url
stringlengths 61
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 75
75
| comments_url
stringlengths 70
70
| events_url
stringlengths 68
68
| html_url
stringlengths 49
51
| id
int64 1.03B
1.84B
| node_id
stringlengths 18
19
| number
int64 3.11k
6.12k
| title
stringlengths 1
290
| user
dict | labels
list | state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
list | milestone
dict | comments
sequence | created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 3
values | active_lock_reason
null | body
stringlengths 2
36.2k
โ | reactions
dict | timeline_url
stringlengths 70
70
| performed_via_github_app
null | state_reason
stringclasses 3
values | draft
bool 2
classes | pull_request
dict | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/5704 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5704/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5704/comments | https://api.github.com/repos/huggingface/datasets/issues/5704/events | https://github.com/huggingface/datasets/pull/5704 | 1,653,471,356 | PR_kwDODunzps5NkEvJ | 5,704 | 5537 speedup load | {
"login": "semajyllek",
"id": 35013374,
"node_id": "MDQ6VXNlcjM1MDEzMzc0",
"avatar_url": "https://avatars.githubusercontent.com/u/35013374?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/semajyllek",
"html_url": "https://github.com/semajyllek",
"followers_url": "https://api.github.com/users/semajyllek/followers",
"following_url": "https://api.github.com/users/semajyllek/following{/other_user}",
"gists_url": "https://api.github.com/users/semajyllek/gists{/gist_id}",
"starred_url": "https://api.github.com/users/semajyllek/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/semajyllek/subscriptions",
"organizations_url": "https://api.github.com/users/semajyllek/orgs",
"repos_url": "https://api.github.com/users/semajyllek/repos",
"events_url": "https://api.github.com/users/semajyllek/events{/privacy}",
"received_events_url": "https://api.github.com/users/semajyllek/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Awesome ! cc @mariosasko :)",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5704). All of your documentation changes will be reflected on that endpoint.",
"Hi, thanks for working on this!\r\n\r\nYour solution only works if the `root` is `\"\"`, e.g., this would yield an incorrect result:\r\n```python\r\ndset = load_dataset(\"user/hf-dataset-repo\", data_dir=\"path/to/data_dir\")\r\n```\r\n\r\nAlso, the `HfFileSystem` implementation in `datasets` will be replaced with the more powerful [one](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/hf_file_system.py) from `huggingface_hub` soon (I plan to open a PR that makes `find` much faster in the coming days). \r\n\r\nSo I don't think we want to merge this PR in the current state, but thanks again for the effort.\r\n\r\n (I'll comment on the original issue to propose a cleaner solution)",
"Ooof. Sorry, I should have checked that more thoroughly then! I would say we could just add that check and only use my approach if the root is \"\", which would still be faster in many cases, but it sounds like you have a better solution on the way. Thanks for the feedback Mario."
] | 2023-04-04T08:58:14 | 2023-04-07T16:10:55 | null | NONE | null | I reimplemented fsspec.spec.glob() in `hffilesystem.py` as `_glob`, used it in `_resolve_single_pattern_in_dataset_repository` only, and saw a 20% speedup in times to load the config, on average.
That's not much when usually this step takes only 2-3 seconds for most datasets, but in this particular case, `bigcode/the-stack-dedup` , the loading time to get the config (not download the entire 6tb dataset, of course), went from ~170 secs to ~20 secs.
What makes this work is this code in `_glob`:
```
if self.dir_cache is not None:
allpaths = self.dir_cache
else:
allpaths = self.find(root, maxdepth=depth, withdirs=True, detail=True, **kwargs)
```
I also had to `import glob.has_magic( )` for `_glob()` (confusing, I know).
I hope there is no issue with copying most of the code from `fsspec.spec.glob`, as it is a BSD 3-Clause License,
and I left a comment about this in the docstring of` _glob()`, that we may want to delete.
As mentioned, I evaluated the speedup across a random selection of about 1000 datasets (not all 27k+), and verified that old_config.eq(new_method_config) with the build in method, but deleted this test and related code changes on the subsequent commit. It's in the commit history if anyone wants to see it. (Note this does not include the outlier of `bigcode/the-stack-dedup`
| | old_time | new _time | diff | pct_diff |
| -- | -- | -- | -- | -- |
| mean | 3.340 | 2.642 | 0.698 | 18.404 |
| min | 2.024 | 1.976 | -0.840 | -37.634 |
| max | 66.582 | 41.517 | 30.927 | 85.538 | | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5704/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5704/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5704",
"html_url": "https://github.com/huggingface/datasets/pull/5704",
"diff_url": "https://github.com/huggingface/datasets/pull/5704.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5704.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5703 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5703/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5703/comments | https://api.github.com/repos/huggingface/datasets/issues/5703/events | https://github.com/huggingface/datasets/pull/5703 | 1,653,158,955 | PR_kwDODunzps5NjCCV | 5,703 | [WIP][Test, Please ignore] Investigate performance impact of using multiprocessing only | {
"login": "hvaara",
"id": 1535968,
"node_id": "MDQ6VXNlcjE1MzU5Njg=",
"avatar_url": "https://avatars.githubusercontent.com/u/1535968?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/hvaara",
"html_url": "https://github.com/hvaara",
"followers_url": "https://api.github.com/users/hvaara/followers",
"following_url": "https://api.github.com/users/hvaara/following{/other_user}",
"gists_url": "https://api.github.com/users/hvaara/gists{/gist_id}",
"starred_url": "https://api.github.com/users/hvaara/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hvaara/subscriptions",
"organizations_url": "https://api.github.com/users/hvaara/orgs",
"repos_url": "https://api.github.com/users/hvaara/repos",
"events_url": "https://api.github.com/users/hvaara/events{/privacy}",
"received_events_url": "https://api.github.com/users/hvaara/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"`multiprocess` uses `dill` instead of `pickle` for pickling shared objects and, as such, can pickle more types than `multiprocessing`. And I don't think this is something we want to change :).",
"That makes sense to me, and I don't think you should merge this change. I was only curious about the performance impact. I saw the benchmarks that was produced in other PRs, and wanted to get a better understanding of it. I created this PR to see if it got automatically added here.\r\n\r\nIs there a way I can generate those benchmarks myself?",
"You can find some speed comparisons between dill and pickle on SO if you google \"dill vs pickle speed\".\r\n\r\nAnd for the benchmarks, you can generate them locally with DVC running this code from the repo root: https://github.com/huggingface/datasets/blob/0803a006db1c395ac715662cc6079651f77c11ea/.github/workflows/benchmarks.yaml#L23-L47.",
"Thanks for the help @mariosasko!"
] | 2023-04-04T04:37:49 | 2023-04-20T03:17:37 | 2023-04-20T03:17:32 | NONE | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5703/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5703/timeline | null | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5703",
"html_url": "https://github.com/huggingface/datasets/pull/5703",
"diff_url": "https://github.com/huggingface/datasets/pull/5703.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5703.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5702 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5702/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5702/comments | https://api.github.com/repos/huggingface/datasets/issues/5702/events | https://github.com/huggingface/datasets/issues/5702 | 1,653,104,720 | I_kwDODunzps5iiGBQ | 5,702 | Is it possible or how to define a `datasets.Sequence` that could potentially be either a dict, a str, or None? | {
"login": "gitforziio",
"id": 10508116,
"node_id": "MDQ6VXNlcjEwNTA4MTE2",
"avatar_url": "https://avatars.githubusercontent.com/u/10508116?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gitforziio",
"html_url": "https://github.com/gitforziio",
"followers_url": "https://api.github.com/users/gitforziio/followers",
"following_url": "https://api.github.com/users/gitforziio/following{/other_user}",
"gists_url": "https://api.github.com/users/gitforziio/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gitforziio/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gitforziio/subscriptions",
"organizations_url": "https://api.github.com/users/gitforziio/orgs",
"repos_url": "https://api.github.com/users/gitforziio/repos",
"events_url": "https://api.github.com/users/gitforziio/events{/privacy}",
"received_events_url": "https://api.github.com/users/gitforziio/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | null | [] | null | [
"Hi ! `datasets` uses Apache Arrow as backend to store the data, and it requires each column to have a fixed type. Therefore a column can't have a mix of dicts/lists/strings.\r\n\r\nThough it's possible to have one (nullable) field for each type:\r\n```python\r\nfeatures = Features({\r\n \"text_alone\": Value(\"string\"),\r\n \"text_with_idxes\": {\r\n \"text\": Value(\"string\"),\r\n \"idxes\": Value(\"int64\")\r\n }\r\n})\r\n```\r\n\r\nbut you'd have to reformat your data fiels or define a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) to apply the appropriate parsing.\r\n\r\nAlternatively we could explore supporting the Arrow [Union](https://arrow.apache.org/docs/python/generated/pyarrow.UnionType.html) type which could solve this issue, but I don't know if it's well supported in python and with the rest of the ecosystem like Parquet",
"@lhoestq Thank you! I further wonder if it's possible to use list subscripts as keys of a feature? Like\r\n```python\r\nfeatures = Features({\r\n 0: Value(\"string\"),\r\n 1: {\r\n \"text\": Value(\"string\"),\r\n \"idxes\": [Value(\"int64\")]\r\n },\r\n 2: Value(\"string\"),\r\n # ...\r\n})\r\n```",
"Column names need to be strings, so you could use \"1\", \"2\", etc. or give appropriate column names",
"@lhoestq Got it. Thank you!"
] | 2023-04-04T03:20:43 | 2023-04-05T14:15:18 | 2023-04-05T14:15:17 | NONE | null | ### Feature request
Hello! Apologies if my question sounds naive:
I was wondering if itโs possible, or how one would go about defining a 'datasets.Sequence' element in datasets.Features that could potentially be either a dict, a str, or None?
Specifically, Iโd like to define a feature for a list that contains 18 elements, each of which has been pre-defined as either a `dict or None` or `str or None` - as demonstrated in the slightly misaligned data provided below:
```json
[
[
{"text":"่ๅฆไบบ","idxes":[0,1,2]},null,{"text":"่ทช","idxes":[3]},null,null,null,null,{"text":"ๅจ้ฃๅ้","idxes":[4,5,6,7]},null,null,null,null,null,null,null,null,null,null],
[
{"text":"้ฃไบๆฐด","idxes":[13,14,15]},null,{"text":"่","idxes":[11]},null,null,null,null,null,{"text":"ๅจ้ฃๅ้","idxes":[4,5,6,7]},null,{"text":"ๅบ","idxes":[12]},null,null,null,null,null,null,null],
[
{"text":"ๆฐด","idxes":[38]},
null,
{"text":"่","idxes":[40]},
"ๅ", // note this is just a standalone string
null,null,null,{"text":"ๅ้","idxes":[35,36]},null,null,null,null,null,null,null,null,null,null]]
```
### Motivation
I'm currently working with a dataset of the following structure and I couldn't find a solution in the [documentation](https://huggingface.co/docs/datasets/v2.11.0/en/package_reference/main_classes#datasets.Features).
```json
{"qid":"3-train-1058","context":"ๆกๆกๅฎณๆไบใไป็็ฑณๅฐ้่ตฐๅฐ็ฐๅไธ๏ผไป้ฅๆ็ไปๅฎถ้ฃๅนข่ๆฟๅญ้็็ฏๅ
๏ผ็ฅ้ๆฏไบฒๆฒกๆ่ฎฉไปๅๅฎถ็ๆๆ๏ผๅพไผคๆ๏ผๆ็นๆณๅญใไฝๆฒกๅญ๏ผ่ฝฌ่บซๆ้ฟๆๅฎถ่ตฐๅปใ","corefs":[[{"text":"ๆกๆก","idxes":[0,1]},{"text":"ไป","idxes":[17]}]],"non_corefs":[],"outputs":[[{"text":"ไป","idxes":[17]},null,{"text":"่ตฐ","idxes":[11]},null,null,null,null,null,{"text":"ไป็็ฑณๅฐ้","idxes":[6,7,8,9,10]},{"text":"ๅฐ็ฐๅไธ","idxes":[12,13,14,15]},null,null,null,null,null,null,null,null],[{"text":"ไป","idxes":[17]},null,{"text":"่ตฐ","idxes":[66]},null,null,null,null,null,null,null,{"text":"่ฝฌ่บซๆ้ฟๆๅฎถๅป","idxes":[60,61,62,63,64,65,67]},null,null,null,null,null,null,null],[{"text":"็ฏๅ
","idxes":[30,31]},null,null,null,null,null,null,{"text":"่ๆฟๅญ้","idxes":[25,26,27,28]},null,null,null,null,null,null,null,null,null,null],[{"text":"ไป","idxes":[17]},{"text":"ไปๅฎถ้ฃๅนข่ๆฟๅญ","idxes":[21,22,23,24,25,26,27]},null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,"่ฟ"],[{"text":"ไป","idxes":[17]},{"text":"้ฟๆๅฎถ","idxes":[63,64,65]},null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,"ๅ่ฟ"]]}
```
### Your contribution
I'm going to provide the dataset at https://huggingface.co/datasets/2030NLP/SpaCE2022 . | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5702/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5702/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5701 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5701/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5701/comments | https://api.github.com/repos/huggingface/datasets/issues/5701/events | https://github.com/huggingface/datasets/pull/5701 | 1,652,931,399 | PR_kwDODunzps5NiSCy | 5,701 | Add Dataset.from_spark | {
"login": "maddiedawson",
"id": 106995444,
"node_id": "U_kgDOBmCe9A",
"avatar_url": "https://avatars.githubusercontent.com/u/106995444?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/maddiedawson",
"html_url": "https://github.com/maddiedawson",
"followers_url": "https://api.github.com/users/maddiedawson/followers",
"following_url": "https://api.github.com/users/maddiedawson/following{/other_user}",
"gists_url": "https://api.github.com/users/maddiedawson/gists{/gist_id}",
"starred_url": "https://api.github.com/users/maddiedawson/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/maddiedawson/subscriptions",
"organizations_url": "https://api.github.com/users/maddiedawson/orgs",
"repos_url": "https://api.github.com/users/maddiedawson/repos",
"events_url": "https://api.github.com/users/maddiedawson/events{/privacy}",
"received_events_url": "https://api.github.com/users/maddiedawson/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"@mariosasko Would you or another HF datasets maintainer be able to review this, please?",
"Amazing ! Great job @maddiedawson \r\n\r\nDo you know if it's possible to also support writing to Parquet using the HF ParquetWriter if `file_format=\"parquet\"` ?\r\n\r\nParquet is often used when people want to stream the data to train models - which is suitable for big datasets. On the other hand Arrow is generally used for local memory mapping with random access.\r\n\r\n> Please note there was a previous PR adding this functionality\r\n\r\nAm I right to say that it uses the spark workers to prepare the Arrow files ? If so this should make the data preparation fast and won't fill up the executor's memory as in the previously proposed PR",
"Thanks for taking a look! Unlike the previous PR's approach, this implementation takes advantage of Spark mapping to distribute file writing over multiple tasks. (Also it doesn't load the entire dataset into memory :) )\r\n\r\nSupporting Parquet here sgtm; I'll modify the PR.\r\n\r\nI also updated the PR description with a common Spark-HF use case that we want to improve.",
"Hey @albertvillanova @lhoestq , would one of you be able to re-review please? Thank you!",
"@lhoestq this is ready for another pass! Thanks so much ๐ ",
"Friendly ping @lhoestq , also cc @polinaeterna who may be able to help take a look?",
"Merging `main` into this branch should fix the CI",
"Just rebased @lhoestq ",
"Thanks @lhoestq ! Is there a way for me to trigger the github workflow myself to triage the test failure? I'm not able to repro the test failures locally.",
"There were two test issues in the workflow that I wasn't able to reproduce locally:\r\n\r\n- Python 3.7: createDataFrame fails due to a pickling error. I modified the tests to instead write and read from json files\r\n- Python 3.10: A worker crashes for unknown reasons. I modified the spark setup to explicitly specify local mode in case it was trying to do something else; let's see if that fixes the issue",
"Also one more question @lhoestq when is the next datasets release? We're hoping this can make it in",
"I just re-ran the CI.\r\nI think we can do a release right after this PR is merged ;)",
"Thanks all! @lhoestq could we re-run CI again please? I think we have to disable this feature on python 3.7 due to the pickling error. The other failure was due to https://issues.apache.org/jira/browse/SPARK-30952 so I rewrote the df processing",
"Thanks @lhoestq , this is ready for another CI run. I pinned the pyspark version to see if that fixes the pickling issue",
"The remaining CI issues have been addressed! They were\r\n\r\n- dill=0.3.1.1 is incompatible with cloudpickle, used by Spark. The min-dependency tests use this dill version, and those were failing. I added a skip-test annotation to skip Spark tests when using this dill version. This shouldn't be a production issue since if users are using that version of dill, they won't really be able to do anything with Spark anyway.\r\n- One of the Spark APIs used in this feature (mapInArrow) is incompatible with Windows. I filed a Spark ticket for the team to investigate. For the tests, I added another annotation to skip Spark tests on Windows. In the next PR (adding streaming mode), we should be able to support Windows since that won't use mapInArrow.\r\n\r\nI ran the CI on my forked branch: https://github.com/maddiedawson/datasets/pull/2 Everything passes except one instance of tests/test_metric_common.py::LocalMetricTest::test_load_metric_frugalscore; it looks like a flake.\r\n\r\n@lhoestq granted that the CI passes here, is this ok to merge and release? We'd like to put out a blog post tomorrow to broadcast this to Spark users!",
"Thanks @lhoestq ! Could you help take a look at the error please? Seems unrelated...\r\n\r\nFAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_map_multiprocessing_on_disk - NotADirectoryError: [WinError 267] The directory name is invalid: 'C:\\\\Users\\\\RUNNER~1\\\\AppData\\\\Local\\\\Temp\\\\tmptfnrdj4x\\\\cache-5c5687cf5629c97a_00000_of_00002.arrow'\r\n===== 1 failed, 2152 passed, 23 skipped, 20 warnings in 461.68s (0:07:41) =====",
"The blog is live btw! https://www.databricks.com/blog/contributing-spark-loader-for-hugging-face-datasets Hopefully there can be a release today?",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012686 / 0.011353 (0.001333) | 0.006051 / 0.011008 (-0.004957) | 0.123057 / 0.038508 (0.084549) | 0.033238 / 0.023109 (0.010128) | 0.388207 / 0.275898 (0.112309) | 0.393972 / 0.323480 (0.070492) | 0.006645 / 0.007986 (-0.001340) | 0.006715 / 0.004328 (0.002386) | 0.098348 / 0.004250 (0.094097) | 0.041410 / 0.037052 (0.004358) | 0.380123 / 0.258489 (0.121634) | 0.427982 / 0.293841 (0.134141) | 0.052194 / 0.128546 (-0.076352) | 0.018775 / 0.075646 (-0.056871) | 0.399063 / 0.419271 (-0.020209) | 0.061019 / 0.043533 (0.017487) | 0.370943 / 0.255139 (0.115804) | 0.398326 / 0.283200 (0.115127) | 0.136893 / 0.141683 (-0.004790) | 1.777431 / 1.452155 (0.325276) | 1.844354 / 1.492716 (0.351638) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267296 / 0.018006 (0.249289) | 0.565133 / 0.000490 (0.564643) | 0.005811 / 0.000200 (0.005611) | 0.000122 / 0.000054 (0.000068) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027009 / 0.037411 (-0.010402) | 0.125907 / 0.014526 (0.111381) | 0.122111 / 0.176557 (-0.054445) | 0.189023 / 0.737135 (-0.548112) | 0.140510 / 0.296338 (-0.155829) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.589269 / 0.215209 (0.374060) | 6.038038 / 2.077655 (3.960384) | 2.394681 / 1.504120 (0.890561) | 2.099268 / 1.541195 (0.558073) | 2.105146 / 1.468490 (0.636656) | 1.216304 / 4.584777 (-3.368473) | 5.823110 / 3.745712 (2.077397) | 4.999323 / 5.269862 (-0.270539) | 2.781554 / 4.565676 (-1.784122) | 0.148370 / 0.424275 (-0.275905) | 0.015163 / 0.007607 (0.007556) | 0.775153 / 0.226044 (0.549109) | 7.425314 / 2.268929 (5.156385) | 3.320254 / 55.444624 (-52.124370) | 2.718595 / 6.876477 (-4.157881) | 2.696215 / 2.142072 (0.554142) | 1.452249 / 4.805227 (-3.352978) | 0.281355 / 6.500664 (-6.219309) | 0.088146 / 0.075469 (0.012677) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.495718 / 1.841788 (-0.346070) | 17.498714 / 8.074308 (9.424405) | 20.109705 / 10.191392 (9.918313) | 0.233053 / 0.680424 (-0.447371) | 0.028336 / 0.534201 (-0.505865) | 0.538146 / 0.579283 (-0.041137) | 0.642106 / 0.434364 (0.207742) | 0.597214 / 0.540337 (0.056876) | 0.732219 / 1.386936 (-0.654717) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008153 / 0.011353 (-0.003200) | 0.005605 / 0.011008 (-0.005403) | 0.096159 / 0.038508 (0.057651) | 0.034102 / 0.023109 (0.010992) | 0.428091 / 0.275898 (0.152193) | 0.476535 / 0.323480 (0.153056) | 0.006278 / 0.007986 (-0.001708) | 0.006752 / 0.004328 (0.002424) | 0.100553 / 0.004250 (0.096302) | 0.045546 / 0.037052 (0.008494) | 0.463236 / 0.258489 (0.204747) | 0.502512 / 0.293841 (0.208671) | 0.051014 / 0.128546 (-0.077533) | 0.018499 / 0.075646 (-0.057148) | 0.127587 / 0.419271 (-0.291685) | 0.059254 / 0.043533 (0.015722) | 0.432248 / 0.255139 (0.177109) | 0.462002 / 0.283200 (0.178802) | 0.124918 / 0.141683 (-0.016765) | 1.689740 / 1.452155 (0.237585) | 1.871546 / 1.492716 (0.378830) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274844 / 0.018006 (0.256838) | 0.570522 / 0.000490 (0.570032) | 0.004008 / 0.000200 (0.003808) | 0.000146 / 0.000054 (0.000091) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025323 / 0.037411 (-0.012088) | 0.116323 / 0.014526 (0.101797) | 0.129434 / 0.176557 (-0.047122) | 0.187069 / 0.737135 (-0.550067) | 0.134459 / 0.296338 (-0.161880) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.633551 / 0.215209 (0.418341) | 6.290078 / 2.077655 (4.212423) | 2.692071 / 1.504120 (1.187951) | 2.354344 / 1.541195 (0.813149) | 2.409260 / 1.468490 (0.940770) | 1.270515 / 4.584777 (-3.314261) | 5.552982 / 3.745712 (1.807270) | 3.041417 / 5.269862 (-2.228444) | 1.920634 / 4.565676 (-2.645043) | 0.142500 / 0.424275 (-0.281775) | 0.014378 / 0.007607 (0.006770) | 0.786444 / 0.226044 (0.560399) | 7.711558 / 2.268929 (5.442630) | 3.439688 / 55.444624 (-52.004936) | 2.742314 / 6.876477 (-4.134163) | 2.800531 / 2.142072 (0.658458) | 1.405843 / 4.805227 (-3.399385) | 0.245322 / 6.500664 (-6.255342) | 0.076662 / 0.075469 (0.001193) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.592961 / 1.841788 (-0.248827) | 18.165647 / 8.074308 (10.091339) | 20.011433 / 10.191392 (9.820041) | 0.240558 / 0.680424 (-0.439866) | 0.026045 / 0.534201 (-0.508156) | 0.529610 / 0.579283 (-0.049674) | 0.652494 / 0.434364 (0.218130) | 0.612284 / 0.540337 (0.071947) | 0.733180 / 1.386936 (-0.653756) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ea251c726c73bd076a1bef7e39e2ac4e97c8d166 \"CML watermark\")\n",
"python 3.9.2\r\nGot an error _pickle.PicklingError use Dataset.from_spark.\r\n\r\nDid the dataset import load data from spark dataframe using multi-node Spark cluster\r\ndf = spark.read.parquet(args.input_data).repartition(50)\r\nds = Dataset.from_spark(df, keep_in_memory=True,\r\n cache_dir=\"/pnc-data/data/nuplan/t5_spark/cache_data\")\r\nds.save_to_disk(args.output_data)\r\n\r\nError : \r\n_pickle.PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforma\r\ntion. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.\r\n23/06/16 21:17:20 WARN ExecutorPodsWatchSnapshotSource: Kubernetes client has been closed (this is expected if the application is shutting down.)\r\n",
"Hi @yanzia12138 ! Could you open a new issue please and share the full stack trace ? This will help to know what happened exactly"
] | 2023-04-03T23:51:29 | 2023-06-16T16:39:32 | 2023-04-26T15:43:39 | CONTRIBUTOR | null | Adds static method Dataset.from_spark to create datasets from Spark DataFrames.
