File size: 4,519 Bytes
dcc0999 11062c2 8ebf26b 11062c2 aac3684 a6c98d3 aac3684 5678eb1 aac3684 b787f82 aac3684 b787f82 aac3684 7a63387 aac3684 7a63387 aac3684 bcea0d0 dd25cf4 7a63387 bcea0d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
license: cc0-1.0
task_categories:
- image-segmentation
- object-detection
task_ids:
- semantic-segmentation
- instance-segmentation
tags:
- automotive
- autonomous driving
- synthetic
- safe ai
- validation
- pedestrian detection
- 2d object-detection
- 3d object-detection
- semantic-segmentation
- instance-segmentation
pretty_name: VALERIE22
size_categories:
- 1K<n<10K
---
# VALERIE22 - A photorealistic, richly metadata annotated dataset of urban environments
## Dataset Description
- **Paper:** tba
- **Point of Contact:** [email protected]
### Dataset Summary
The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs.
### Supported Tasks and Leaderboards
- pedestrian detection
- 2d object-detection
- 3d object-detection
- semantic-segmentation
- instance-segmentation
- ai-validation
## Dataset Structure
- VALERIE22
- intel_results_sequence_0050
- ground-truth
- 2d-bounding-box_json
- car-camera000-0000-{UUID}-0000.json
- 3d-bounding-box_json
- car-camera000-0000-{UUID}-0000.json
- class-id_png
- car-camera000-0000-{UUID}-0000.png
- general-globally-per-frame-analysis_json
- car-camera000-0000-{UUID}-0000.json
- car-camera000-0000-{UUID}-0000.csv
- semantic-group-segmentation_png
- car-camera000-0000-{UUID}-0000.png
- semantic-instance-segmentation_png
- car-camera000-0000-{UUID}-0000.png
- car-camera000-0000-{UUID}-0000
- {Entity-ID}
- metadata
- car-camera000-0000-{UUID}-0000.json
- sensor
- camera
- left
- png
- car-camera000-0000-{UUID}-0000.png
- png_distorted
- car-camera000-0000-{UUID}-0000.png
- intel_results_sequence_0052
- intel_results_sequence_0054
- intel_results_sequence_0057
- intel_results_sequence_0058
- intel_results_sequence_0059
- intel_results_sequence_0060
- intel_results_sequence_0062
### Data Splits
Train/Validation/Test splits are provided
### Licensing Information
Creative Commons Zero v1.0 Universal
### Citation Information
Relevant publications:
```
@misc{grau2023valerie22,
title={VALERIE22 -- A photorealistic, richly metadata annotated dataset of urban environments},
author={Oliver Grau and Korbinian Hagn},
year={2023},
eprint={2308.09632},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@inproceedings{hagn2022increasing,
title={Increasing pedestrian detection performance through weighting of detection impairing factors},
author={Hagn, Korbinian and Grau, Oliver},
booktitle={Proceedings of the 6th ACM Computer Science in Cars Symposium},
pages={1--10},
year={2022}
}
@inproceedings{hagn2022validation,
title={Validation of Pedestrian Detectors by Classification of Visual Detection Impairing Factors},
author={Hagn, Korbinian and Grau, Oliver},
booktitle={European Conference on Computer Vision},
pages={476--491},
year={2022},
organization={Springer}
}
@incollection{grau2022variational,
title={A variational deep synthesis approach for perception validation},
author={Grau, Oliver and Hagn, Korbinian and Syed Sha, Qutub},
booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety},
pages={359--381},
year={2022},
publisher={Springer International Publishing Cham}
}
@incollection{hagn2022optimized,
title={Optimized data synthesis for DNN training and validation by sensor artifact simulation},
author={Hagn, Korbinian and Grau, Oliver},
booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety},
pages={127--147},
year={2022},
publisher={Springer International Publishing Cham}
}
@inproceedings{syed2020dnn,
title={DNN analysis through synthetic data variation},
author={Syed Sha, Qutub and Grau, Oliver and Hagn, Korbinian},
booktitle={Proceedings of the 4th ACM Computer Science in Cars Symposium},
pages={1--10},
year={2020}
}
``` |