Kyosuke Nishida and Sen Yoshida}, title = {VisualMRC: Machine Reading Comprehension on Document Images}, booktitle = {AAAI}, year = {2021} }

@article{VQA-RAD, author = {Lau, Jason and Gayen, Soumya and Ben Abacha, Asma and Demner-Fushman, Dina}, year = {2018}, month = {11}, pages = {180251}, title = {A dataset of clinically generated visual questions and answers about radiology images}, volume = {5}, journal = {Scientific Data}, doi = {10.1038/sdata.2018.251} }

@misc{VQAv2, title={Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering}, author={Yash Goyal and Tejas Khot and Douglas Summers-Stay and Dhruv Batra and Devi Parikh}, year={2017}, eprint={1612.00837}, archivePrefix={arXiv}, primaryClass={cs.CV} }

@misc{VSR, title={Visual Spatial Reasoning}, author={Fangyu Liu and Guy Emerson and Nigel Collier}, year={2023}, eprint={2205.00363}, archivePrefix={arXiv}, primaryClass={cs.CL} }

@misc{WebSight, title={Unlocking the conversion of Web Screenshots into HTML Code with the WebSight Dataset}, author={Hugo Laurençon and Léo Tronchon and Victor Sanh}, year={2024}, eprint={2403.09029}, archivePrefix={arXiv}, primaryClass={cs.HC} }

Terms of Use

By using the dataset The Cauldron, you agree to comply with the original licenses of the sub-datasets it contains, as well as the dataset license (CC-BY-4.0). Additionally, if you use this dataset to train a Machine Learning model, you agree to disclose your use of the dataset when releasing the model or an ML application using the model.

Licensing Information

License CC-BY-4.0.