This approach alleviates users of the need to materialize their dataframe---a common use case is that the user loads their dataset into a dataframe, uses Spark to apply some transformation to some of the columns, and then wants to train on the dataset.
Related issue: https://github.com/huggingface/datasets/issues/5678 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5701/reactions",
"total_count": 6,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 4,
"confused": 0,
"heart": 2,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5701/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5701",
"html_url": "https://github.com/huggingface/datasets/pull/5701",
"diff_url": "https://github.com/huggingface/datasets/pull/5701.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5701.patch",
"merged_at": "2023-04-26T15:43:39"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5700 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5700/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5700/comments | https://api.github.com/repos/huggingface/datasets/issues/5700/events | https://github.com/huggingface/datasets/pull/5700 | 1,652,527,530 | PR_kwDODunzps5Ng6g_ | 5,700 | fix: fix wrong modification of the 'cache_file_name' -related parametโฆ | {
"login": "FrancoisNoyez",
"id": 47528215,
"node_id": "MDQ6VXNlcjQ3NTI4MjE1",
"avatar_url": "https://avatars.githubusercontent.com/u/47528215?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/FrancoisNoyez",
"html_url": "https://github.com/FrancoisNoyez",
"followers_url": "https://api.github.com/users/FrancoisNoyez/followers",
"following_url": "https://api.github.com/users/FrancoisNoyez/following{/other_user}",
"gists_url": "https://api.github.com/users/FrancoisNoyez/gists{/gist_id}",
"starred_url": "https://api.github.com/users/FrancoisNoyez/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/FrancoisNoyez/subscriptions",
"organizations_url": "https://api.github.com/users/FrancoisNoyez/orgs",
"repos_url": "https://api.github.com/users/FrancoisNoyez/repos",
"events_url": "https://api.github.com/users/FrancoisNoyez/events{/privacy}",
"received_events_url": "https://api.github.com/users/FrancoisNoyez/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Have you tried to set the cache file names if `keep_in_memory`is True ?\r\n\r\n```diff\r\n- if self.cache_files:\r\n+ if self.cache_files and not keep_in_memory:\r\n```\r\n\r\nThis way it doesn't change the indice cache arguments and leave them as `None`",
"@lhoestq \r\nRegarding what you suggest:\r\nThe thing is, if cached files already exist and do correspond to the split that we are currently trying to perform, then it would be a shame not to use them, would it not? So I don't think that we should necessarily bypass this step in the method (corresponding to the reading of already existing data), if 'keep_in_memory' = True. For me, 'keep_in_memory' = True is supposed to mean \"don't cache the output of this method\", but it should say nothing regarding what to do with potentially already existing cached data, should it?\r\nBesides, even if we do what you suggest, and do only that (so, not the modifs that I suggested), then, assuming that 'keep_in_memory' = False and that there exist cached files, if the following check on the existence of cached files with specific name fails, we will still have ended up modifying an input value which will be then used in the remaining of the method, potentially altering the behavior that the user intended the method's call to have. Basically, the issue with what you suggest is that we can't guaranty that we won't continue with the remaining of the method even if this condition is met. Because of that, in my opinion, the best way to not have to worry about potential, unwanted side effects in the rest of the code is to not modify those variables in place, and so, here, to use other variables.\r\nSo, I'm sorry, but for those two reasons, I don't think that what you are suggesting addresses the problems which are described in the opened issue.",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5700). All of your documentation changes will be reflected on that endpoint.",
"Makes sense ! Therefore removing the ValueError messages sounds good to me, thanks for detailing.\r\n\r\nThen I think it's fine to keep using the same variables for the cache file names is enough instead of defining new ones - it doesn't alter the behavior of the function. Otherwise it would feel a bit confusing to have similar variables with slightly modified names just for that",
"Ok for the removing the ValueError exceptions, thanks.\r\n\r\nThat said, it seems to me like we should still find a way not to modify the values input by the user, insofar as they can be used elsewhere down the line in the program. Sure, here, by removing the raising of those ValueError exceptions, we have fixed one use cases were allowing this modification actually caused an issue, but maybe there are other use cases where this would also caused an issue? Also, maybe in the future we will add other functionalities which will depend on the values of those input parameters, with then new risks of such an issue occurring?\r\nThat's why, in order not to have to worry about that, and in order to make the code a bit more future -proof, I suggest that make sure those input values are not modified.\r\n\r\nOne way that I did this is to create different but similar looking variable names. If you find this confusing, we can always add a comment.\r\nAnother way would be to not store the result of the conditional definition of the values (the '\\_cache_file_name = (... if condition else ...)' in my proposition of code), and to use it every time we need. But since we use those new variables at least twice, that creates code redundancy, which is not great either.\r\nFinally, a third way that I can imagine would be to put all this logic into its own method, which would then encapsulate it, and protect the remaining of the 'train_test_split' code from all unintended side effect that this logic can currently cause. This one is probably best. Also, maybe it could be used to remove some code redundancy elsewhere in the definition of the Dataset class? I have not checked if such a code redundancy exists.",
"We're already replacing the user's input by default values automatically in other methods, it's fine to do it here as well and actually fits the library's style.\r\n\r\nNote that the case where it would reload the cache even if `keep_in_memory=True` is not implemented though, but it should be easy to add in `_select_with_indices_mapping`:\r\n- add keep_in_memory in `_new_dataset_with_indices` that uses InMemoryTable.from_file\r\n- inside `_select_with_indices_mapping` return the dataset from `_new_dataset_with_indices` if:\r\n - `keep_in_memory=True`\r\n - and `indices_cache_file_name` is not None and exists \r\n - and `is_caching_enabled()`\r\n\r\nBecause if we let it this way it would recreate the cache file unfortunately",
"> We're already replacing the user's input by default values automatically in other methods, it's fine to do it here as well and actually fits the library's style.\r\n\r\nI think the fact that it's a style of the library is not really an argument in itself; however, after thinking through it several times, I think I know see why your solution is acceptable: as soon as the user specifies that 'keep_in_memory=True', they should not care anymore about the value of the '\\_indices_cache_file_name' variables, since from their point of view those are now irrelevant. So it's \"fine\" if we allow ourselves to modify the value of those variables, if it helps the internal code being more concise.\r\nStill, I find that it's a bit unintuitive, and a risk as far as future evolution of the method / of the code is concerned; someone tasked with doing that would need to have the knowledge of a lot of, if not all, the other methods of the class, in order to understand the potentially far-reaching impact of some modifications made to this portion of the code. But I guess that's a choice which is the library's owners to make. Also, if we use your proposed solution, as I explained, we can't get the benefit of potentially reusing possibly already existing cached data.\r\nOn that note...\r\n\r\n> Note that the case where it would reload the cache even if `keep_in_memory=True` is not implemented though\r\n\r\nI'm not sure what you mean here:\r\nWithin the current code trying to load up the potentially already existing split data, there is no trace of the 'keep_in_memory' variable. So why do you say that 'the case where it would reload the cache even if keep_in_memory=True is not implemented' (I assume that you mean 'currently implemented')? Surely, currently, this bit of code works regardless of the value of the 'keep_in_memory' variable', does it not?"
] | 2023-04-03T18:05:26 | 2023-04-06T17:17:27 | null | NONE | null | โฆers values in 'train_test_split' + fix bad interaction between 'keep_in_memory' and 'cache_file_name' -related parameters (#5699) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5700/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5700/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5700",
"html_url": "https://github.com/huggingface/datasets/pull/5700",
"diff_url": "https://github.com/huggingface/datasets/pull/5700.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5700.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5699 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5699/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5699/comments | https://api.github.com/repos/huggingface/datasets/issues/5699/events | https://github.com/huggingface/datasets/issues/5699 | 1,652,437,419 | I_kwDODunzps5ifjGr | 5,699 | Issue when wanting to split in memory a cached dataset | {
"login": "FrancoisNoyez",
"id": 47528215,
"node_id": "MDQ6VXNlcjQ3NTI4MjE1",
"avatar_url": "https://avatars.githubusercontent.com/u/47528215?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/FrancoisNoyez",
"html_url": "https://github.com/FrancoisNoyez",
"followers_url": "https://api.github.com/users/FrancoisNoyez/followers",
"following_url": "https://api.github.com/users/FrancoisNoyez/following{/other_user}",
"gists_url": "https://api.github.com/users/FrancoisNoyez/gists{/gist_id}",
"starred_url": "https://api.github.com/users/FrancoisNoyez/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/FrancoisNoyez/subscriptions",
"organizations_url": "https://api.github.com/users/FrancoisNoyez/orgs",
"repos_url": "https://api.github.com/users/FrancoisNoyez/repos",
"events_url": "https://api.github.com/users/FrancoisNoyez/events{/privacy}",
"received_events_url": "https://api.github.com/users/FrancoisNoyez/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi ! Good catch, this is wrong indeed and thanks for opening a PR :)"
] | 2023-04-03T17:00:07 | 2023-04-04T16:52:42 | null | NONE | null | ### Describe the bug
**In the 'train_test_split' method of the Dataset class** (defined datasets/arrow_dataset.py), **if 'self.cache_files' is not empty**, then, **regarding the input parameters 'train_indices_cache_file_name' and 'test_indices_cache_file_name', if they are None**, we modify them to make them not None, to see if we can just provide back / work from cached data. But if we can't provide cached data, we move on with the call to the method, except those two values are not None anymore, which will conflict with the use of the 'keep_in_memory' parameter down the line.
Indeed, at some point we end up calling the 'select' method, **and if 'keep_in_memory' is True**, since the value of this method's parameter 'indices_cache_file_name' is now not None anymore, **an exception is raised, whose message is "Please use either 'keep_in_memory' or 'indices_cache_file_name' but not both.".**
Because of that, it's impossible to perform a train / test split of a cached dataset while requesting that the result not be cached. Which is inconvenient when one is just performing experiments, with no intention of caching the result.
Aside from this being inconvenient, **the code which lead up to that situation seems simply wrong** to me: the input variable should not be modified so as to change the user's intention just to perform a test, if that test can fail and respecting the user's intention is necessary to proceed in that case.
To fix this, I suggest to use other variables / other variable names, in order to host the value(s) needed to perform the test, so as not to change the originally input values needed by the rest of the method's code.
Also, **I don't see why an exception should be raised when the 'select' method is called with both 'keep_in_memory'=True and 'indices_cache_file_name'!=None**: should the use of 'keep_in_memory' not prevail anyway, specifying that the user does not want to perform caching, and so making irrelevant the value of 'indices_cache_file_name'? This is indeed what happens when we look further in the code, in the '\_select_with_indices_mapping' method: when 'keep_in_memory' is True, then the value of indices_cache_file_name does not matter, the data will be written to a stream buffer anyway.
Hence I suggest to remove the raising of exception in those circumstances. Notably, to remove the raising of it in the 'select', '\_select_with_indices_mapping', 'shuffle' and 'map' methods.
### Steps to reproduce the bug
```python
import datasets
def generate_examples():
for i in range(10):
yield {"id": i}
dataset_ = datasets.Dataset.from_generator(
generate_examples,
keep_in_memory=False,
)
dataset_.train_test_split(
test_size=3,
shuffle=False,
keep_in_memory=True,
train_indices_cache_file_name=None,
test_indices_cache_file_name=None,
)
```
### Expected behavior
The result of the above code should be a DatasetDict instance.
Instead, we get the following exception stack:
```python
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[3], line 1
----> 1 dataset_.train_test_split(
2 test_size=3,
3 shuffle=False,
4 keep_in_memory=True,
5 train_indices_cache_file_name=None,
6 test_indices_cache_file_name=None,
7 )
File ~/Work/Developments/datasets/src/datasets/arrow_dataset.py:528, in transmit_format.<locals>.wrapper(*args, **kwargs)
521 self_format = {
522 "type": self._format_type,
523 "format_kwargs": self._format_kwargs,
524 "columns": self._format_columns,
525 "output_all_columns": self._output_all_columns,
526 }
527 # apply actual function
--> 528 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
529 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
530 # re-apply format to the output
File ~/Work/Developments/datasets/src/datasets/fingerprint.py:511, in fingerprint_transform.<locals>._fingerprint.<locals>.wrapper(*args, **kwargs)
507 validate_fingerprint(kwargs[fingerprint_name])
509 # Call actual function
--> 511 out = func(dataset, *args, **kwargs)
513 # Update fingerprint of in-place transforms + update in-place history of transforms
515 if inplace: # update after calling func so that the fingerprint doesn't change if the function fails
File ~/Work/Developments/datasets/src/datasets/arrow_dataset.py:4428, in Dataset.train_test_split(self, test_size, train_size, shuffle, stratify_by_column, seed, generator, keep_in_memory, load_from_cache_file, train_indices_cache_file_name, test_indices_cache_file_name, writer_batch_size, train_new_fingerprint, test_new_fingerprint)
4425 test_indices = permutation[:n_test]
4426 train_indices = permutation[n_test : (n_test + n_train)]
-> 4428 train_split = self.select(
4429 indices=train_indices,
4430 keep_in_memory=keep_in_memory,
4431 indices_cache_file_name=train_indices_cache_file_name,
4432 writer_batch_size=writer_batch_size,
4433 new_fingerprint=train_new_fingerprint,
4434 )
4435 test_split = self.select(
4436 indices=test_indices,
4437 keep_in_memory=keep_in_memory,
(...)
4440 new_fingerprint=test_new_fingerprint,
4441 )
4443 return DatasetDict({"train": train_split, "test": test_split})
File ~/Work/Developments/datasets/src/datasets/arrow_dataset.py:528, in transmit_format.<locals>.wrapper(*args, **kwargs)
521 self_format = {
522 "type": self._format_type,
523 "format_kwargs": self._format_kwargs,
524 "columns": self._format_columns,
525 "output_all_columns": self._output_all_columns,
526 }
527 # apply actual function
--> 528 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
529 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
530 # re-apply format to the output
File ~/Work/Developments/datasets/src/datasets/fingerprint.py:511, in fingerprint_transform.<locals>._fingerprint.<locals>.wrapper(*args, **kwargs)
507 validate_fingerprint(kwargs[fingerprint_name])
509 # Call actual function
--> 511 out = func(dataset, *args, **kwargs)
513 # Update fingerprint of in-place transforms + update in-place history of transforms
515 if inplace: # update after calling func so that the fingerprint doesn't change if the function fails
File ~/Work/Developments/datasets/src/datasets/arrow_dataset.py:3679, in Dataset.select(self, indices, keep_in_memory, indices_cache_file_name, writer_batch_size, new_fingerprint)
3645 """Create a new dataset with rows selected following the list/array of indices.
3646
3647 Args:
(...)
3676 ```
3677 """
3678 if keep_in_memory and indices_cache_file_name is not None:
-> 3679 raise ValueError("Please use either `keep_in_memory` or `indices_cache_file_name` but not both.")
3681 if len(self.list_indexes()) > 0:
3682 raise DatasetTransformationNotAllowedError(
3683 "Using `.select` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it."
3684 )
ValueError: Please use either `keep_in_memory` or `indices_cache_file_name` but not both.
