Datasets:

Languages:
English
ArXiv:
License:
File size: 10,052 Bytes
2535762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import csv
import os
import json 
import datasets

_CITATION = """\
"""

_DESCRIPTION = """\
Multidialog is the first large-sccale multimodal (i.e. audio, visual, and text) dialogue corpus, consisting of approximately 400 hours of audio-visual conversation strems between 6 pairs of conversation partners. 

It contina
"""

_HOMEPAGE = "https://multidialog.github.io/"

_LICENSE = "Apache License 2.0"

_BASE_DATA_URL = "https://huggingface.co/datasets/IVLLab/MultiDialog/resolve/main/"

_AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "{subset}/{subset}_chunks_{archive_id:04}.tar.gz"

_META_URL = _BASE_DATA_URL + "metadata/{subset}_metadata_{archive_id:04}.jsonl"


logger = datasets.utils.logging.get_logger(__name__)


class MultidialogConfig(datasets.BuilderConfig):
    """BuilderConfig for Multidialog."""

    def __init__(self, name, *args, **kwargs):
        """BuilderConfig for Multidialog
        """
        super().__init__(name=name, *args, **kwargs)
        self.subsets_to_download = (name,)


class Multidialog(datasets.GeneratorBasedBuilder):
    """
    """

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [MultidialogConfig(name=subset) for subset in ["train", "test_freq", "test_rare", "valid_freq", "valid_rare"]]

    DEFAULT_WRITER_BATCH_SIZE = 128

    def _info(self):
        features = datasets.Features(
            {
                "file_name": datasets.Value("string"),
                "conv_id": datasets.Value("string"),
                "utterance_id": datasets.Value("float32"),
                "audio": datasets.Audio(sampling_rate=16_000),
                "from": datasets.Value("string"),
                "value": datasets.Value("string"),
                "emotion": datasets.Value("string"),
                "original_full_path": datasets.Value("string"),  # relative path to full audio in original data dirs
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _read_n_archives(self, n_archives_path):
        with open(n_archives_path, encoding="utf-8") as f:
            return int(f.read().strip())

    def _split_generators(self, dl_manager):
        splits = ("train", "test_freq", "test_rare", "valid_freq", "valid_rare")

        n_archives = {
            "train" : [15, 4], 
            "test_freq": [1, 1], 
            "test_rare": [1, 1],
            "valid_freq": [1, 1], 
            "valid_rare": [1, 1], 
        }

        # 2. prepare sharded archives with audio files
        audio_archives_urls = {
            split: [
                    _AUDIO_ARCHIVE_URL.format(subset=split, archive_id=i)
                    for i in range(n_archives[split][0])
                ]
            for split in splits
        }
        audio_archives_paths = dl_manager.download(audio_archives_urls)
        # flatten archives paths from
        # {"train": {"xs": [path1, path2,], "s": [path3], "m": [path5, path5]}, "dev": {"dev": [path6,...]}, "test": {"test": [...]}}
        # to {"train": [path1, path2, path3, path4, path5], "dev": [path6, ...], "test": [...]}
        audio_archives_paths = _flatten_nested_dict(audio_archives_paths)
        local_audio_archives_paths = dl_manager.extract(audio_archives_paths) if not dl_manager.is_streaming \
            else None

        # 3. prepare sharded metadata csv files
        meta_urls = {
            split: [
                    _META_URL.format(subset=split, archiv_id=i)
                    for i in range(n_archives[split][1])
                ]
            for split in splits
        }
        meta_paths = dl_manager.download_and_extract(meta_urls)
        meta_paths = _flatten_nested_dict(meta_paths)

        if self.config.name == "test_freq":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "audio_archives_iterators": [
                            dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["test_freq"]
                        ],
                        "local_audio_archives_paths": local_audio_archives_paths[
                            "test_freq"] if local_audio_archives_paths else None,
                        "meta_paths": meta_paths["test_freq"]
                    },
                ),
            ]
        
        if self.config.name == "test_rare":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "audio_archives_iterators": [
                            dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["test_rare"]
                        ],
                        "local_audio_archives_paths": local_audio_archives_paths[
                            "test_rare"] if local_audio_archives_paths else None,
                        "meta_paths": meta_paths["test_rare"]
                    },
                ),
            ]    
            
        if self.config.name == "valid_freq":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "audio_archives_iterators": [
                            dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["valid_freq"]
                        ],
                        "local_audio_archives_paths": local_audio_archives_paths[
                            "valid_freq"] if local_audio_archives_paths else None,
                        "meta_paths": meta_paths["valid_freq"]
                    },
                ),
            ]    
            
        if self.config.name == "valid_rare":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "audio_archives_iterators": [
                            dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["valid_rare"]
                        ],
                        "local_audio_archives_paths": local_audio_archives_paths[
                            "valid_rare"] if local_audio_archives_paths else None,
                        "meta_paths": meta_paths["valid_rare"]
                    },
                ),
            ]   

        if self.config.name == "train":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "audio_archives_iterators": [
                            dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["train"]
                        ],
                        "local_audio_archives_paths": local_audio_archives_paths[
                            "train"] if local_audio_archives_paths else None,
                        "meta_paths": meta_paths["train"]
                    },
                ),
            ]

    def _generate_examples(self, audio_archives_iterators, local_audio_archives_paths, meta_paths):
        assert len(audio_archives_iterators) == len(meta_paths)
        if local_audio_archives_paths:
            assert len(audio_archives_iterators) == len(local_audio_archives_paths)

        for i, (meta_path, audio_archive_iterator) in enumerate(zip(meta_paths, audio_archives_iterators)):
            meta_dict = dict()
            with open(meta_path) as jsonl_file:
                for line in jsonl_file:
                    meta_dict[os.path.filename(line["audpath"])[:-4]] = line
                #     data = json.loads(line.strip())
                # meta_csv = csv.DictReader(csvfile)
                # for line in meta_csv:
                    

            for audio_path_in_archive, audio_file in audio_archive_iterator:
                # `audio_path_in_archive` is like "dev_chunks_0000/YOU1000000029_S0000095.wav"
                audio_filename = os.path.split(audio_path_in_archive)[1]
                audio_id = audio_filename.split(".wav")[0]
                audio_meta = meta_dict[audio_id]
                audio_meta["conv_id"] = audio_meta.pop("conv_id")
                audio_meta["utterance_id"] = audio_meta.pop("utterance_id")
                audio_meta["from"] = audio_meta.pop("from")
                audio_meta["value"] = audio_meta.pop("value")
                audio_meta["emotion"] = audio_meta.pop("emotion")
                audio_meta["original_full_path"] = audio_meta.pop("audpath")
                audio_meta["audio_id"] = audio_id

                path = os.path.join(local_audio_archives_paths[i], audio_path_in_archive) if local_audio_archives_paths \
                    else audio_path_in_archive

                yield audio_id, {
                    "audio": {"path": path , "bytes": audio_file.read()},
                    **{feature: value for feature, value in audio_meta.items() if feature in self.info.features}
                }


def _flatten_nested_dict(nested_dict):
    return {
        key: [inner_list_element for inner_list in value_to_lists.values() for inner_list_element in inner_list]
        for key, value_to_lists in nested_dict.items()
    }