File size: 4,519 Bytes
dcc0999
 
11062c2
 
 
8ebf26b
 
 
11062c2
 
 
 
 
 
 
 
 
 
 
 
 
 
aac3684
a6c98d3
aac3684
 
 
 
5678eb1
aac3684
 
 
 
 
 
 
 
 
 
 
 
b787f82
aac3684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b787f82
aac3684
 
 
7a63387
aac3684
 
7a63387
aac3684
bcea0d0
dd25cf4
 
 
 
 
 
 
 
 
7a63387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcea0d0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
---
license: cc0-1.0
task_categories:
- image-segmentation
- object-detection
task_ids:
- semantic-segmentation
- instance-segmentation
tags:
- automotive
- autonomous driving
- synthetic
- safe ai
- validation
- pedestrian detection
- 2d object-detection
- 3d object-detection
- semantic-segmentation
- instance-segmentation
pretty_name: VALERIE22
size_categories:
- 1K<n<10K
---
# VALERIE22 - A photorealistic, richly metadata annotated dataset of urban environments

## Dataset Description

- **Paper:** tba
- **Point of Contact:** [email protected]

### Dataset Summary

The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs.

### Supported Tasks and Leaderboards

- pedestrian detection
- 2d object-detection
- 3d object-detection
- semantic-segmentation
- instance-segmentation
- ai-validation

## Dataset Structure

- VALERIE22 
  - intel_results_sequence_0050
    - ground-truth
      - 2d-bounding-box_json
        - car-camera000-0000-{UUID}-0000.json
      - 3d-bounding-box_json
        - car-camera000-0000-{UUID}-0000.json
      - class-id_png
        - car-camera000-0000-{UUID}-0000.png
      - general-globally-per-frame-analysis_json
        - car-camera000-0000-{UUID}-0000.json
        - car-camera000-0000-{UUID}-0000.csv
      - semantic-group-segmentation_png
        - car-camera000-0000-{UUID}-0000.png
      - semantic-instance-segmentation_png
        - car-camera000-0000-{UUID}-0000.png
      - car-camera000-0000-{UUID}-0000
        - {Entity-ID}
    - metadata
      - car-camera000-0000-{UUID}-0000.json
    - sensor
      - camera
        - left
          - png
            - car-camera000-0000-{UUID}-0000.png
          - png_distorted
            - car-camera000-0000-{UUID}-0000.png
  - intel_results_sequence_0052
  - intel_results_sequence_0054
  - intel_results_sequence_0057
  - intel_results_sequence_0058
  - intel_results_sequence_0059
  - intel_results_sequence_0060
  - intel_results_sequence_0062    

### Data Splits

Train/Validation/Test splits are provided

### Licensing Information

Creative Commons Zero v1.0 Universal

### Citation Information
Relevant publications:

```
@misc{grau2023valerie22,
    title={VALERIE22 -- A photorealistic, richly metadata annotated dataset of urban environments},
    author={Oliver Grau and Korbinian Hagn},
    year={2023},
    eprint={2308.09632},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

@inproceedings{hagn2022increasing,
  title={Increasing pedestrian detection performance through weighting of detection impairing factors},
  author={Hagn, Korbinian and Grau, Oliver},
  booktitle={Proceedings of the 6th ACM Computer Science in Cars Symposium},
  pages={1--10},
  year={2022}
}

@inproceedings{hagn2022validation,
  title={Validation of Pedestrian Detectors by Classification of Visual Detection Impairing Factors},
  author={Hagn, Korbinian and Grau, Oliver},
  booktitle={European Conference on Computer Vision},
  pages={476--491},
  year={2022},
  organization={Springer}
}

@incollection{grau2022variational,
  title={A variational deep synthesis approach for perception validation},
  author={Grau, Oliver and Hagn, Korbinian and Syed Sha, Qutub},
  booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety},
  pages={359--381},
  year={2022},
  publisher={Springer International Publishing Cham}
}

@incollection{hagn2022optimized,
  title={Optimized data synthesis for DNN training and validation by sensor artifact simulation},
  author={Hagn, Korbinian and Grau, Oliver},
  booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety},
  pages={127--147},
  year={2022},
  publisher={Springer International Publishing Cham}
}

@inproceedings{syed2020dnn,
  title={DNN analysis through synthetic data variation},
  author={Syed Sha, Qutub and Grau, Oliver and Hagn, Korbinian},
  booktitle={Proceedings of the 4th ACM Computer Science in Cars Symposium},
  pages={1--10},
  year={2020}
}
```