```
### Environment info
- `datasets` version: 2.11.1.dev0
- Platform: Linux-5.4.236-1-MANJARO-x86_64-with-glibc2.2.5
- Python version: 3.8.12
- Huggingface_hub version: 0.13.3
- PyArrow version: 11.0.0
- Pandas version: 2.0.0
***
***
EDIT:
Now with a pull request to fix this [here](https://github.com/huggingface/datasets/pull/5700) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5699/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5699/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5698 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5698/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5698/comments | https://api.github.com/repos/huggingface/datasets/issues/5698/events | https://github.com/huggingface/datasets/issues/5698 | 1,652,183,611 | I_kwDODunzps5ielI7 | 5,698 | Add Qdrant as another search index | {
"login": "kacperlukawski",
"id": 2649301,
"node_id": "MDQ6VXNlcjI2NDkzMDE=",
"avatar_url": "https://avatars.githubusercontent.com/u/2649301?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kacperlukawski",
"html_url": "https://github.com/kacperlukawski",
"followers_url": "https://api.github.com/users/kacperlukawski/followers",
"following_url": "https://api.github.com/users/kacperlukawski/following{/other_user}",
"gists_url": "https://api.github.com/users/kacperlukawski/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kacperlukawski/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kacperlukawski/subscriptions",
"organizations_url": "https://api.github.com/users/kacperlukawski/orgs",
"repos_url": "https://api.github.com/users/kacperlukawski/repos",
"events_url": "https://api.github.com/users/kacperlukawski/events{/privacy}",
"received_events_url": "https://api.github.com/users/kacperlukawski/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"@mariosasko I'd appreciate your feedback on this. "
] | 2023-04-03T14:25:19 | 2023-04-11T10:28:40 | null | CONTRIBUTOR | null | ### Feature request
I'd suggest adding Qdrant (https://qdrant.tech) as another search index available, so users can directly build an index from a dataset. Currently, FAISS and ElasticSearch are only supported: https://huggingface.co/docs/datasets/faiss_es
### Motivation
ElasticSearch is a keyword-based search system, while FAISS is a vector search library. Vector database, such as Qdrant, is a different tool based on similarity (like FAISS) but is not limited to a single machine. It makes the vector database well-suited for bigger datasets and collaboration if several people want to access a particular dataset.
### Your contribution
I can provide a PR implementing that functionality on my own. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5698/reactions",
"total_count": 6,
"+1": 6,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5698/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5697 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5697/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5697/comments | https://api.github.com/repos/huggingface/datasets/issues/5697/events | https://github.com/huggingface/datasets/pull/5697 | 1,651,812,614 | PR_kwDODunzps5NefxZ | 5,697 | Raise an error on missing distributed seed | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009644 / 0.011353 (-0.001709) | 0.006407 / 0.011008 (-0.004601) | 0.148353 / 0.038508 (0.109845) | 0.037537 / 0.023109 (0.014428) | 0.379697 / 0.275898 (0.103799) | 0.466260 / 0.323480 (0.142780) | 0.007884 / 0.007986 (-0.000102) | 0.005140 / 0.004328 (0.000812) | 0.111078 / 0.004250 (0.106827) | 0.049429 / 0.037052 (0.012377) | 0.364766 / 0.258489 (0.106277) | 0.453809 / 0.293841 (0.159968) | 0.051918 / 0.128546 (-0.076628) | 0.020081 / 0.075646 (-0.055566) | 0.616041 / 0.419271 (0.196770) | 0.059834 / 0.043533 (0.016301) | 0.373104 / 0.255139 (0.117965) | 0.419304 / 0.283200 (0.136104) | 0.113526 / 0.141683 (-0.028156) | 1.827160 / 1.452155 (0.375006) | 1.912092 / 1.492716 (0.419376) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269584 / 0.018006 (0.251578) | 0.554100 / 0.000490 (0.553610) | 0.006618 / 0.000200 (0.006418) | 0.000093 / 0.000054 (0.000039) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025280 / 0.037411 (-0.012131) | 0.123116 / 0.014526 (0.108591) | 0.127674 / 0.176557 (-0.048883) | 0.189106 / 0.737135 (-0.548030) | 0.142072 / 0.296338 (-0.154267) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602201 / 0.215209 (0.386992) | 5.959610 / 2.077655 (3.881956) | 2.404856 / 1.504120 (0.900736) | 2.175017 / 1.541195 (0.633823) | 2.154360 / 1.468490 (0.685870) | 1.265339 / 4.584777 (-3.319438) | 5.598429 / 3.745712 (1.852716) | 5.130249 / 5.269862 (-0.139612) | 2.764922 / 4.565676 (-1.800754) | 0.143232 / 0.424275 (-0.281043) | 0.014721 / 0.007607 (0.007114) | 0.764734 / 0.226044 (0.538689) | 7.518810 / 2.268929 (5.249882) | 3.344734 / 55.444624 (-52.099890) | 2.601158 / 6.876477 (-4.275319) | 2.726018 / 2.142072 (0.583945) | 1.397918 / 4.805227 (-3.407309) | 0.253277 / 6.500664 (-6.247387) | 0.077772 / 0.075469 (0.002303) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.499535 / 1.841788 (-0.342253) | 17.782490 / 8.074308 (9.708182) | 21.953064 / 10.191392 (11.761672) | 0.248753 / 0.680424 (-0.431671) | 0.029194 / 0.534201 (-0.505007) | 0.529700 / 0.579283 (-0.049583) | 0.618412 / 0.434364 (0.184048) | 0.605062 / 0.540337 (0.064725) | 0.725661 / 1.386936 (-0.661275) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009489 / 0.011353 (-0.001864) | 0.006423 / 0.011008 (-0.004585) | 0.096789 / 0.038508 (0.058281) | 0.034639 / 0.023109 (0.011530) | 0.403875 / 0.275898 (0.127977) | 0.439368 / 0.323480 (0.115888) | 0.006354 / 0.007986 (-0.001631) | 0.006794 / 0.004328 (0.002466) | 0.095537 / 0.004250 (0.091287) | 0.047749 / 0.037052 (0.010697) | 0.424157 / 0.258489 (0.165668) | 0.487825 / 0.293841 (0.193984) | 0.054675 / 0.128546 (-0.073872) | 0.021349 / 0.075646 (-0.054297) | 0.108917 / 0.419271 (-0.310354) | 0.075891 / 0.043533 (0.032358) | 0.412889 / 0.255139 (0.157750) | 0.464512 / 0.283200 (0.181312) | 0.118832 / 0.141683 (-0.022850) | 1.721215 / 1.452155 (0.269060) | 1.857195 / 1.492716 (0.364478) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248308 / 0.018006 (0.230302) | 0.559496 / 0.000490 (0.559006) | 0.007136 / 0.000200 (0.006936) | 0.000160 / 0.000054 (0.000106) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031772 / 0.037411 (-0.005639) | 0.123565 / 0.014526 (0.109039) | 0.132660 / 0.176557 (-0.043896) | 0.201428 / 0.737135 (-0.535707) | 0.135238 / 0.296338 (-0.161101) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.646978 / 0.215209 (0.431769) | 6.183477 / 2.077655 (4.105822) | 2.782117 / 1.504120 (1.277997) | 2.294093 / 1.541195 (0.752898) | 2.346932 / 1.468490 (0.878442) | 1.239085 / 4.584777 (-3.345692) | 5.696364 / 3.745712 (1.950652) | 4.980102 / 5.269862 (-0.289759) | 2.278116 / 4.565676 (-2.287560) | 0.157339 / 0.424275 (-0.266936) | 0.014936 / 0.007607 (0.007329) | 0.778001 / 0.226044 (0.551957) | 7.708066 / 2.268929 (5.439138) | 3.412235 / 55.444624 (-52.032389) | 2.670670 / 6.876477 (-4.205806) | 2.731802 / 2.142072 (0.589730) | 1.446516 / 4.805227 (-3.358712) | 0.263689 / 6.500664 (-6.236975) | 0.086359 / 0.075469 (0.010890) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.573169 / 1.841788 (-0.268619) | 17.690842 / 8.074308 (9.616534) | 20.343336 / 10.191392 (10.151944) | 0.231028 / 0.680424 (-0.449396) | 0.025954 / 0.534201 (-0.508247) | 0.570554 / 0.579283 (-0.008729) | 0.610453 / 0.434364 (0.176089) | 0.675830 / 0.540337 (0.135493) | 0.790650 / 1.386936 (-0.596286) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d094ed07823bfb3271f3a9006daa1f92a64967a5 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007553 / 0.011353 (-0.003800) | 0.005426 / 0.011008 (-0.005582) | 0.096550 / 0.038508 (0.058042) | 0.034393 / 0.023109 (0.011284) | 0.322297 / 0.275898 (0.046399) | 0.340943 / 0.323480 (0.017463) | 0.006350 / 0.007986 (-0.001635) | 0.005700 / 0.004328 (0.001372) | 0.074929 / 0.004250 (0.070678) | 0.054819 / 0.037052 (0.017767) | 0.320151 / 0.258489 (0.061662) | 0.346957 / 0.293841 (0.053116) | 0.036659 / 0.128546 (-0.091887) | 0.012443 / 0.075646 (-0.063204) | 0.332232 / 0.419271 (-0.087040) | 0.051467 / 0.043533 (0.007934) | 0.310952 / 0.255139 (0.055813) | 0.325617 / 0.283200 (0.042417) | 0.104908 / 0.141683 (-0.036775) | 1.446752 / 1.452155 (-0.005403) | 1.558773 / 1.492716 (0.066056) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300639 / 0.018006 (0.282633) | 0.499901 / 0.000490 (0.499411) | 0.007340 / 0.000200 (0.007140) | 0.000255 / 0.000054 (0.000201) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027206 / 0.037411 (-0.010206) | 0.105603 / 0.014526 (0.091077) | 0.118669 / 0.176557 (-0.057887) | 0.174050 / 0.737135 (-0.563086) | 0.125099 / 0.296338 (-0.171239) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404285 / 0.215209 (0.189076) | 4.034587 / 2.077655 (1.956933) | 1.812639 / 1.504120 (0.308519) | 1.625745 / 1.541195 (0.084551) | 1.735523 / 1.468490 (0.267033) | 0.709699 / 4.584777 (-3.875078) | 3.802196 / 3.745712 (0.056484) | 3.656984 / 5.269862 (-1.612877) | 1.968470 / 4.565676 (-2.597206) | 0.086612 / 0.424275 (-0.337663) | 0.012368 / 0.007607 (0.004761) | 0.502622 / 0.226044 (0.276577) | 5.017876 / 2.268929 (2.748948) | 2.279794 / 55.444624 (-53.164831) | 1.956938 / 6.876477 (-4.919538) | 2.150430 / 2.142072 (0.008357) | 0.847691 / 4.805227 (-3.957536) | 0.170157 / 6.500664 (-6.330507) | 0.064141 / 0.075469 (-0.011328) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.172246 / 1.841788 (-0.669542) | 15.229444 / 8.074308 (7.155136) | 14.715913 / 10.191392 (4.524521) | 0.192501 / 0.680424 (-0.487923) | 0.017972 / 0.534201 (-0.516229) | 0.423834 / 0.579283 (-0.155449) | 0.423019 / 0.434364 (-0.011345) | 0.493298 / 0.540337 (-0.047039) | 0.589833 / 1.386936 (-0.797103) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007773 / 0.011353 (-0.003580) | 0.005449 / 0.011008 (-0.005560) | 0.075180 / 0.038508 (0.036672) | 0.035221 / 0.023109 (0.012111) | 0.338169 / 0.275898 (0.062271) | 0.374002 / 0.323480 (0.050522) | 0.006391 / 0.007986 (-0.001595) | 0.004406 / 0.004328 (0.000078) | 0.074925 / 0.004250 (0.070675) | 0.056527 / 0.037052 (0.019475) | 0.338071 / 0.258489 (0.079582) | 0.391882 / 0.293841 (0.098041) | 0.037241 / 0.128546 (-0.091305) | 0.012546 / 0.075646 (-0.063100) | 0.087331 / 0.419271 (-0.331940) | 0.049851 / 0.043533 (0.006318) | 0.335264 / 0.255139 (0.080125) | 0.354813 / 0.283200 (0.071614) | 0.110614 / 0.141683 (-0.031069) | 1.432782 / 1.452155 (-0.019372) | 1.548800 / 1.492716 (0.056083) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.307892 / 0.018006 (0.289886) | 0.518809 / 0.000490 (0.518319) | 0.004058 / 0.000200 (0.003858) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029155 / 0.037411 (-0.008256) | 0.111706 / 0.014526 (0.097180) | 0.122964 / 0.176557 (-0.053592) | 0.170939 / 0.737135 (-0.566196) | 0.128538 / 0.296338 (-0.167801) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426529 / 0.215209 (0.211320) | 4.254218 / 2.077655 (2.176563) | 2.011455 / 1.504120 (0.507335) | 1.817397 / 1.541195 (0.276202) | 1.952915 / 1.468490 (0.484425) | 0.705052 / 4.584777 (-3.879725) | 3.844458 / 3.745712 (0.098746) | 3.592754 / 5.269862 (-1.677107) | 1.573567 / 4.565676 (-2.992109) | 0.086834 / 0.424275 (-0.337441) | 0.012389 / 0.007607 (0.004782) | 0.541695 / 0.226044 (0.315650) | 5.224492 / 2.268929 (2.955564) | 2.473648 / 55.444624 (-52.970976) | 2.167458 / 6.876477 (-4.709019) | 2.253319 / 2.142072 (0.111246) | 0.836322 / 4.805227 (-3.968905) | 0.168680 / 6.500664 (-6.331984) | 0.065699 / 0.075469 (-0.009770) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281886 / 1.841788 (-0.559902) | 15.451741 / 8.074308 (7.377433) | 14.906870 / 10.191392 (4.715478) | 0.168554 / 0.680424 (-0.511870) | 0.017365 / 0.534201 (-0.516836) | 0.434183 / 0.579283 (-0.145100) | 0.421891 / 0.434364 (-0.012473) | 0.538993 / 0.540337 (-0.001344) | 0.636212 / 1.386936 (-0.750724) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1f428b8172319a6bfe95d7a4356b1d14a8d386d8 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007362 / 0.011353 (-0.003991) | 0.004992 / 0.011008 (-0.006016) | 0.098730 / 0.038508 (0.060222) | 0.033673 / 0.023109 (0.010563) | 0.296334 / 0.275898 (0.020436) | 0.328208 / 0.323480 (0.004728) | 0.005658 / 0.007986 (-0.002327) | 0.004130 / 0.004328 (-0.000199) | 0.074596 / 0.004250 (0.070346) | 0.048230 / 0.037052 (0.011178) | 0.295631 / 0.258489 (0.037142) | 0.347176 / 0.293841 (0.053335) | 0.036359 / 0.128546 (-0.092187) | 0.011889 / 0.075646 (-0.063758) | 0.332889 / 0.419271 (-0.086382) | 0.049708 / 0.043533 (0.006175) | 0.291207 / 0.255139 (0.036068) | 0.311066 / 0.283200 (0.027867) | 0.098418 / 0.141683 (-0.043265) | 1.415450 / 1.452155 (-0.036705) | 1.526928 / 1.492716 (0.034212) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212636 / 0.018006 (0.194630) | 0.432337 / 0.000490 (0.431847) | 0.006839 / 0.000200 (0.006639) | 0.000205 / 0.000054 (0.000150) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026045 / 0.037411 (-0.011366) | 0.107427 / 0.014526 (0.092901) | 0.114634 / 0.176557 (-0.061922) | 0.169943 / 0.737135 (-0.567192) | 0.123290 / 0.296338 (-0.173048) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409432 / 0.215209 (0.194223) | 4.097910 / 2.077655 (2.020255) | 1.857177 / 1.504120 (0.353057) | 1.672355 / 1.541195 (0.131160) | 1.740130 / 1.468490 (0.271640) | 0.706520 / 4.584777 (-3.878257) | 3.773606 / 3.745712 (0.027893) | 2.101635 / 5.269862 (-3.168226) | 1.326295 / 4.565676 (-3.239382) | 0.085672 / 0.424275 (-0.338604) | 0.012142 / 0.007607 (0.004534) | 0.501168 / 0.226044 (0.275123) | 5.049784 / 2.268929 (2.780855) | 2.322477 / 55.444624 (-53.122148) | 1.990105 / 6.876477 (-4.886372) | 2.115003 / 2.142072 (-0.027070) | 0.837518 / 4.805227 (-3.967709) | 0.168457 / 6.500664 (-6.332207) | 0.064622 / 0.075469 (-0.010847) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.188152 / 1.841788 (-0.653635) | 14.991585 / 8.074308 (6.917276) | 14.635187 / 10.191392 (4.443795) | 0.183708 / 0.680424 (-0.496716) | 0.017452 / 0.534201 (-0.516749) | 0.418963 / 0.579283 (-0.160320) | 0.428893 / 0.434364 (-0.005471) | 0.502108 / 0.540337 (-0.038229) | 0.596345 / 1.386936 (-0.790591) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007404 / 0.011353 (-0.003949) | 0.005148 / 0.011008 (-0.005860) | 0.074785 / 0.038508 (0.036277) | 0.033815 / 0.023109 (0.010706) | 0.332752 / 0.275898 (0.056854) | 0.368018 / 0.323480 (0.044538) | 0.005642 / 0.007986 (-0.002344) | 0.004041 / 0.004328 (-0.000287) | 0.073455 / 0.004250 (0.069205) | 0.047380 / 0.037052 (0.010328) | 0.337017 / 0.258489 (0.078528) | 0.384185 / 0.293841 (0.090344) | 0.036592 / 0.128546 (-0.091954) | 0.012109 / 0.075646 (-0.063537) | 0.086862 / 0.419271 (-0.332410) | 0.049030 / 0.043533 (0.005497) | 0.336542 / 0.255139 (0.081403) | 0.350295 / 0.283200 (0.067096) | 0.100998 / 0.141683 (-0.040685) | 1.469749 / 1.452155 (0.017594) | 1.588355 / 1.492716 (0.095639) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227552 / 0.018006 (0.209546) | 0.438087 / 0.000490 (0.437598) | 0.000394 / 0.000200 (0.000194) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030575 / 0.037411 (-0.006836) | 0.111914 / 0.014526 (0.097388) | 0.124583 / 0.176557 (-0.051973) | 0.175471 / 0.737135 (-0.561665) | 0.129535 / 0.296338 (-0.166803) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425625 / 0.215209 (0.210416) | 4.228328 / 2.077655 (2.150673) | 2.021087 / 1.504120 (0.516967) | 1.832550 / 1.541195 (0.291355) | 1.925572 / 1.468490 (0.457082) | 0.690772 / 4.584777 (-3.894005) | 3.724900 / 3.745712 (-0.020813) | 2.080286 / 5.269862 (-3.189576) | 1.316854 / 4.565676 (-3.248822) | 0.085123 / 0.424275 (-0.339152) | 0.012078 / 0.007607 (0.004471) | 0.525802 / 0.226044 (0.299758) | 5.242598 / 2.268929 (2.973670) | 2.491596 / 55.444624 (-52.953028) | 2.125156 / 6.876477 (-4.751320) | 2.185922 / 2.142072 (0.043850) | 0.823116 / 4.805227 (-3.982111) | 0.165188 / 6.500664 (-6.335476) | 0.063970 / 0.075469 (-0.011499) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256948 / 1.841788 (-0.584840) | 14.981990 / 8.074308 (6.907682) | 14.565266 / 10.191392 (4.373874) | 0.175064 / 0.680424 (-0.505360) | 0.017628 / 0.534201 (-0.516573) | 0.429979 / 0.579283 (-0.149304) | 0.422509 / 0.434364 (-0.011855) | 0.546262 / 0.540337 (0.005924) | 0.647103 / 1.386936 (-0.739833) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0803a006db1c395ac715662cc6079651f77c11ea \"CML watermark\")\n"
] | 2023-04-03T10:44:58 | 2023-04-04T15:05:24 | 2023-04-04T14:58:16 | MEMBER | null | close https://github.com/huggingface/datasets/issues/5696 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5697/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5697/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5697",
"html_url": "https://github.com/huggingface/datasets/pull/5697",
"diff_url": "https://github.com/huggingface/datasets/pull/5697.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5697.patch",
"merged_at": "2023-04-04T14:58:16"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5696 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5696/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5696/comments | https://api.github.com/repos/huggingface/datasets/issues/5696/events | https://github.com/huggingface/datasets/issues/5696 | 1,651,707,008 | I_kwDODunzps5icwyA | 5,696 | Shuffle a sharded iterable dataset without seed can lead to duplicate data | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-04-03T09:40:03 | 2023-04-04T14:58:18 | 2023-04-04T14:58:18 | MEMBER | null | As reported in https://github.com/huggingface/datasets/issues/5360
If `seed=None` in `.shuffle()`, shuffled datasets don't use the same shuffling seed across nodes.
Because of that, the lists of shards is not shuffled the same way across nodes, and therefore some shards may be assigned to multiple nodes instead of exactly one.
This can happen only when you have a number of shards that is a factor of the number of nodes.
The current workaround is to always set a `seed` in `.shuffle()` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5696/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5696/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5695 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5695/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5695/comments | https://api.github.com/repos/huggingface/datasets/issues/5695/events | https://github.com/huggingface/datasets/issues/5695 | 1,650,974,156 | I_kwDODunzps5iZ93M | 5,695 | Loading big dataset raises pyarrow.lib.ArrowNotImplementedError | {
"login": "amariucaitheodor",
"id": 32778667,
"node_id": "MDQ6VXNlcjMyNzc4NjY3",
"avatar_url": "https://avatars.githubusercontent.com/u/32778667?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/amariucaitheodor",
"html_url": "https://github.com/amariucaitheodor",
"followers_url": "https://api.github.com/users/amariucaitheodor/followers",
"following_url": "https://api.github.com/users/amariucaitheodor/following{/other_user}",
"gists_url": "https://api.github.com/users/amariucaitheodor/gists{/gist_id}",
"starred_url": "https://api.github.com/users/amariucaitheodor/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/amariucaitheodor/subscriptions",
"organizations_url": "https://api.github.com/users/amariucaitheodor/orgs",
"repos_url": "https://api.github.com/users/amariucaitheodor/repos",
"events_url": "https://api.github.com/users/amariucaitheodor/events{/privacy}",
"received_events_url": "https://api.github.com/users/amariucaitheodor/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi ! It looks like an issue with PyArrow: https://issues.apache.org/jira/browse/ARROW-5030\r\n\r\nIt appears it can happen when you have parquet files with row groups larger than 2GB.\r\nI can see that your parquet files are around 10GB. It is usually advised to keep a value around the default value 500MB to avoid these issues.\r\n\r\nNote that currently the row group size is simply defined by the number of rows `datasets.config.DEFAULT_MAX_BATCH_SIZE`, so reducing this value could let you have parquet files bigger than 2GB and with row groups lower than 2GB.\r\n\r\nWould it be possible for you to re-upload the dataset with the default shard size 500MB ?",
"Hey, thanks for the reply! I've since switched to working with the locally-saved dataset (which works).\r\nMaybe it makes sense to show a warning for uploads with large shard sizes? Since the functionality completely breaks (due to the PyArrow bug).",
"Just tried uploading the same dataset with 500MB shards, I get an errors 4 hours in:\r\n\r\n```\r\nPushing dataset shards to the dataset hub: 25%|โโโ | 358/1453 [4:40:31<14:18:00, 47.01s/it]\r\nTraceback (most recent call last):\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 344, in _inner_upload_lfs_object\r\n return _upload_lfs_object(operation=operation, lfs_batch_action=batch_action, token=token)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 391, in _upload_lfs_object\r\n lfs_upload(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 254, in lfs_upload\r\n _upload_multi_part(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 374, in _upload_multi_part\r\n hf_raise_for_status(part_upload_res)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 301, in hf_raise_for_status\r\n raise HfHubHTTPError(str(e), response=response) from e\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 46, in __init__\r\n server_data = response.json()\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/requests/models.py\", line 899, in json\r\n return complexjson.loads(\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/json/__init__.py\", line 357, in loads\r\n return _default_decoder.decode(s)\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/json/decoder.py\", line 337, in decode\r\n obj, end = self.raw_decode(s, idx=_w(s, 0).end())\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/json/decoder.py\", line 355, in raw_decode\r\n raise JSONDecodeError(\"Expecting value\", s, err.value) from None\r\njson.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"process_wit.py\", line 146, in <module>\r\n dataset.push_to_hub(FINAL_PATH, max_shard_size=\"500MB\", private=False)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1534, in push_to_hub\r\n repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parquet_shards_to_hub(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 4804, in _push_parquet_shards_to_hub\r\n _retry(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 281, in _retry\r\n return func(*func_args, **func_kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 120, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 2593, in upload_file\r\n commit_info = self.create_commit(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 120, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 2411, in create_commit\r\n upload_lfs_files(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 120, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 351, in upload_lfs_files\r\n thread_map(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/tqdm/contrib/concurrent.py\", line 69, in thread_map\r\n return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/tqdm/contrib/concurrent.py\", line 51, in _executor_map\r\n return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs))\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/tqdm/std.py\", line 1178, in __iter__\r\n for obj in iterable:\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/concurrent/futures/_base.py\", line 619, in result_iterator\r\n yield fs.pop().result()\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/concurrent/futures/_base.py\", line 444, in result\r\n return self.__get_result()\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/concurrent/futures/_base.py\", line 389, in __get_result\r\n raise self._exception\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/concurrent/futures/thread.py\", line 57, in run\r\n result = self.fn(*self.args, **self.kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 346, in _inner_upload_lfs_object\r\n raise RuntimeError(f\"Error while uploading '{operation.path_in_repo}' to the Hub.\") from exc\r\nRuntimeError: Error while uploading 'data/train-00358-of-01453-22a5cc8b3eb12be3.parquet' to the Hub.\r\n```\r\nLocal saves do work, however.",
"Hmmm that was probably an intermitent bug, you can resume the upload by re-running push_to_hub",
"Leaving this other error here for the record, which occurs when I load the +700GB dataset from the hub with shard sizes of 500MB:\r\n\r\n```\r\n Traceback (most recent call last): \r\n File \"/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py\", line 1860, in _prepare_split_single\r\n for _, table in generator:\r\n File \"/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/packaged_modules/parquet/parquet.py\", line 69, in _generate_tables\r\n for batch_idx, record_batch in enumerate(\r\n File \"pyarrow/_parquet.pyx\", line 1323, in iter_batches\r\n File \"pyarrow/error.pxi\", line 115, in pyarrow.lib.check_status\r\nOSError: Corrupt snappy compressed data.\r\n```\r\nI will probably switch back to the local big dataset or shrink it."
] | 2023-04-02T14:42:44 | 2023-04-11T09:17:54 | 2023-04-10T08:04:04 | NONE | null | ### Describe the bug
Calling `datasets.load_dataset` to load the (publicly available) dataset `theodor1289/wit` fails with `pyarrow.lib.ArrowNotImplementedError`.
### Steps to reproduce the bug
Steps to reproduce this behavior:
1. `!pip install datasets`
2. `!huggingface-cli login`
3. This step will throw the error (it might take a while as the dataset has ~170GB):
```python
from datasets import load_dataset
dataset = load_dataset("theodor1289/wit", "train", use_auth_token=True)
```
Stack trace:
```
(torch-multimodal) bash-4.2$ python test.py
Downloading and preparing dataset None/None to /cluster/work/cotterell/tamariucai/HuggingfaceDatasets/theodor1289___parquet/theodor1289--wit-7a3e984414a86a0f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...
Downloading data files: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 2/2 [00:00<00:00, 491.68it/s]
Extracting data files: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 2/2 [00:00<00:00, 16.93it/s]
Traceback (most recent call last):
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 1860, in _prepare_split_single
for _, table in generator:
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/packaged_modules/parquet/parquet.py", line 69, in _generate_tables
for batch_idx, record_batch in enumerate(
File "pyarrow/_parquet.pyx", line 1323, in iter_batches
File "pyarrow/error.pxi", line 121, in pyarrow.lib.check_status
pyarrow.lib.ArrowNotImplementedError: Nested data conversions not implemented for chunked array outputs
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/cluster/work/cotterell/tamariucai/multimodal-mirror/examples/test.py", line 2, in <module>
dataset = load_dataset("theodor1289/wit", "train", use_auth_token=True)
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/load.py", line 1791, in load_dataset
builder_instance.download_and_prepare(
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 891, in download_and_prepare
self._download_and_prepare(
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 986, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 1748, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 1893, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.builder.DatasetGenerationError: An error occurred while generating the dataset
```
### Expected behavior
The dataset is loaded in variable `dataset`.
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-3.10.0-1160.80.1.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.10.4
- Huggingface_hub version: 0.13.3
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5695/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5695/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5694 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5694/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5694/comments | https://api.github.com/repos/huggingface/datasets/issues/5694/events | https://github.com/huggingface/datasets/issues/5694 | 1,650,467,793 | I_kwDODunzps5iYCPR | 5,694 | Dataset configuration | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 2067400324,
"node_id": "MDU6TGFiZWwyMDY3NDAwMzI0",
"url": "https://api.github.com/repos/huggingface/datasets/labels/generic%20discussion",
"name": "generic discussion",
"color": "c5def5",
"default": false,
"description": "Generic discussion on the library"
}
] | open | false | null | [] | null | [
"Originally we also though about adding it to the YAML part of the README.md:\r\n\r\n```yaml\r\nbuilder_config:\r\n data_dir: data\r\n data_files:\r\n - split: train\r\n pattern: \"train-[0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*\"\r\n```\r\n\r\nHaving it in the README.md could make it easier to modify it in the UI on HF, and for validation on commit",
"From internal discussions we agreed to go with the YAML approach, since it's the one that seems more appropriate to be modified by a human on the Hub or locally (while JSON e.g. for models are usually created programmatically).",
"Current format:\r\n```yaml\r\nbuilder_config:\r\n data_files:\r\n - split: train\r\n pattern: data/train-*\r\n```"
] | 2023-04-01T13:08:05 | 2023-04-04T14:54:37 | null | MEMBER | null | Following discussions from https://github.com/huggingface/datasets/pull/5331
We could have something like `config.json` to define the configuration of a dataset.
```json
{
"data_dir": "data"
"data_files": {
"train": "train-[0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*"
}
}
```
we could also support a list for several configs with a 'config_name' field.
The alternative was to use YAML in the README.md.
I think it could also support a `dataset_type` field to specify which dataset builder class to use, and the other parameters would be the builder's parameters. Some parameters exist for all builders like `data_files` and `data_dir`, but some parameters are builder specific like `sep` for csv.
This format would be used in `push_to_hub` to be able to push multiple configs.
cc @huggingface/datasets
EDIT: actually we're going for the YAML approach in README.md | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5694/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5694/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5693 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5693/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5693/comments | https://api.github.com/repos/huggingface/datasets/issues/5693/events | https://github.com/huggingface/datasets/pull/5693 | 1,649,934,749 | PR_kwDODunzps5NYdPS | 5,693 | [docs] Split pattern search order | {
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007841 / 0.011353 (-0.003512) | 0.005640 / 0.011008 (-0.005368) | 0.096465 / 0.038508 (0.057957) | 0.036476 / 0.023109 (0.013367) | 0.306431 / 0.275898 (0.030533) | 0.339545 / 0.323480 (0.016065) | 0.006064 / 0.007986 (-0.001922) | 0.004404 / 0.004328 (0.000076) | 0.073130 / 0.004250 (0.068879) | 0.052765 / 0.037052 (0.015713) | 0.309895 / 0.258489 (0.051406) | 0.354037 / 0.293841 (0.060196) | 0.037127 / 0.128546 (-0.091420) | 0.012387 / 0.075646 (-0.063260) | 0.333503 / 0.419271 (-0.085769) | 0.059799 / 0.043533 (0.016266) | 0.305496 / 0.255139 (0.050358) | 0.324122 / 0.283200 (0.040922) | 0.107007 / 0.141683 (-0.034676) | 1.416743 / 1.452155 (-0.035411) | 1.520772 / 1.492716 (0.028055) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.261233 / 0.018006 (0.243227) | 0.573806 / 0.000490 (0.573316) | 0.000390 / 0.000200 (0.000190) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027672 / 0.037411 (-0.009740) | 0.112803 / 0.014526 (0.098278) | 0.121085 / 0.176557 (-0.055471) | 0.176056 / 0.737135 (-0.561080) | 0.127171 / 0.296338 (-0.169167) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.414756 / 0.215209 (0.199547) | 4.148743 / 2.077655 (2.071088) | 1.883940 / 1.504120 (0.379820) | 1.698771 / 1.541195 (0.157576) | 1.811926 / 1.468490 (0.343436) | 0.708293 / 4.584777 (-3.876484) | 3.780456 / 3.745712 (0.034744) | 2.098556 / 5.269862 (-3.171306) | 1.323512 / 4.565676 (-3.242164) | 0.086253 / 0.424275 (-0.338022) | 0.012587 / 0.007607 (0.004980) | 0.514824 / 0.226044 (0.288779) | 5.157415 / 2.268929 (2.888487) | 2.382519 / 55.444624 (-53.062105) | 2.014539 / 6.876477 (-4.861938) | 2.215239 / 2.142072 (0.073166) | 0.847178 / 4.805227 (-3.958049) | 0.170053 / 6.500664 (-6.330611) | 0.066461 / 0.075469 (-0.009008) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.199056 / 1.841788 (-0.642732) | 15.244999 / 8.074308 (7.170691) | 14.661593 / 10.191392 (4.470201) | 0.168855 / 0.680424 (-0.511569) | 0.017889 / 0.534201 (-0.516312) | 0.424961 / 0.579283 (-0.154322) | 0.428632 / 0.434364 (-0.005732) | 0.502680 / 0.540337 (-0.037658) | 0.597827 / 1.386936 (-0.789109) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007749 / 0.011353 (-0.003604) | 0.005527 / 0.011008 (-0.005482) | 0.074774 / 0.038508 (0.036266) | 0.035367 / 0.023109 (0.012258) | 0.340594 / 0.275898 (0.064696) | 0.373970 / 0.323480 (0.050490) | 0.006094 / 0.007986 (-0.001892) | 0.004428 / 0.004328 (0.000100) | 0.074120 / 0.004250 (0.069869) | 0.054852 / 0.037052 (0.017800) | 0.357173 / 0.258489 (0.098684) | 0.388877 / 0.293841 (0.095036) | 0.037002 / 0.128546 (-0.091545) | 0.012337 / 0.075646 (-0.063309) | 0.086962 / 0.419271 (-0.332310) | 0.050370 / 0.043533 (0.006837) | 0.342989 / 0.255139 (0.087850) | 0.358065 / 0.283200 (0.074865) | 0.111063 / 0.141683 (-0.030620) | 1.516704 / 1.452155 (0.064549) | 1.634359 / 1.492716 (0.141643) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.261493 / 0.018006 (0.243487) | 0.566288 / 0.000490 (0.565799) | 0.000439 / 0.000200 (0.000239) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030426 / 0.037411 (-0.006985) | 0.114606 / 0.014526 (0.100080) | 0.126134 / 0.176557 (-0.050423) | 0.175324 / 0.737135 (-0.561812) | 0.132766 / 0.296338 (-0.163573) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426785 / 0.215209 (0.211576) | 4.243555 / 2.077655 (2.165900) | 2.089631 / 1.504120 (0.585511) | 1.994562 / 1.541195 (0.453367) | 2.140284 / 1.468490 (0.671794) | 0.698645 / 4.584777 (-3.886132) | 3.807471 / 3.745712 (0.061759) | 3.275343 / 5.269862 (-1.994519) | 1.796756 / 4.565676 (-2.768921) | 0.085986 / 0.424275 (-0.338289) | 0.012213 / 0.007607 (0.004606) | 0.536815 / 0.226044 (0.310771) | 5.344611 / 2.268929 (3.075683) | 2.498578 / 55.444624 (-52.946047) | 2.153260 / 6.876477 (-4.723217) | 2.251310 / 2.142072 (0.109237) | 0.839104 / 4.805227 (-3.966123) | 0.169639 / 6.500664 (-6.331025) | 0.065880 / 0.075469 (-0.009589) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268610 / 1.841788 (-0.573178) | 15.624915 / 8.074308 (7.550606) | 15.163684 / 10.191392 (4.972292) | 0.172992 / 0.680424 (-0.507432) | 0.018154 / 0.534201 (-0.516047) | 0.440485 / 0.579283 (-0.138798) | 0.431949 / 0.434364 (-0.002415) | 0.547935 / 0.540337 (0.007597) | 0.662442 / 1.386936 (-0.724494) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5c8a6ba43c4aaa0ca0665d8dadd87ef33e28e8e4 \"CML watermark\")\n"
] | 2023-03-31T19:51:38 | 2023-04-03T18:43:30 | 2023-04-03T18:29:58 | MEMBER | null | This PR addresses #5681 about the order of split patterns ๐ค Datasets searches for when generating dataset splits. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5693/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5693/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5693",
"html_url": "https://github.com/huggingface/datasets/pull/5693",
"diff_url": "https://github.com/huggingface/datasets/pull/5693.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5693.patch",
"merged_at": "2023-04-03T18:29:58"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5692 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5692/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5692/comments | https://api.github.com/repos/huggingface/datasets/issues/5692/events | https://github.com/huggingface/datasets/issues/5692 | 1,649,818,644 | I_kwDODunzps5iVjwU | 5,692 | pyarrow.lib.ArrowInvalid: Unable to merge: Field <field> has incompatible types | {
"login": "cyanic-selkie",
"id": 32219669,
"node_id": "MDQ6VXNlcjMyMjE5NjY5",
"avatar_url": "https://avatars.githubusercontent.com/u/32219669?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/cyanic-selkie",
"html_url": "https://github.com/cyanic-selkie",
"followers_url": "https://api.github.com/users/cyanic-selkie/followers",
"following_url": "https://api.github.com/users/cyanic-selkie/following{/other_user}",
"gists_url": "https://api.github.com/users/cyanic-selkie/gists{/gist_id}",
"starred_url": "https://api.github.com/users/cyanic-selkie/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/cyanic-selkie/subscriptions",
"organizations_url": "https://api.github.com/users/cyanic-selkie/orgs",
"repos_url": "https://api.github.com/users/cyanic-selkie/repos",
"events_url": "https://api.github.com/users/cyanic-selkie/events{/privacy}",
"received_events_url": "https://api.github.com/users/cyanic-selkie/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi! The link pointing to the code that generated the dataset is broken. Can you please fix it to make debugging easier?",
"> Hi! The link pointing to the code that generated the dataset is broken. Can you please fix it to make debugging easier?\r\n\r\nSorry about that, it's fixed now.\r\n"
] | 2023-03-31T18:19:40 | 2023-04-04T14:38:30 | null | NONE | null | ### Describe the bug
When loading the dataset [wikianc-en](https://huggingface.co/datasets/cyanic-selkie/wikianc-en) which I created using [this](https://github.com/cyanic-selkie/wikianc) code, I get the following error:
```
Traceback (most recent call last):
File "/home/sven/code/rector/answer-detection/train.py", line 106, in <module>
(dataset, weights) = get_dataset(args.dataset, tokenizer, labels, args.padding)
File "/home/sven/code/rector/answer-detection/dataset.py", line 106, in get_dataset
dataset = load_dataset("cyanic-selkie/wikianc-en")
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/load.py", line 1794, in load_dataset
ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/builder.py", line 1106, in as_dataset
datasets = map_nested(
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 443, in map_nested
mapped = [
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 444, in <listcomp>
_single_map_nested((function, obj, types, None, True, None))
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 346, in _single_map_nested
return function(data_struct)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/builder.py", line 1136, in _build_single_dataset
ds = self._as_dataset(
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/builder.py", line 1207, in _as_dataset
dataset_kwargs = ArrowReader(cache_dir, self.info).read(
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/arrow_reader.py", line 239, in read
return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/arrow_reader.py", line 260, in read_files
pa_table = self._read_files(files, in_memory=in_memory)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/arrow_reader.py", line 203, in _read_files
pa_table = concat_tables(pa_tables) if len(pa_tables) != 1 else pa_tables[0]
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1808, in concat_tables
return ConcatenationTable.from_tables(tables, axis=axis)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1514, in from_tables
return cls.from_blocks(blocks)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1427, in from_blocks
table = cls._concat_blocks(blocks, axis=0)
File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1373, in _concat_blocks
return pa.concat_tables(pa_tables, promote=True)
File "pyarrow/table.pxi", line 5224, in pyarrow.lib.concat_tables
File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Unable to merge: Field paragraph_anchors has incompatible types: list<: struct<start: uint32 not null, end: uint32 not null, qid: uint32, pageid: uint32, title: string not null> not null> vs list<item: struct<start: uint32, end: uint32, qid: uint32, pageid: uint32, title: string>>
```
This only happens when I load the `train` split, indicating that the size of the dataset is the deciding factor.
### Steps to reproduce the bug
```python
from datasets import load_dataset
dataset = load_dataset("cyanic-selkie/wikianc-en", split="train")
```
### Expected behavior
The dataset should load normally without any errors.
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-6.2.8-arch1-1-x86_64-with-glibc2.37
- Python version: 3.10.10
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5692/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5692/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5691 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5691/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5691/comments | https://api.github.com/repos/huggingface/datasets/issues/5691/events | https://github.com/huggingface/datasets/pull/5691 | 1,649,737,526 | PR_kwDODunzps5NX08d | 5,691 | [docs] Compress data files | {
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"[Confirmed](https://huggingface.slack.com/archives/C02EMARJ65P/p1680541667004199) with the Hub team the file size limit for the Hugging Face Hub is 10MB :)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006789 / 0.011353 (-0.004564) | 0.004935 / 0.011008 (-0.006073) | 0.096796 / 0.038508 (0.058288) | 0.032485 / 0.023109 (0.009376) | 0.335342 / 0.275898 (0.059444) | 0.354999 / 0.323480 (0.031519) | 0.005467 / 0.007986 (-0.002519) | 0.005267 / 0.004328 (0.000939) | 0.073988 / 0.004250 (0.069737) | 0.044402 / 0.037052 (0.007350) | 0.331156 / 0.258489 (0.072666) | 0.363595 / 0.293841 (0.069754) | 0.035301 / 0.128546 (-0.093245) | 0.012141 / 0.075646 (-0.063505) | 0.333164 / 0.419271 (-0.086107) | 0.048818 / 0.043533 (0.005286) | 0.331458 / 0.255139 (0.076319) | 0.343567 / 0.283200 (0.060367) | 0.094963 / 0.141683 (-0.046720) | 1.444383 / 1.452155 (-0.007772) | 1.520093 / 1.492716 (0.027377) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212311 / 0.018006 (0.194305) | 0.436413 / 0.000490 (0.435923) | 0.000333 / 0.000200 (0.000133) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026670 / 0.037411 (-0.010742) | 0.105774 / 0.014526 (0.091248) | 0.115796 / 0.176557 (-0.060760) | 0.176504 / 0.737135 (-0.560631) | 0.121883 / 0.296338 (-0.174456) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400783 / 0.215209 (0.185574) | 4.006608 / 2.077655 (1.928953) | 1.817659 / 1.504120 (0.313539) | 1.619777 / 1.541195 (0.078582) | 1.684247 / 1.468490 (0.215757) | 0.701116 / 4.584777 (-3.883661) | 3.684056 / 3.745712 (-0.061656) | 2.065258 / 5.269862 (-3.204603) | 1.425460 / 4.565676 (-3.140217) | 0.084519 / 0.424275 (-0.339757) | 0.011949 / 0.007607 (0.004342) | 0.496793 / 0.226044 (0.270749) | 4.978864 / 2.268929 (2.709935) | 2.303388 / 55.444624 (-53.141237) | 1.978341 / 6.876477 (-4.898135) | 2.055744 / 2.142072 (-0.086329) | 0.832022 / 4.805227 (-3.973206) | 0.164715 / 6.500664 (-6.335949) | 0.062701 / 0.075469 (-0.012768) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.178723 / 1.841788 (-0.663065) | 14.583986 / 8.074308 (6.509678) | 14.189402 / 10.191392 (3.998010) | 0.183867 / 0.680424 (-0.496557) | 0.017565 / 0.534201 (-0.516636) | 0.421345 / 0.579283 (-0.157938) | 0.420235 / 0.434364 (-0.014129) | 0.496758 / 0.540337 (-0.043580) | 0.591558 / 1.386936 (-0.795378) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007019 / 0.011353 (-0.004334) | 0.004996 / 0.011008 (-0.006012) | 0.073345 / 0.038508 (0.034836) | 0.033077 / 0.023109 (0.009968) | 0.335954 / 0.275898 (0.060056) | 0.372616 / 0.323480 (0.049136) | 0.005678 / 0.007986 (-0.002308) | 0.003906 / 0.004328 (-0.000423) | 0.072841 / 0.004250 (0.068591) | 0.046829 / 0.037052 (0.009777) | 0.335177 / 0.258489 (0.076688) | 0.382862 / 0.293841 (0.089021) | 0.038406 / 0.128546 (-0.090141) | 0.012110 / 0.075646 (-0.063536) | 0.085796 / 0.419271 (-0.333476) | 0.049896 / 0.043533 (0.006363) | 0.338232 / 0.255139 (0.083093) | 0.361054 / 0.283200 (0.077855) | 0.103171 / 0.141683 (-0.038512) | 1.556692 / 1.452155 (0.104538) | 1.540023 / 1.492716 (0.047306) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223705 / 0.018006 (0.205699) | 0.438771 / 0.000490 (0.438282) | 0.002838 / 0.000200 (0.002639) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028423 / 0.037411 (-0.008988) | 0.110560 / 0.014526 (0.096035) | 0.121629 / 0.176557 (-0.054928) | 0.173638 / 0.737135 (-0.563498) | 0.127062 / 0.296338 (-0.169277) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425806 / 0.215209 (0.210597) | 4.251051 / 2.077655 (2.173397) | 2.059735 / 1.504120 (0.555615) | 1.864886 / 1.541195 (0.323692) | 1.941553 / 1.468490 (0.473063) | 0.700084 / 4.584777 (-3.884693) | 3.753150 / 3.745712 (0.007438) | 3.218606 / 5.269862 (-2.051256) | 1.439648 / 4.565676 (-3.126028) | 0.085239 / 0.424275 (-0.339037) | 0.012026 / 0.007607 (0.004419) | 0.521564 / 0.226044 (0.295520) | 5.217902 / 2.268929 (2.948973) | 2.557831 / 55.444624 (-52.886793) | 2.240223 / 6.876477 (-4.636254) | 2.364664 / 2.142072 (0.222591) | 0.825884 / 4.805227 (-3.979343) | 0.167800 / 6.500664 (-6.332864) | 0.063552 / 0.075469 (-0.011917) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255532 / 1.841788 (-0.586256) | 14.747783 / 8.074308 (6.673475) | 14.352263 / 10.191392 (4.160871) | 0.143659 / 0.680424 (-0.536765) | 0.017517 / 0.534201 (-0.516684) | 0.419863 / 0.579283 (-0.159421) | 0.416674 / 0.434364 (-0.017690) | 0.485694 / 0.540337 (-0.054643) | 0.584810 / 1.386936 (-0.802126) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#61db0e9c936bc67c18b37b0960e2f0bb1f8ffdcd \"CML watermark\")\n"
] | 2023-03-31T17:17:26 | 2023-04-19T13:37:32 | 2023-04-19T07:25:58 | MEMBER | null | This PR addresses the comments in #5687 about compressing text file extensions before uploading to the Hub. Also clarified what "too large" means based on the GitLFS [docs](https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-git-large-file-storage). | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5691/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5691/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5691",
"html_url": "https://github.com/huggingface/datasets/pull/5691",
"diff_url": "https://github.com/huggingface/datasets/pull/5691.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5691.patch",
"merged_at": "2023-04-19T07:25:58"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5689 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5689/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5689/comments | https://api.github.com/repos/huggingface/datasets/issues/5689/events | https://github.com/huggingface/datasets/pull/5689 | 1,648,956,349 | PR_kwDODunzps5NVMuI | 5,689 | Support streaming Beam datasets from HF GCS preprocessed data | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"```python\r\nIn [1]: from datasets import load_dataset\r\n\r\nIn [2]: ds = load_dataset(\"wikipedia\", \"20220301.en\", split=\"train\", streaming=True); item = next(iter(ds)); item\r\nOut[2]: \r\n{'id': '12',\r\n 'url': 'https://en.wikipedia.org/wiki/Anarchism',\r\n 'title': 'Anarchism',\r\n 'text': 'Anarchism is a political philosophy and movement that is sceptical of authority and rejects all involuntary, coercive forms of hierarchy. Anarchism calls for the abolition of the state, which it holds to be unnecessary, undesirable, and harmful. As a historically left-wing movement, placed on the farthest left of the political spectrum, it is usually described alongside communalism and libertarian Marxism as the libertarian wing (libertarian socialism) of the socialist movement,...}\r\n```",
"I love your example ๐ดโ๐
ฐ๏ธ",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007859 / 0.011353 (-0.003493) | 0.005129 / 0.011008 (-0.005879) | 0.098070 / 0.038508 (0.059562) | 0.036500 / 0.023109 (0.013391) | 0.311575 / 0.275898 (0.035677) | 0.338351 / 0.323480 (0.014872) | 0.005962 / 0.007986 (-0.002024) | 0.004060 / 0.004328 (-0.000268) | 0.072970 / 0.004250 (0.068719) | 0.049289 / 0.037052 (0.012237) | 0.310303 / 0.258489 (0.051814) | 0.347449 / 0.293841 (0.053608) | 0.046912 / 0.128546 (-0.081634) | 0.011952 / 0.075646 (-0.063694) | 0.333600 / 0.419271 (-0.085671) | 0.052700 / 0.043533 (0.009167) | 0.325486 / 0.255139 (0.070347) | 0.326920 / 0.283200 (0.043720) | 0.107683 / 0.141683 (-0.034000) | 1.416679 / 1.452155 (-0.035476) | 1.502418 / 1.492716 (0.009702) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216520 / 0.018006 (0.198514) | 0.448450 / 0.000490 (0.447960) | 0.004213 / 0.000200 (0.004013) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027081 / 0.037411 (-0.010331) | 0.110989 / 0.014526 (0.096463) | 0.116087 / 0.176557 (-0.060470) | 0.173771 / 0.737135 (-0.563364) | 0.121240 / 0.296338 (-0.175099) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399938 / 0.215209 (0.184729) | 4.017665 / 2.077655 (1.940010) | 1.782327 / 1.504120 (0.278207) | 1.612955 / 1.541195 (0.071761) | 1.698839 / 1.468490 (0.230349) | 0.706702 / 4.584777 (-3.878075) | 4.533425 / 3.745712 (0.787713) | 2.102611 / 5.269862 (-3.167250) | 1.461429 / 4.565676 (-3.104248) | 0.085719 / 0.424275 (-0.338556) | 0.012104 / 0.007607 (0.004497) | 0.507397 / 0.226044 (0.281352) | 5.061572 / 2.268929 (2.792643) | 2.272106 / 55.444624 (-53.172518) | 1.935575 / 6.876477 (-4.940901) | 2.102541 / 2.142072 (-0.039532) | 0.838395 / 4.805227 (-3.966832) | 0.168573 / 6.500664 (-6.332091) | 0.064234 / 0.075469 (-0.011235) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.190077 / 1.841788 (-0.651710) | 15.765587 / 8.074308 (7.691279) | 14.694626 / 10.191392 (4.503234) | 0.142912 / 0.680424 (-0.537512) | 0.017669 / 0.534201 (-0.516532) | 0.421502 / 0.579283 (-0.157781) | 0.452732 / 0.434364 (0.018368) | 0.497480 / 0.540337 (-0.042857) | 0.586310 / 1.386936 (-0.800626) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007629 / 0.011353 (-0.003724) | 0.005330 / 0.011008 (-0.005679) | 0.076366 / 0.038508 (0.037858) | 0.034703 / 0.023109 (0.011593) | 0.356300 / 0.275898 (0.080402) | 0.392909 / 0.323480 (0.069429) | 0.005959 / 0.007986 (-0.002026) | 0.004140 / 0.004328 (-0.000188) | 0.075289 / 0.004250 (0.071039) | 0.047880 / 0.037052 (0.010828) | 0.357289 / 0.258489 (0.098800) | 0.404554 / 0.293841 (0.110714) | 0.037182 / 0.128546 (-0.091365) | 0.012266 / 0.075646 (-0.063380) | 0.088554 / 0.419271 (-0.330718) | 0.049698 / 0.043533 (0.006165) | 0.353453 / 0.255139 (0.098314) | 0.373252 / 0.283200 (0.090052) | 0.101892 / 0.141683 (-0.039791) | 1.481534 / 1.452155 (0.029380) | 1.553818 / 1.492716 (0.061102) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229891 / 0.018006 (0.211884) | 0.452444 / 0.000490 (0.451954) | 0.000434 / 0.000200 (0.000234) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030170 / 0.037411 (-0.007241) | 0.115097 / 0.014526 (0.100571) | 0.122094 / 0.176557 (-0.054463) | 0.171352 / 0.737135 (-0.565784) | 0.128441 / 0.296338 (-0.167898) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428347 / 0.215209 (0.213138) | 4.266243 / 2.077655 (2.188588) | 2.148327 / 1.504120 (0.644207) | 1.874141 / 1.541195 (0.332946) | 1.968737 / 1.468490 (0.500246) | 0.715320 / 4.584777 (-3.869457) | 4.166097 / 3.745712 (0.420384) | 2.169550 / 5.269862 (-3.100312) | 1.377441 / 4.565676 (-3.188236) | 0.086376 / 0.424275 (-0.337899) | 0.012018 / 0.007607 (0.004411) | 0.517433 / 0.226044 (0.291388) | 5.167327 / 2.268929 (2.898398) | 2.545822 / 55.444624 (-52.898803) | 2.241726 / 6.876477 (-4.634751) | 2.327220 / 2.142072 (0.185147) | 0.841618 / 4.805227 (-3.963609) | 0.169473 / 6.500664 (-6.331191) | 0.065505 / 0.075469 (-0.009964) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270476 / 1.841788 (-0.571312) | 17.049885 / 8.074308 (8.975577) | 14.847615 / 10.191392 (4.656223) | 0.168671 / 0.680424 (-0.511753) | 0.017564 / 0.534201 (-0.516637) | 0.424780 / 0.579283 (-0.154503) | 0.517392 / 0.434364 (0.083028) | 0.561197 / 0.540337 (0.020859) | 0.697792 / 1.386936 (-0.689144) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ce06edf0afb70027ffbd3c2ddec5d28037e9bd31 \"CML watermark\")\n"
] | 2023-03-31T08:44:24 | 2023-04-12T05:57:55 | 2023-04-12T05:50:31 | MEMBER | null | This PR implements streaming Apache Beam datasets that are already preprocessed by us and stored in the HF Google Cloud Storage:
- natural_questions
- wiki40b
- wikipedia
This is done by streaming from the prepared Arrow files in HF Google Cloud Storage.
This will fix their corresponding dataset viewers. Related to:
- https://github.com/huggingface/datasets-server/pull/988#discussion_r1150767138
Related to:
- https://huggingface.co/datasets/natural_questions/discussions/4
- https://huggingface.co/datasets/wiki40b/discussions/2
- https://huggingface.co/datasets/wikipedia/discussions/9
CC: @severo | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5689/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5689/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5689",
"html_url": "https://github.com/huggingface/datasets/pull/5689",
"diff_url": "https://github.com/huggingface/datasets/pull/5689.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5689.patch",
"merged_at": "2023-04-12T05:50:30"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5690 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5690/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5690/comments | https://api.github.com/repos/huggingface/datasets/issues/5690/events | https://github.com/huggingface/datasets/issues/5690 | 1,649,289,883 | I_kwDODunzps5iTiqb | 5,690 | raise AttributeError(f"No {package_name} attribute {name}") AttributeError: No huggingface_hub attribute hf_api | {
"login": "wccccp",
"id": 55964850,
"node_id": "MDQ6VXNlcjU1OTY0ODUw",
"avatar_url": "https://avatars.githubusercontent.com/u/55964850?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/wccccp",
"html_url": "https://github.com/wccccp",
"followers_url": "https://api.github.com/users/wccccp/followers",
"following_url": "https://api.github.com/users/wccccp/following{/other_user}",
"gists_url": "https://api.github.com/users/wccccp/gists{/gist_id}",
"starred_url": "https://api.github.com/users/wccccp/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wccccp/subscriptions",
"organizations_url": "https://api.github.com/users/wccccp/orgs",
"repos_url": "https://api.github.com/users/wccccp/repos",
"events_url": "https://api.github.com/users/wccccp/events{/privacy}",
"received_events_url": "https://api.github.com/users/wccccp/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | null | [] | null | [
"Hi @wccccp, thanks for reporting. \r\nThat's weird since `huggingface_hub` _has_ a module called `hf_api` and you are using a recent version of it. \r\n\r\nWhich version of `datasets` are you using? And is it a bug that you experienced only recently? (cc @lhoestq can it be somehow related to the recent release of `datasets`?)\r\n\r\n~@wccccp what I can suggest you is to uninstall and reinstall completely huggingface_hub and datasets? My first guess is that there is a discrepancy somewhere in your setup ๐~",
"@wccccp Actually I have also been able to reproduce the error so it's not an issue with your setup.\r\n\r\n@huggingface/datasets I found this issue quite weird. Is this a module that is not used very often?\r\nThe problematic line is [this one](https://github.com/huggingface/datasets/blame/c33e8ce68b5000988bf6b2e4bca27ffaa469acea/src/datasets/data_files.py#L476) where `huggingface_hub.hf_api.DatasetInfo` is used. `huggingface_hub` is imported [here](https://github.com/huggingface/datasets/blame/c33e8ce68b5000988bf6b2e4bca27ffaa469acea/src/datasets/data_files.py#L6) as `import huggingface_hub`. However since modules are lazy-loaded in `hfh` you need to explicitly import them (i.e. `import huggingface_hub.hf_api`).\r\n\r\nWhat's weird is that nothing has changed for months. Datasets code seems that it didn't change for 2 years when I git-blame this part. And lazy-loading was introduced 1 year ago in `huggingface_hub`. Could it be that `data_files.py` is a file almost never used?\r\n",
"For context, I tried to run `import huggingface_hub; huggingface_hub.hf_api.DatasetInfo` in the terminal with different versions of `hfh` and I need to go back to `huggingface_hub==0.7.0` to make it work (latest is 0.13.3).",
"Before the error happens at line 120 in `data_files.py`, `datasets.filesystems.hffilesystem` is imported at the top of `data_files.py` and this file does `from huggingface_hub.hf_api import DatasetInfo` - so `huggingface_hub.hf_api` is imported. Not sure how the error could happen, what version of `datasets` are you using @wccccp ?",
"Closing due to inactivity."
] | 2023-03-31T08:22:22 | 2023-07-21T14:21:57 | 2023-07-21T14:21:57 | NONE | null | ### Describe the bug
rta.sh
Traceback (most recent call last):
File "run.py", line 7, in <module>
import datasets
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/__init__.py", line 37, in <module>
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/builder.py", line 44, in <module>
from .data_files import DataFilesDict, _sanitize_patterns
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/data_files.py", line 120, in <module>
dataset_info: huggingface_hub.hf_api.DatasetInfo,
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/huggingface_hub/__init__.py", line 290, in __getattr__
raise AttributeError(f"No {package_name} attribute {name}")
AttributeError: No huggingface_hub attribute hf_api
### Reproduction
_No response_
### Logs
```shell
Traceback (most recent call last):
File "run.py", line 7, in <module>
import datasets
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/__init__.py", line 37, in <module>
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/builder.py", line 44, in <module>
from .data_files import DataFilesDict, _sanitize_patterns
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/data_files.py", line 120, in <module>
dataset_info: huggingface_hub.hf_api.DatasetInfo,
File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/huggingface_hub/__init__.py", line 290, in __getattr__
raise AttributeError(f"No {package_name} attribute {name}")
AttributeError: No huggingface_hub attribute hf_api
```
### System info
```shell
- huggingface_hub version: 0.13.2
- Platform: Linux-5.4.0-144-generic-x86_64-with-glibc2.10
- Python version: 3.8.5
- Running in iPython ?: No
- Running in notebook ?: No
- Running in Google Colab ?: No
- Token path ?: /home/appuser/.cache/huggingface/token
- Has saved token ?: False
- Configured git credential helpers:
- FastAI: N/A
- Tensorflow: N/A
- Torch: 1.7.1
- Jinja2: N/A
- Graphviz: N/A
- Pydot: N/A
- Pillow: 9.3.0
- hf_transfer: N/A
- ENDPOINT: https://huggingface.co
- HUGGINGFACE_HUB_CACHE: /home/appuser/.cache/huggingface/hub
- HUGGINGFACE_ASSETS_CACHE: /home/appuser/.cache/huggingface/assets
- HF_TOKEN_PATH: /home/appuser/.cache/huggingface/token
- HF_HUB_OFFLINE: False
- HF_HUB_DISABLE_TELEMETRY: False
- HF_HUB_DISABLE_PROGRESS_BARS: None
- HF_HUB_DISABLE_SYMLINKS_WARNING: False
- HF_HUB_DISABLE_IMPLICIT_TOKEN: False
```
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5690/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5690/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5688 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5688/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5688/comments | https://api.github.com/repos/huggingface/datasets/issues/5688/events | https://github.com/huggingface/datasets/issues/5688 | 1,648,463,504 | I_kwDODunzps5iQY6Q | 5,688 | Wikipedia download_and_prepare for GCS | {
"login": "adrianfagerland",
"id": 25522531,
"node_id": "MDQ6VXNlcjI1NTIyNTMx",
"avatar_url": "https://avatars.githubusercontent.com/u/25522531?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/adrianfagerland",
"html_url": "https://github.com/adrianfagerland",
"followers_url": "https://api.github.com/users/adrianfagerland/followers",
"following_url": "https://api.github.com/users/adrianfagerland/following{/other_user}",
"gists_url": "https://api.github.com/users/adrianfagerland/gists{/gist_id}",
"starred_url": "https://api.github.com/users/adrianfagerland/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/adrianfagerland/subscriptions",
"organizations_url": "https://api.github.com/users/adrianfagerland/orgs",
"repos_url": "https://api.github.com/users/adrianfagerland/repos",
"events_url": "https://api.github.com/users/adrianfagerland/events{/privacy}",
"received_events_url": "https://api.github.com/users/adrianfagerland/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hi @adrianfagerland, thanks for reporting.\r\n\r\nPlease note that \"wikipedia\" is a special dataset, with an Apache Beam builder: https://beam.apache.org/\r\nYou can find more info about Beam datasets in our docs: https://huggingface.co/docs/datasets/beam\r\n\r\nIt was implemented to be run in parallel processing, using one of the distributed back-ends supported by Apache Beam: https://beam.apache.org/get-started/beam-overview/#apache-beam-pipeline-runners\r\n\r\nThat is, you are trying to process the source wikipedia data on your machine (not distributed) when passing `beam_runner=\"DirectRunner\"`.\r\n\r\nAs documented in the wikipedia dataset page (https://huggingface.co/datasets/wikipedia):\r\n\r\n Some subsets of Wikipedia have already been processed by HuggingFace, and you can load them just with:\r\n \r\n from datasets import load_dataset\r\n \r\n load_dataset(\"wikipedia\", \"20220301.en\")\r\n\r\n The list of pre-processed subsets is:\r\n - \"20220301.de\"\r\n - \"20220301.en\"\r\n - \"20220301.fr\"\r\n - \"20220301.frr\"\r\n - \"20220301.it\"\r\n - \"20220301.simple\"\r\n\r\nTo download the available processed data (in Arrow format):\r\n```python\r\nbuilder = datasets.load_dataset_builder(\"wikipedia\", \"20220301.en\")\r\nbuilder.download_and_prepare(your_path)\r\n```",
"When running this using :\r\n```\r\nimport datasets\r\nfrom apache_beam.options.pipeline_options import PipelineOptions\r\nfrom gcsfs import GCSFileSystem\r\n\r\nstorage_options = {\"project\":\"tdt4310\", \"token\":\"cloud\"}\r\nfs = GCSFileSystem(**storage_options)\r\n\r\noutput_dir = \"gcs://quiz_transformer/\"\r\nbeam_options = PipelineOptions(\r\n region=\"europe-west4\",\r\n project=\"tdt4310\",\r\n temp_location=output_dir+\"tmp/\")\r\n\r\n\r\nbuilder = datasets.load_dataset_builder(\"wikipedia\", \"20220301.en\", beam_runner=\"dataflow\", beam_options=beam_options)\r\nbuilder.download_and_prepare(\r\n output_dir, storage_options=storage_options, file_format=\"parquet\")\r\n```\r\nI now get this error:\r\n```\r\nraise FileNotFoundError(f\"Couldn't find file at {url}\")\r\nFileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json\r\nDownloading data files: 0%| | 0/1 [00:00<?, ?it/s]\r\n```\r\n\r\nI get the same error for this:\r\n```\r\nimport datasets\r\nfrom gcsfs import GCSFileSystem\r\n\r\nstorage_options = {\"project\":\"tdt4310\", \"token\":\"cloud\"}\r\nfs = GCSFileSystem(**storage_options)\r\n\r\noutput_dir = \"gcs://quiz_transformer/\"\r\nbuilder = datasets.load_dataset_builder(\"wikipedia\", \"20220301.en\")\r\nbuilder.download_and_prepare(\r\n output_dir, storage_options=storage_options, file_format=\"parquet\")\r\n```\r\n\r\n\r\n\r\n"
] | 2023-03-30T23:43:22 | 2023-03-31T13:31:32 | null | NONE | null | ### Describe the bug
I am unable to download the wikipedia dataset onto GCS.
When I run the script provided the memory firstly gets eaten up, then it crashes.
I tried running this on a VM with 128GB RAM and all I got was a two empty files: _data_builder.lock_, _data.incomplete/beam-temp-wikipedia-train-1ab2039acf3611ed87a9893475de0093_
I have troubleshot this for two straight days now, but I am just unable to get the dataset into storage.
### Steps to reproduce the bug
Run this and insert a path:
```
import datasets
builder = datasets.load_dataset_builder(
"wikipedia", language="en", date="20230320", beam_runner="DirectRunner")
builder.download_and_prepare({path}, file_format="parquet")
```
This is where the problem of it eating RAM occurs.
I have also tried several versions of this, based on the docs:
```
import gcsfs
import datasets
storage_options = {"project": "tdt4310", "token": "cloud"}
fs = gcsfs.GCSFileSystem(**storage_options)
output_dir = "gcs://wikipediadata/"
builder = datasets.load_dataset_builder(
"wikipedia", date="20230320", language="en", beam_runner="DirectRunner")
builder.download_and_prepare(
output_dir, storage_options=storage_options, file_format="parquet")
```
The error message that is received here is:
> ValueError: Unable to get filesystem from specified path, please use the correct path or ensure the required dependency is installed, e.g., pip install apache-beam[gcp]. Path specified: gcs://wikipediadata/wikipedia-train [while running 'train/Save to parquet/Write/WriteImpl/InitializeWrite']
I have ran `pip install apache-beam[gcp]`
### Expected behavior
The wikipedia data loaded into GCS
Everything worked when testing with a smaller demo dataset found somewhere in the docs
### Environment info
Newest published version of datasets. Python 3.9. Also tested with Python 3.7. 128GB RAM Google Cloud VM instance. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5688/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5688/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5687 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5687/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5687/comments | https://api.github.com/repos/huggingface/datasets/issues/5687/events | https://github.com/huggingface/datasets/issues/5687 | 1,647,009,018 | I_kwDODunzps5iK1z6 | 5,687 | Document to compress data files before uploading | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892861,
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation",
"name": "documentation",
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation"
}
] | closed | false | null | [] | null | [
"Great idea!\r\n\r\nShould we also take this opportunity to include some audio/image file formats? Currently, it still reads very text heavy. Something like:\r\n\r\n> We support many text, audio, and image data extensions such as `.zip`, `.rar`, `.mp3`, and `.jpg` among many others. For data extensions like `.csv`, `.json`, `.jsonl`, and `txt`, we recommend compressing them before uploading to the Hub. These file extensions are not tracked by Git LFS by default, and if they're too large, they will not be committed and uploaded. Take a look at the `.gitattributes` file in your repository for a complete list of supported file extensions.",
"Hi @stevhliu, thanks for your suggestion.\r\n\r\nI agree it is a good opportunity to mention that audio/image file formats are also supported.\r\n\r\nNit:\r\nI would not mention .zip, .rar after \"text, audio, and image data extensions\". Those are \"compression\" extensions and not \"text, audio, and image data extensions\".\r\n\r\nWhat about something similar to:\r\n> We support many text, audio, and image data extensions such as `.csv`, `.mp3`, and `.jpg` among many others. For text data extensions like `.csv`, `.json`, `.jsonl`, and `.txt`, we recommend compressing them before uploading to the Hub (to `.zip` or `.gz` file extension for example). \r\n>\r\n> Note that text file extensions are not tracked by Git LFS by default, and if they're too large, they will not be committed and uploaded. Take a look at the `.gitattributes` file in your repository for a complete list of tracked file extensions by default.\r\n\r\nNote that for compressions I have mentioned:\r\n- gz, to compress individual files\r\n- zip, to compress and archive multiple files; zip is preferred rather than tar because it supports streaming out of the box",
"Perfect, thanks for making the distinction between compression and data extensions!"
] | 2023-03-30T06:41:07 | 2023-04-19T07:25:59 | 2023-04-19T07:25:59 | MEMBER | null | In our docs to [Share a dataset to the Hub](https://huggingface.co/docs/datasets/upload_dataset), we tell users to upload directly their data files, like CSV, JSON, JSON-Lines, text,... However, these extensions are not tracked by Git LFS by default, as they are not in the `.giattributes` file. Therefore, if they are too large, Git will fail to commit/upload them.
I think for those file extensions (.csv, .json, .jsonl, .txt), we should better recommend to **compress** their data files (using ZIP for example) before uploading them to the Hub.
- Compressed files are tracked by Git LFS in our default `.gitattributes` file
What do you think?
CC: @stevhliu
See related issue:
- https://huggingface.co/datasets/tcor0005/langchain-docs-400-chunksize/discussions/1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5687/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5687/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5686 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5686/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5686/comments | https://api.github.com/repos/huggingface/datasets/issues/5686/events | https://github.com/huggingface/datasets/pull/5686 | 1,646,308,228 | PR_kwDODunzps5NMXdu | 5,686 | set dev version | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5686). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008460 / 0.011353 (-0.002893) | 0.006114 / 0.011008 (-0.004894) | 0.121496 / 0.038508 (0.082987) | 0.035030 / 0.023109 (0.011920) | 0.397778 / 0.275898 (0.121880) | 0.429020 / 0.323480 (0.105540) | 0.007811 / 0.007986 (-0.000174) | 0.006269 / 0.004328 (0.001940) | 0.098895 / 0.004250 (0.094645) | 0.045407 / 0.037052 (0.008355) | 0.413679 / 0.258489 (0.155189) | 0.437491 / 0.293841 (0.143650) | 0.053207 / 0.128546 (-0.075339) | 0.018471 / 0.075646 (-0.057175) | 0.414800 / 0.419271 (-0.004472) | 0.060864 / 0.043533 (0.017332) | 0.398501 / 0.255139 (0.143362) | 0.421142 / 0.283200 (0.137942) | 0.114908 / 0.141683 (-0.026775) | 1.678630 / 1.452155 (0.226475) | 1.782313 / 1.492716 (0.289596) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.280783 / 0.018006 (0.262777) | 0.591573 / 0.000490 (0.591083) | 0.005797 / 0.000200 (0.005597) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030431 / 0.037411 (-0.006981) | 0.117342 / 0.014526 (0.102816) | 0.128456 / 0.176557 (-0.048101) | 0.198782 / 0.737135 (-0.538354) | 0.128501 / 0.296338 (-0.167838) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.603073 / 0.215209 (0.387864) | 6.101354 / 2.077655 (4.023699) | 2.527812 / 1.504120 (1.023692) | 2.101468 / 1.541195 (0.560273) | 2.092813 / 1.468490 (0.624323) | 1.182150 / 4.584777 (-3.402627) | 5.389278 / 3.745712 (1.643566) | 5.041001 / 5.269862 (-0.228860) | 2.650581 / 4.565676 (-1.915095) | 0.138761 / 0.424275 (-0.285514) | 0.014209 / 0.007607 (0.006602) | 0.748596 / 0.226044 (0.522552) | 7.373937 / 2.268929 (5.105008) | 3.245882 / 55.444624 (-52.198742) | 2.523569 / 6.876477 (-4.352908) | 2.581343 / 2.142072 (0.439270) | 1.340436 / 4.805227 (-3.464791) | 0.241388 / 6.500664 (-6.259276) | 0.076634 / 0.075469 (0.001164) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.480237 / 1.841788 (-0.361551) | 16.781338 / 8.074308 (8.707030) | 19.735028 / 10.191392 (9.543636) | 0.256872 / 0.680424 (-0.423551) | 0.029211 / 0.534201 (-0.504990) | 0.503292 / 0.579283 (-0.075991) | 0.584510 / 0.434364 (0.150146) | 0.580293 / 0.540337 (0.039955) | 0.678863 / 1.386936 (-0.708073) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009972 / 0.011353 (-0.001381) | 0.006107 / 0.011008 (-0.004902) | 0.096188 / 0.038508 (0.057680) | 0.033320 / 0.023109 (0.010210) | 0.420789 / 0.275898 (0.144891) | 0.460488 / 0.323480 (0.137008) | 0.006492 / 0.007986 (-0.001493) | 0.005325 / 0.004328 (0.000997) | 0.094974 / 0.004250 (0.090723) | 0.047708 / 0.037052 (0.010655) | 0.426689 / 0.258489 (0.168200) | 0.476440 / 0.293841 (0.182599) | 0.052776 / 0.128546 (-0.075770) | 0.018779 / 0.075646 (-0.056868) | 0.119598 / 0.419271 (-0.299673) | 0.061800 / 0.043533 (0.018267) | 0.421305 / 0.255139 (0.166166) | 0.441125 / 0.283200 (0.157925) | 0.114221 / 0.141683 (-0.027462) | 1.712681 / 1.452155 (0.260526) | 1.852316 / 1.492716 (0.359600) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272412 / 0.018006 (0.254405) | 0.583996 / 0.000490 (0.583506) | 0.000505 / 0.000200 (0.000305) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029553 / 0.037411 (-0.007858) | 0.124921 / 0.014526 (0.110395) | 0.133338 / 0.176557 (-0.043218) | 0.193811 / 0.737135 (-0.543325) | 0.147973 / 0.296338 (-0.148365) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.595241 / 0.215209 (0.380032) | 6.012015 / 2.077655 (3.934360) | 2.611295 / 1.504120 (1.107175) | 2.290127 / 1.541195 (0.748932) | 2.300366 / 1.468490 (0.831876) | 1.197602 / 4.584777 (-3.387175) | 5.439064 / 3.745712 (1.693352) | 2.906088 / 5.269862 (-2.363773) | 1.919183 / 4.565676 (-2.646493) | 0.132166 / 0.424275 (-0.292109) | 0.014544 / 0.007607 (0.006937) | 0.726377 / 0.226044 (0.500333) | 7.361023 / 2.268929 (5.092094) | 3.289266 / 55.444624 (-52.155358) | 2.635570 / 6.876477 (-4.240907) | 2.595691 / 2.142072 (0.453619) | 1.329458 / 4.805227 (-3.475769) | 0.239419 / 6.500664 (-6.261245) | 0.076316 / 0.075469 (0.000847) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.547616 / 1.841788 (-0.294172) | 17.374315 / 8.074308 (9.300007) | 20.216275 / 10.191392 (10.024883) | 0.252102 / 0.680424 (-0.428322) | 0.027535 / 0.534201 (-0.506665) | 0.524618 / 0.579283 (-0.054666) | 0.596803 / 0.434364 (0.162439) | 0.652632 / 0.540337 (0.112294) | 0.762272 / 1.386936 (-0.624664) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8c7d4b2f981f8cf639dcbd80f40a41aa5b1693c6 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008236 / 0.011353 (-0.003117) | 0.006186 / 0.011008 (-0.004822) | 0.117852 / 0.038508 (0.079344) | 0.034711 / 0.023109 (0.011602) | 0.447564 / 0.275898 (0.171666) | 0.438727 / 0.323480 (0.115247) | 0.006576 / 0.007986 (-0.001410) | 0.005903 / 0.004328 (0.001574) | 0.094309 / 0.004250 (0.090059) | 0.042760 / 0.037052 (0.005708) | 0.393269 / 0.258489 (0.134780) | 0.438061 / 0.293841 (0.144220) | 0.059029 / 0.128546 (-0.069517) | 0.020296 / 0.075646 (-0.055350) | 0.412057 / 0.419271 (-0.007215) | 0.059808 / 0.043533 (0.016275) | 0.407243 / 0.255139 (0.152104) | 0.414290 / 0.283200 (0.131090) | 0.107701 / 0.141683 (-0.033981) | 1.671522 / 1.452155 (0.219367) | 1.775055 / 1.492716 (0.282338) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275242 / 0.018006 (0.257236) | 0.599698 / 0.000490 (0.599208) | 0.001289 / 0.000200 (0.001089) | 0.000101 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029579 / 0.037411 (-0.007832) | 0.127249 / 0.014526 (0.112723) | 0.137431 / 0.176557 (-0.039126) | 0.220330 / 0.737135 (-0.516805) | 0.133540 / 0.296338 (-0.162798) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.571989 / 0.215209 (0.356780) | 5.931503 / 2.077655 (3.853848) | 2.526646 / 1.504120 (1.022527) | 2.189476 / 1.541195 (0.648281) | 2.151935 / 1.468490 (0.683444) | 1.242440 / 4.584777 (-3.342337) | 5.599675 / 3.745712 (1.853963) | 3.242035 / 5.269862 (-2.027826) | 2.368361 / 4.565676 (-2.197315) | 0.145659 / 0.424275 (-0.278616) | 0.013813 / 0.007607 (0.006206) | 0.782495 / 0.226044 (0.556451) | 7.861619 / 2.268929 (5.592690) | 3.241001 / 55.444624 (-52.203623) | 2.611025 / 6.876477 (-4.265452) | 2.667263 / 2.142072 (0.525191) | 1.429992 / 4.805227 (-3.375235) | 0.243008 / 6.500664 (-6.257656) | 0.083686 / 0.075469 (0.008217) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.565526 / 1.841788 (-0.276262) | 18.260815 / 8.074308 (10.186507) | 22.586133 / 10.191392 (12.394741) | 0.231864 / 0.680424 (-0.448559) | 0.030877 / 0.534201 (-0.503324) | 0.569726 / 0.579283 (-0.009557) | 0.678638 / 0.434364 (0.244274) | 0.611810 / 0.540337 (0.071472) | 0.718771 / 1.386936 (-0.668165) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009398 / 0.011353 (-0.001955) | 0.006452 / 0.011008 (-0.004556) | 0.103352 / 0.038508 (0.064844) | 0.034773 / 0.023109 (0.011664) | 0.523782 / 0.275898 (0.247884) | 0.523554 / 0.323480 (0.200074) | 0.006990 / 0.007986 (-0.000996) | 0.004994 / 0.004328 (0.000666) | 0.102199 / 0.004250 (0.097949) | 0.050087 / 0.037052 (0.013035) | 0.496662 / 0.258489 (0.238173) | 0.563130 / 0.293841 (0.269289) | 0.052851 / 0.128546 (-0.075695) | 0.019824 / 0.075646 (-0.055822) | 0.122657 / 0.419271 (-0.296614) | 0.057714 / 0.043533 (0.014181) | 0.470502 / 0.255139 (0.215363) | 0.518908 / 0.283200 (0.235708) | 0.114374 / 0.141683 (-0.027309) | 1.795918 / 1.452155 (0.343763) | 1.957461 / 1.492716 (0.464744) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.303921 / 0.018006 (0.285915) | 0.584406 / 0.000490 (0.583916) | 0.000444 / 0.000200 (0.000244) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032254 / 0.037411 (-0.005158) | 0.129966 / 0.014526 (0.115440) | 0.151000 / 0.176557 (-0.025557) | 0.234060 / 0.737135 (-0.503076) | 0.149444 / 0.296338 (-0.146895) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.666627 / 0.215209 (0.451418) | 7.054701 / 2.077655 (4.977046) | 2.836895 / 1.504120 (1.332775) | 2.561994 / 1.541195 (1.020799) | 2.672460 / 1.468490 (1.203970) | 1.411929 / 4.584777 (-3.172848) | 6.026918 / 3.745712 (2.281206) | 3.341745 / 5.269862 (-1.928116) | 2.280317 / 4.565676 (-2.285359) | 0.156635 / 0.424275 (-0.267641) | 0.014256 / 0.007607 (0.006649) | 0.804830 / 0.226044 (0.578786) | 8.106960 / 2.268929 (5.838031) | 3.597452 / 55.444624 (-51.847172) | 3.002847 / 6.876477 (-3.873630) | 2.931160 / 2.142072 (0.789088) | 1.484172 / 4.805227 (-3.321056) | 0.254166 / 6.500664 (-6.246498) | 0.080554 / 0.075469 (0.005085) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.809909 / 1.841788 (-0.031879) | 18.988994 / 8.074308 (10.914686) | 23.153442 / 10.191392 (12.962050) | 0.250554 / 0.680424 (-0.429870) | 0.048677 / 0.534201 (-0.485524) | 0.574109 / 0.579283 (-0.005174) | 0.640917 / 0.434364 (0.206553) | 0.725215 / 0.540337 (0.184878) | 0.878234 / 1.386936 (-0.508702) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e3667d6e17d68503469c8e88ec344b7cccfa2346 \"CML watermark\")\n"
] | 2023-03-29T18:24:13 | 2023-03-29T18:33:49 | 2023-03-29T18:24:22 | MEMBER | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5686/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5686/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5686",
"html_url": "https://github.com/huggingface/datasets/pull/5686",
"diff_url": "https://github.com/huggingface/datasets/pull/5686.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5686.patch",
"merged_at": "2023-03-29T18:24:22"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5685 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5685/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5685/comments | https://api.github.com/repos/huggingface/datasets/issues/5685/events | https://github.com/huggingface/datasets/issues/5685 | 1,646,048,667 | I_kwDODunzps5iHLWb | 5,685 | Broken Image render on the hub website | {
"login": "FrancescoSaverioZuppichini",
"id": 15908060,
"node_id": "MDQ6VXNlcjE1OTA4MDYw",
"avatar_url": "https://avatars.githubusercontent.com/u/15908060?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/FrancescoSaverioZuppichini",
"html_url": "https://github.com/FrancescoSaverioZuppichini",
"followers_url": "https://api.github.com/users/FrancescoSaverioZuppichini/followers",
"following_url": "https://api.github.com/users/FrancescoSaverioZuppichini/following{/other_user}",
"gists_url": "https://api.github.com/users/FrancescoSaverioZuppichini/gists{/gist_id}",
"starred_url": "https://api.github.com/users/FrancescoSaverioZuppichini/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/FrancescoSaverioZuppichini/subscriptions",
"organizations_url": "https://api.github.com/users/FrancescoSaverioZuppichini/orgs",
"repos_url": "https://api.github.com/users/FrancescoSaverioZuppichini/repos",
"events_url": "https://api.github.com/users/FrancescoSaverioZuppichini/events{/privacy}",
"received_events_url": "https://api.github.com/users/FrancescoSaverioZuppichini/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! \r\n\r\nYou can fix the viewer by adding the `dataset_info` YAML field deleted in https://huggingface.co/datasets/Francesco/cell-towers/commit/b95b59ddd91ebe9c12920f0efe0ed415cd0d4298 back to the metadata section of the card. \r\n\r\nTo avoid this issue in the feature, you can use `huggingface_hub`'s [RepoCard](https://huggingface.co/docs/huggingface_hub/package_reference/cards) API to update the dataset card instead of `upload_file`:\r\n```python\r\nfrom huggingface_hub import DatasetCard\r\n# Load card\r\ncard = DatasetCard.load(\"<namespace>/<repo_id>\")\r\n# Modify card content\r\ncard.content = ...\r\n# Push card to the Hub\r\ncard.push_to_hub(\"<namespace>/<repo_id>\")\r\n```\r\n\r\nHowever, the best solution would be to use the features info stored in the header of the Parquet shards generated with `push_to_hub` on the viewer side to avoid unexpected issues such as this one. This shouldn't be too hard to address.",
"Thanks for reporting @FrancescoSaverioZuppichini.\r\n\r\nFor future issues with your specific dataset, you can use its \"Community\" tab to start a conversation: https://huggingface.co/datasets/Francesco/cell-towers/discussions/new",
"Thanks @albertvillanova , @mariosasko I was not aware of this requirement from the doc (must have skipped :sweat_smile: )\r\n\r\nConfirmed, adding back `dataset_info` fixed the issu"
] | 2023-03-29T15:25:30 | 2023-03-30T07:54:25 | 2023-03-30T07:54:25 | NONE | null | ### Describe the bug
Hi :wave:
Not sure if this is the right place to ask, but I am trying to load a huge amount of datasets on the hub (:partying_face: ) but I am facing a little issue with the `image` type
![image](https://user-images.githubusercontent.com/15908060/228587875-427a37f1-3a31-4e17-8bbe-0f759003910d.png)
See this [dataset](https://huggingface.co/datasets/Francesco/cell-towers), basically for some reason the first image has numerical bytes inside, not sure if that is okay, but the image render feature **doesn't work**
So the dataset is stored in the following way
```python
builder.download_and_prepare(output_dir=str(output_dir))
ds = builder.as_dataset(split="train")
# [NOTE] no idea how to push it from the builder folder
ds.push_to_hub(repo_id=repo_id)
builder.as_dataset(split="validation").push_to_hub(repo_id=repo_id)
ds = builder.as_dataset(split="test")
ds.push_to_hub(repo_id=repo_id)
```
The build is this class
```python
class COCOLikeDatasetBuilder(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"objects": datasets.Sequence(
{
"id": datasets.Value("int64"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(
datasets.Value("float32"), length=4
),
"category": datasets.ClassLabel(names=categories),
}
),
}
)
return datasets.DatasetInfo(
description=description,
features=features,
homepage=homepage,
license=license,
citation=citation,
)
def _split_generators(self, dl_manager):
archive = dl_manager.download(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotation_file_path": "train/_annotations.coco.json",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"annotation_file_path": "test/_annotations.coco.json",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"annotation_file_path": "valid/_annotations.coco.json",
"files": dl_manager.iter_archive(archive),
},
),
]
def _generate_examples(self, annotation_file_path, files):
def process_annot(annot, category_id_to_category):
return {
"id": annot["id"],
"area": annot["area"],
"bbox": annot["bbox"],
"category": category_id_to_category[annot["category_id"]],
}
image_id_to_image = {}
idx = 0
# This loop relies on the ordering of the files in the archive:
# Annotation files come first, then the images.
for path, f in files:
file_name = os.path.basename(path)
if annotation_file_path in path:
annotations = json.load(f)
category_id_to_category = {
category["id"]: category["name"]
for category in annotations["categories"]
}
print(category_id_to_category)
image_id_to_annotations = collections.defaultdict(list)
for annot in annotations["annotations"]:
image_id_to_annotations[annot["image_id"]].append(annot)
image_id_to_image = {
annot["file_name"]: annot for annot in annotations["images"]
}
elif file_name in image_id_to_image:
image = image_id_to_image[file_name]
objects = [
process_annot(annot, category_id_to_category)
for annot in image_id_to_annotations[image["id"]]
]
print(file_name)
yield idx, {
"image_id": image["id"],
"image": {"path": path, "bytes": f.read()},
"width": image["width"],
"height": image["height"],
"objects": objects,
}
idx += 1
```
Basically, I want to add to the hub every dataset I come across on coco format
Thanks
Fra
### Steps to reproduce the bug
In this case, you can just navigate on the [dataset](https://huggingface.co/datasets/Francesco/cell-towers)
### Expected behavior
I was expecting the image rendering feature to work
### Environment info
Not a lot to share, I am using `datasets` from a fresh venv | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5685/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5685/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5684 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5684/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5684/comments | https://api.github.com/repos/huggingface/datasets/issues/5684/events | https://github.com/huggingface/datasets/pull/5684 | 1,646,013,226 | PR_kwDODunzps5NLXWm | 5,684 | Release: 2.11.0 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007017 / 0.011353 (-0.004335) | 0.004917 / 0.011008 (-0.006091) | 0.098391 / 0.038508 (0.059883) | 0.032677 / 0.023109 (0.009568) | 0.312126 / 0.275898 (0.036227) | 0.352477 / 0.323480 (0.028998) | 0.005960 / 0.007986 (-0.002025) | 0.003801 / 0.004328 (-0.000528) | 0.073916 / 0.004250 (0.069666) | 0.045610 / 0.037052 (0.008557) | 0.319626 / 0.258489 (0.061137) | 0.370575 / 0.293841 (0.076734) | 0.035888 / 0.128546 (-0.092658) | 0.012012 / 0.075646 (-0.063635) | 0.338290 / 0.419271 (-0.080982) | 0.049452 / 0.043533 (0.005919) | 0.301226 / 0.255139 (0.046087) | 0.336744 / 0.283200 (0.053545) | 0.100835 / 0.141683 (-0.040847) | 1.500008 / 1.452155 (0.047853) | 1.566757 / 1.492716 (0.074041) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220668 / 0.018006 (0.202662) | 0.449273 / 0.000490 (0.448784) | 0.003861 / 0.000200 (0.003661) | 0.000126 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026847 / 0.037411 (-0.010565) | 0.105916 / 0.014526 (0.091390) | 0.116245 / 0.176557 (-0.060312) | 0.172617 / 0.737135 (-0.564519) | 0.122846 / 0.296338 (-0.173492) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417906 / 0.215209 (0.202697) | 4.169092 / 2.077655 (2.091437) | 1.934439 / 1.504120 (0.430319) | 1.735718 / 1.541195 (0.194523) | 1.828205 / 1.468490 (0.359715) | 0.697446 / 4.584777 (-3.887331) | 3.802830 / 3.745712 (0.057118) | 3.686464 / 5.269862 (-1.583398) | 1.863924 / 4.565676 (-2.701752) | 0.086520 / 0.424275 (-0.337755) | 0.012101 / 0.007607 (0.004493) | 0.521252 / 0.226044 (0.295208) | 5.200937 / 2.268929 (2.932009) | 2.414290 / 55.444624 (-53.030334) | 2.070890 / 6.876477 (-4.805587) | 2.237693 / 2.142072 (0.095621) | 0.843417 / 4.805227 (-3.961811) | 0.167856 / 6.500664 (-6.332809) | 0.064997 / 0.075469 (-0.010472) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212334 / 1.841788 (-0.629454) | 14.710632 / 8.074308 (6.636324) | 14.877489 / 10.191392 (4.686097) | 0.151268 / 0.680424 (-0.529156) | 0.018663 / 0.534201 (-0.515538) | 0.429678 / 0.579283 (-0.149605) | 0.425054 / 0.434364 (-0.009310) | 0.502804 / 0.540337 (-0.037533) | 0.587932 / 1.386936 (-0.799004) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007462 / 0.011353 (-0.003891) | 0.005307 / 0.011008 (-0.005701) | 0.074309 / 0.038508 (0.035801) | 0.033437 / 0.023109 (0.010328) | 0.355087 / 0.275898 (0.079189) | 0.391417 / 0.323480 (0.067937) | 0.005904 / 0.007986 (-0.002082) | 0.004062 / 0.004328 (-0.000266) | 0.073801 / 0.004250 (0.069550) | 0.048503 / 0.037052 (0.011451) | 0.359547 / 0.258489 (0.101058) | 0.405325 / 0.293841 (0.111484) | 0.036615 / 0.128546 (-0.091931) | 0.012185 / 0.075646 (-0.063461) | 0.086829 / 0.419271 (-0.332443) | 0.049101 / 0.043533 (0.005569) | 0.334259 / 0.255139 (0.079120) | 0.376317 / 0.283200 (0.093117) | 0.099935 / 0.141683 (-0.041748) | 1.483166 / 1.452155 (0.031011) | 1.569092 / 1.492716 (0.076375) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207528 / 0.018006 (0.189521) | 0.437473 / 0.000490 (0.436983) | 0.004915 / 0.000200 (0.004715) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028632 / 0.037411 (-0.008780) | 0.111782 / 0.014526 (0.097256) | 0.122545 / 0.176557 (-0.054011) | 0.171191 / 0.737135 (-0.565945) | 0.128999 / 0.296338 (-0.167339) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424422 / 0.215209 (0.209213) | 4.239488 / 2.077655 (2.161833) | 2.027969 / 1.504120 (0.523849) | 1.800667 / 1.541195 (0.259473) | 1.898701 / 1.468490 (0.430211) | 0.711453 / 4.584777 (-3.873324) | 3.766696 / 3.745712 (0.020984) | 2.107530 / 5.269862 (-3.162331) | 1.347137 / 4.565676 (-3.218540) | 0.086823 / 0.424275 (-0.337452) | 0.012137 / 0.007607 (0.004530) | 0.523143 / 0.226044 (0.297099) | 5.273434 / 2.268929 (3.004505) | 2.545463 / 55.444624 (-52.899161) | 2.246683 / 6.876477 (-4.629793) | 2.296862 / 2.142072 (0.154789) | 0.855690 / 4.805227 (-3.949538) | 0.168526 / 6.500664 (-6.332138) | 0.063392 / 0.075469 (-0.012078) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.248926 / 1.841788 (-0.592862) | 14.676308 / 8.074308 (6.602000) | 14.524364 / 10.191392 (4.332972) | 0.184138 / 0.680424 (-0.496286) | 0.017259 / 0.534201 (-0.516942) | 0.433875 / 0.579283 (-0.145408) | 0.416787 / 0.434364 (-0.017577) | 0.532391 / 0.540337 (-0.007947) | 0.628572 / 1.386936 (-0.758364) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3929cc227a474ce0c716146c8d14ae94f8a7625b \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006469 / 0.011353 (-0.004884) | 0.004499 / 0.011008 (-0.006510) | 0.098856 / 0.038508 (0.060348) | 0.027753 / 0.023109 (0.004644) | 0.321348 / 0.275898 (0.045450) | 0.351480 / 0.323480 (0.028000) | 0.004949 / 0.007986 (-0.003036) | 0.004655 / 0.004328 (0.000327) | 0.076732 / 0.004250 (0.072482) | 0.036175 / 0.037052 (-0.000878) | 0.310111 / 0.258489 (0.051622) | 0.372427 / 0.293841 (0.078586) | 0.031947 / 0.128546 (-0.096599) | 0.011669 / 0.075646 (-0.063977) | 0.323086 / 0.419271 (-0.096186) | 0.043578 / 0.043533 (0.000045) | 0.325549 / 0.255139 (0.070410) | 0.363827 / 0.283200 (0.080627) | 0.087819 / 0.141683 (-0.053864) | 1.479429 / 1.452155 (0.027274) | 1.549797 / 1.492716 (0.057080) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178502 / 0.018006 (0.160496) | 0.415954 / 0.000490 (0.415465) | 0.008767 / 0.000200 (0.008567) | 0.000429 / 0.000054 (0.000375) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023639 / 0.037411 (-0.013772) | 0.096266 / 0.014526 (0.081740) | 0.106406 / 0.176557 (-0.070151) | 0.168819 / 0.737135 (-0.568317) | 0.109158 / 0.296338 (-0.187181) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420729 / 0.215209 (0.205520) | 4.219469 / 2.077655 (2.141814) | 1.885673 / 1.504120 (0.381553) | 1.681868 / 1.541195 (0.140674) | 1.709240 / 1.468490 (0.240749) | 0.694763 / 4.584777 (-3.890014) | 3.395377 / 3.745712 (-0.350335) | 1.846811 / 5.269862 (-3.423051) | 1.158381 / 4.565676 (-3.407296) | 0.082717 / 0.424275 (-0.341558) | 0.012302 / 0.007607 (0.004695) | 0.518148 / 0.226044 (0.292103) | 5.189590 / 2.268929 (2.920661) | 2.294127 / 55.444624 (-53.150498) | 1.960080 / 6.876477 (-4.916397) | 2.045359 / 2.142072 (-0.096713) | 0.803739 / 4.805227 (-4.001488) | 0.152322 / 6.500664 (-6.348342) | 0.067051 / 0.075469 (-0.008418) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206582 / 1.841788 (-0.635206) | 13.590515 / 8.074308 (5.516207) | 14.083739 / 10.191392 (3.892347) | 0.128738 / 0.680424 (-0.551686) | 0.016577 / 0.534201 (-0.517624) | 0.375499 / 0.579283 (-0.203784) | 0.383256 / 0.434364 (-0.051108) | 0.439441 / 0.540337 (-0.100896) | 0.518102 / 1.386936 (-0.868834) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006708 / 0.011353 (-0.004645) | 0.004591 / 0.011008 (-0.006417) | 0.076512 / 0.038508 (0.038004) | 0.027977 / 0.023109 (0.004868) | 0.341915 / 0.275898 (0.066017) | 0.374381 / 0.323480 (0.050901) | 0.004985 / 0.007986 (-0.003001) | 0.003374 / 0.004328 (-0.000954) | 0.075334 / 0.004250 (0.071083) | 0.037522 / 0.037052 (0.000470) | 0.341702 / 0.258489 (0.083213) | 0.384342 / 0.293841 (0.090501) | 0.032231 / 0.128546 (-0.096315) | 0.011494 / 0.075646 (-0.064153) | 0.084897 / 0.419271 (-0.334375) | 0.041914 / 0.043533 (-0.001619) | 0.342030 / 0.255139 (0.086891) | 0.371024 / 0.283200 (0.087825) | 0.089936 / 0.141683 (-0.051746) | 1.497242 / 1.452155 (0.045087) | 1.585203 / 1.492716 (0.092486) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227681 / 0.018006 (0.209674) | 0.398995 / 0.000490 (0.398505) | 0.003232 / 0.000200 (0.003032) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024705 / 0.037411 (-0.012706) | 0.099906 / 0.014526 (0.085380) | 0.106806 / 0.176557 (-0.069750) | 0.157521 / 0.737135 (-0.579614) | 0.110803 / 0.296338 (-0.185535) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457442 / 0.215209 (0.242233) | 4.580101 / 2.077655 (2.502446) | 2.094687 / 1.504120 (0.590567) | 1.880722 / 1.541195 (0.339528) | 1.938746 / 1.468490 (0.470256) | 0.700933 / 4.584777 (-3.883844) | 3.416278 / 3.745712 (-0.329434) | 2.852183 / 5.269862 (-2.417679) | 1.602659 / 4.565676 (-2.963017) | 0.083949 / 0.424275 (-0.340326) | 0.012255 / 0.007607 (0.004648) | 0.551631 / 0.226044 (0.325586) | 5.539225 / 2.268929 (3.270296) | 2.707298 / 55.444624 (-52.737326) | 2.354720 / 6.876477 (-4.521757) | 2.320790 / 2.142072 (0.178717) | 0.807152 / 4.805227 (-3.998075) | 0.152048 / 6.500664 (-6.348616) | 0.067723 / 0.075469 (-0.007746) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.295690 / 1.841788 (-0.546097) | 13.738082 / 8.074308 (5.663774) | 14.129549 / 10.191392 (3.938157) | 0.161568 / 0.680424 (-0.518855) | 0.016678 / 0.534201 (-0.517522) | 0.386609 / 0.579283 (-0.192674) | 0.383538 / 0.434364 (-0.050826) | 0.477872 / 0.540337 (-0.062465) | 0.564547 / 1.386936 (-0.822389) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2ab4c98618bce7c1f60ce96d4a853a940ae4b250 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007247 / 0.011353 (-0.004106) | 0.005044 / 0.011008 (-0.005964) | 0.095135 / 0.038508 (0.056627) | 0.033622 / 0.023109 (0.010513) | 0.309969 / 0.275898 (0.034071) | 0.340354 / 0.323480 (0.016875) | 0.005635 / 0.007986 (-0.002351) | 0.003938 / 0.004328 (-0.000391) | 0.072089 / 0.004250 (0.067838) | 0.045592 / 0.037052 (0.008539) | 0.316620 / 0.258489 (0.058131) | 0.358174 / 0.293841 (0.064333) | 0.036446 / 0.128546 (-0.092100) | 0.011961 / 0.075646 (-0.063685) | 0.332299 / 0.419271 (-0.086973) | 0.049955 / 0.043533 (0.006422) | 0.307638 / 0.255139 (0.052499) | 0.331719 / 0.283200 (0.048519) | 0.095115 / 0.141683 (-0.046568) | 1.457960 / 1.452155 (0.005806) | 1.502812 / 1.492716 (0.010096) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223747 / 0.018006 (0.205740) | 0.444837 / 0.000490 (0.444347) | 0.002583 / 0.000200 (0.002383) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026461 / 0.037411 (-0.010951) | 0.103946 / 0.014526 (0.089420) | 0.114355 / 0.176557 (-0.062201) | 0.170076 / 0.737135 (-0.567059) | 0.121087 / 0.296338 (-0.175252) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403252 / 0.215209 (0.188043) | 4.016911 / 2.077655 (1.939257) | 1.787168 / 1.504120 (0.283048) | 1.605206 / 1.541195 (0.064012) | 1.657012 / 1.468490 (0.188522) | 0.701425 / 4.584777 (-3.883352) | 3.818308 / 3.745712 (0.072596) | 3.493757 / 5.269862 (-1.776105) | 1.860534 / 4.565676 (-2.705142) | 0.084994 / 0.424275 (-0.339281) | 0.011904 / 0.007607 (0.004297) | 0.534199 / 0.226044 (0.308155) | 4.992703 / 2.268929 (2.723774) | 2.286231 / 55.444624 (-53.158393) | 1.918163 / 6.876477 (-4.958314) | 2.029811 / 2.142072 (-0.112262) | 0.837532 / 4.805227 (-3.967695) | 0.168545 / 6.500664 (-6.332119) | 0.062866 / 0.075469 (-0.012604) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.172862 / 1.841788 (-0.668926) | 14.966793 / 8.074308 (6.892485) | 14.202079 / 10.191392 (4.010687) | 0.144688 / 0.680424 (-0.535736) | 0.017499 / 0.534201 (-0.516702) | 0.443081 / 0.579283 (-0.136202) | 0.427496 / 0.434364 (-0.006868) | 0.525182 / 0.540337 (-0.015155) | 0.611849 / 1.386936 (-0.775087) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007264 / 0.011353 (-0.004089) | 0.005106 / 0.011008 (-0.005902) | 0.074101 / 0.038508 (0.035593) | 0.033388 / 0.023109 (0.010279) | 0.337108 / 0.275898 (0.061210) | 0.369820 / 0.323480 (0.046340) | 0.005701 / 0.007986 (-0.002284) | 0.003976 / 0.004328 (-0.000353) | 0.073517 / 0.004250 (0.069267) | 0.048741 / 0.037052 (0.011688) | 0.339118 / 0.258489 (0.080629) | 0.398687 / 0.293841 (0.104846) | 0.036661 / 0.128546 (-0.091886) | 0.012082 / 0.075646 (-0.063564) | 0.086743 / 0.419271 (-0.332529) | 0.050150 / 0.043533 (0.006617) | 0.335572 / 0.255139 (0.080433) | 0.354306 / 0.283200 (0.071107) | 0.102074 / 0.141683 (-0.039609) | 1.442911 / 1.452155 (-0.009244) | 1.531564 / 1.492716 (0.038848) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183163 / 0.018006 (0.165157) | 0.439273 / 0.000490 (0.438783) | 0.002765 / 0.000200 (0.002565) | 0.000225 / 0.000054 (0.000171) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028185 / 0.037411 (-0.009227) | 0.107337 / 0.014526 (0.092811) | 0.119925 / 0.176557 (-0.056631) | 0.172120 / 0.737135 (-0.565015) | 0.124332 / 0.296338 (-0.172007) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428750 / 0.215209 (0.213541) | 4.268933 / 2.077655 (2.191279) | 2.050135 / 1.504120 (0.546015) | 1.837567 / 1.541195 (0.296372) | 1.907040 / 1.468490 (0.438549) | 0.694162 / 4.584777 (-3.890615) | 3.831542 / 3.745712 (0.085830) | 3.476580 / 5.269862 (-1.793281) | 1.855097 / 4.565676 (-2.710580) | 0.085816 / 0.424275 (-0.338459) | 0.012195 / 0.007607 (0.004588) | 0.544920 / 0.226044 (0.318876) | 5.332977 / 2.268929 (3.064049) | 2.592097 / 55.444624 (-52.852527) | 2.295411 / 6.876477 (-4.581065) | 2.330803 / 2.142072 (0.188730) | 0.833268 / 4.805227 (-3.971959) | 0.177698 / 6.500664 (-6.322966) | 0.063780 / 0.075469 (-0.011689) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.273361 / 1.841788 (-0.568427) | 14.981380 / 8.074308 (6.907072) | 14.395166 / 10.191392 (4.203774) | 0.186590 / 0.680424 (-0.493834) | 0.017676 / 0.534201 (-0.516525) | 0.432100 / 0.579283 (-0.147183) | 0.422490 / 0.434364 (-0.011874) | 0.531421 / 0.540337 (-0.008916) | 0.628548 / 1.386936 (-0.758388) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3b16e08dd599f4646a77a5ca88b6445467e1e7e9 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009005 / 0.011353 (-0.002348) | 0.005803 / 0.011008 (-0.005205) | 0.103491 / 0.038508 (0.064983) | 0.048099 / 0.023109 (0.024990) | 0.304026 / 0.275898 (0.028128) | 0.340840 / 0.323480 (0.017360) | 0.006782 / 0.007986 (-0.001204) | 0.004625 / 0.004328 (0.000296) | 0.076695 / 0.004250 (0.072445) | 0.057541 / 0.037052 (0.020489) | 0.304015 / 0.258489 (0.045526) | 0.347822 / 0.293841 (0.053981) | 0.037904 / 0.128546 (-0.090642) | 0.012686 / 0.075646 (-0.062960) | 0.368093 / 0.419271 (-0.051179) | 0.051795 / 0.043533 (0.008262) | 0.302553 / 0.255139 (0.047415) | 0.328581 / 0.283200 (0.045381) | 0.108947 / 0.141683 (-0.032736) | 1.449770 / 1.452155 (-0.002385) | 1.541944 / 1.492716 (0.049227) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207529 / 0.018006 (0.189523) | 0.455313 / 0.000490 (0.454823) | 0.008276 / 0.000200 (0.008076) | 0.000322 / 0.000054 (0.000268) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030564 / 0.037411 (-0.006848) | 0.122790 / 0.014526 (0.108264) | 0.126981 / 0.176557 (-0.049576) | 0.187203 / 0.737135 (-0.549932) | 0.129931 / 0.296338 (-0.166408) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402680 / 0.215209 (0.187471) | 4.017505 / 2.077655 (1.939850) | 1.801480 / 1.504120 (0.297360) | 1.647984 / 1.541195 (0.106790) | 1.702596 / 1.468490 (0.234106) | 0.717469 / 4.584777 (-3.867308) | 3.793813 / 3.745712 (0.048101) | 2.288014 / 5.269862 (-2.981848) | 1.497545 / 4.565676 (-3.068132) | 0.091241 / 0.424275 (-0.333034) | 0.013115 / 0.007607 (0.005508) | 0.498567 / 0.226044 (0.272522) | 4.990203 / 2.268929 (2.721275) | 2.334983 / 55.444624 (-53.109642) | 2.047888 / 6.876477 (-4.828589) | 2.167825 / 2.142072 (0.025753) | 0.863769 / 4.805227 (-3.941459) | 0.172699 / 6.500664 (-6.327965) | 0.069285 / 0.075469 (-0.006184) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.397331 / 1.841788 (-0.444457) | 16.678240 / 8.074308 (8.603932) | 16.665143 / 10.191392 (6.473751) | 0.151011 / 0.680424 (-0.529412) | 0.018303 / 0.534201 (-0.515898) | 0.445389 / 0.579283 (-0.133894) | 0.444644 / 0.434364 (0.010280) | 0.524647 / 0.540337 (-0.015690) | 0.629747 / 1.386936 (-0.757189) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008853 / 0.011353 (-0.002499) | 0.006196 / 0.011008 (-0.004813) | 0.078595 / 0.038508 (0.040087) | 0.048348 / 0.023109 (0.025239) | 0.347038 / 0.275898 (0.071140) | 0.385807 / 0.323480 (0.062327) | 0.007047 / 0.007986 (-0.000938) | 0.004772 / 0.004328 (0.000443) | 0.076116 / 0.004250 (0.071866) | 0.058805 / 0.037052 (0.021752) | 0.345731 / 0.258489 (0.087242) | 0.401589 / 0.293841 (0.107748) | 0.039349 / 0.128546 (-0.089197) | 0.012949 / 0.075646 (-0.062697) | 0.089761 / 0.419271 (-0.329511) | 0.060001 / 0.043533 (0.016468) | 0.351587 / 0.255139 (0.096448) | 0.377708 / 0.283200 (0.094509) | 0.117391 / 0.141683 (-0.024292) | 1.471622 / 1.452155 (0.019467) | 1.568759 / 1.492716 (0.076042) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191390 / 0.018006 (0.173384) | 0.469033 / 0.000490 (0.468544) | 0.003615 / 0.000200 (0.003415) | 0.000113 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032706 / 0.037411 (-0.004706) | 0.127095 / 0.014526 (0.112569) | 0.128755 / 0.176557 (-0.047801) | 0.182590 / 0.737135 (-0.554545) | 0.136939 / 0.296338 (-0.159400) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427392 / 0.215209 (0.212183) | 4.246708 / 2.077655 (2.169053) | 2.115557 / 1.504120 (0.611437) | 2.021221 / 1.541195 (0.480026) | 2.177559 / 1.468490 (0.709069) | 0.713930 / 4.584777 (-3.870847) | 4.192467 / 3.745712 (0.446755) | 3.645437 / 5.269862 (-1.624424) | 1.964986 / 4.565676 (-2.600690) | 0.089436 / 0.424275 (-0.334839) | 0.012917 / 0.007607 (0.005310) | 0.530468 / 0.226044 (0.304423) | 5.310759 / 2.268929 (3.041831) | 2.613566 / 55.444624 (-52.831058) | 2.350443 / 6.876477 (-4.526034) | 2.385278 / 2.142072 (0.243205) | 0.862838 / 4.805227 (-3.942389) | 0.172246 / 6.500664 (-6.328418) | 0.069570 / 0.075469 (-0.005899) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.310008 / 1.841788 (-0.531780) | 16.557079 / 8.074308 (8.482771) | 15.818145 / 10.191392 (5.626752) | 0.180337 / 0.680424 (-0.500087) | 0.018117 / 0.534201 (-0.516083) | 0.433189 / 0.579283 (-0.146095) | 0.429276 / 0.434364 (-0.005088) | 0.539757 / 0.540337 (-0.000580) | 0.640905 / 1.386936 (-0.746031) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3b16e08dd599f4646a77a5ca88b6445467e1e7e9 \"CML watermark\")\n"
] | 2023-03-29T15:06:07 | 2023-03-29T18:30:34 | 2023-03-29T18:15:54 | MEMBER | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5684/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5684/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5684",
"html_url": "https://github.com/huggingface/datasets/pull/5684",
"diff_url": "https://github.com/huggingface/datasets/pull/5684.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5684.patch",
"merged_at": "2023-03-29T18:15:54"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5683 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5683/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5683/comments | https://api.github.com/repos/huggingface/datasets/issues/5683/events | https://github.com/huggingface/datasets/pull/5683 | 1,646,001,197 | PR_kwDODunzps5NLUq1 | 5,683 | Fix verification_mode when ignore_verifications is passed | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006935 / 0.011353 (-0.004418) | 0.004711 / 0.011008 (-0.006297) | 0.098461 / 0.038508 (0.059953) | 0.028889 / 0.023109 (0.005780) | 0.332167 / 0.275898 (0.056269) | 0.363309 / 0.323480 (0.039829) | 0.005179 / 0.007986 (-0.002807) | 0.004783 / 0.004328 (0.000455) | 0.074293 / 0.004250 (0.070043) | 0.038778 / 0.037052 (0.001726) | 0.318871 / 0.258489 (0.060382) | 0.362975 / 0.293841 (0.069134) | 0.032897 / 0.128546 (-0.095649) | 0.011685 / 0.075646 (-0.063961) | 0.322824 / 0.419271 (-0.096447) | 0.043842 / 0.043533 (0.000309) | 0.334789 / 0.255139 (0.079650) | 0.352922 / 0.283200 (0.069723) | 0.089692 / 0.141683 (-0.051991) | 1.490110 / 1.452155 (0.037955) | 1.601530 / 1.492716 (0.108813) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201882 / 0.018006 (0.183875) | 0.410875 / 0.000490 (0.410385) | 0.002472 / 0.000200 (0.002272) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023636 / 0.037411 (-0.013775) | 0.102168 / 0.014526 (0.087642) | 0.107247 / 0.176557 (-0.069310) | 0.171858 / 0.737135 (-0.565278) | 0.110619 / 0.296338 (-0.185720) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433740 / 0.215209 (0.218531) | 4.332121 / 2.077655 (2.254466) | 2.075398 / 1.504120 (0.571278) | 1.941074 / 1.541195 (0.399879) | 2.033331 / 1.468490 (0.564841) | 0.697134 / 4.584777 (-3.887643) | 3.463855 / 3.745712 (-0.281857) | 3.080446 / 5.269862 (-2.189416) | 1.575020 / 4.565676 (-2.990656) | 0.083054 / 0.424275 (-0.341221) | 0.012454 / 0.007607 (0.004847) | 0.537996 / 0.226044 (0.311951) | 5.366765 / 2.268929 (3.097836) | 2.464398 / 55.444624 (-52.980227) | 2.143912 / 6.876477 (-4.732564) | 2.245706 / 2.142072 (0.103634) | 0.801397 / 4.805227 (-4.003831) | 0.150954 / 6.500664 (-6.349710) | 0.066758 / 0.075469 (-0.008711) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.216412 / 1.841788 (-0.625376) | 13.679322 / 8.074308 (5.605014) | 14.055286 / 10.191392 (3.863894) | 0.130264 / 0.680424 (-0.550160) | 0.016566 / 0.534201 (-0.517635) | 0.379126 / 0.579283 (-0.200157) | 0.390815 / 0.434364 (-0.043549) | 0.437586 / 0.540337 (-0.102751) | 0.526822 / 1.386936 (-0.860114) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006898 / 0.011353 (-0.004455) | 0.004705 / 0.011008 (-0.006304) | 0.078592 / 0.038508 (0.040084) | 0.028635 / 0.023109 (0.005525) | 0.340143 / 0.275898 (0.064245) | 0.377526 / 0.323480 (0.054047) | 0.005645 / 0.007986 (-0.002340) | 0.003533 / 0.004328 (-0.000796) | 0.078441 / 0.004250 (0.074191) | 0.039408 / 0.037052 (0.002356) | 0.342303 / 0.258489 (0.083814) | 0.386837 / 0.293841 (0.092996) | 0.032427 / 0.128546 (-0.096119) | 0.011763 / 0.075646 (-0.063883) | 0.087984 / 0.419271 (-0.331287) | 0.042126 / 0.043533 (-0.001406) | 0.339951 / 0.255139 (0.084812) | 0.366165 / 0.283200 (0.082966) | 0.091414 / 0.141683 (-0.050269) | 1.502034 / 1.452155 (0.049880) | 1.597901 / 1.492716 (0.105184) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232122 / 0.018006 (0.214115) | 0.410205 / 0.000490 (0.409715) | 0.000418 / 0.000200 (0.000218) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026013 / 0.037411 (-0.011399) | 0.105520 / 0.014526 (0.090995) | 0.108649 / 0.176557 (-0.067908) | 0.159324 / 0.737135 (-0.577811) | 0.114033 / 0.296338 (-0.182306) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.455634 / 0.215209 (0.240425) | 4.508544 / 2.077655 (2.430889) | 2.087065 / 1.504120 (0.582945) | 1.872622 / 1.541195 (0.331427) | 1.935617 / 1.468490 (0.467127) | 0.696909 / 4.584777 (-3.887868) | 3.449365 / 3.745712 (-0.296348) | 3.008399 / 5.269862 (-2.261462) | 1.459245 / 4.565676 (-3.106431) | 0.083637 / 0.424275 (-0.340638) | 0.012358 / 0.007607 (0.004750) | 0.547232 / 0.226044 (0.321187) | 5.522395 / 2.268929 (3.253466) | 2.691019 / 55.444624 (-52.753605) | 2.408083 / 6.876477 (-4.468394) | 2.369239 / 2.142072 (0.227166) | 0.807148 / 4.805227 (-3.998080) | 0.152030 / 6.500664 (-6.348634) | 0.067883 / 0.075469 (-0.007586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.336956 / 1.841788 (-0.504832) | 14.403730 / 8.074308 (6.329422) | 14.854084 / 10.191392 (4.662692) | 0.146530 / 0.680424 (-0.533894) | 0.016611 / 0.534201 (-0.517590) | 0.398557 / 0.579283 (-0.180726) | 0.393194 / 0.434364 (-0.041170) | 0.486824 / 0.540337 (-0.053513) | 0.572844 / 1.386936 (-0.814092) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#411f9cc281e50954ea0c903e7a0a6618b3d31b9e \"CML watermark\")\n"
] | 2023-03-29T15:00:50 | 2023-03-29T17:36:06 | 2023-03-29T17:28:57 | MEMBER | null | This PR fixes the values assigned to `verification_mode` when passing `ignore_verifications` to `load_dataset`.
Related to:
- #5303
Fix #5682. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5683/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5683/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5683",
"html_url": "https://github.com/huggingface/datasets/pull/5683",
"diff_url": "https://github.com/huggingface/datasets/pull/5683.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5683.patch",
"merged_at": "2023-03-29T17:28:57"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5682 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5682/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5682/comments | https://api.github.com/repos/huggingface/datasets/issues/5682/events | https://github.com/huggingface/datasets/issues/5682 | 1,646,000,571 | I_kwDODunzps5iG_m7 | 5,682 | ValueError when passing ignore_verifications | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-29T15:00:30 | 2023-03-29T17:28:58 | 2023-03-29T17:28:58 | MEMBER | null | When passing `ignore_verifications=True` to `load_dataset`, we get a ValueError:
```
ValueError: 'none' is not a valid VerificationMode
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5682/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5682/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5681 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5681/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5681/comments | https://api.github.com/repos/huggingface/datasets/issues/5681/events | https://github.com/huggingface/datasets/issues/5681 | 1,645,630,784 | I_kwDODunzps5iFlVA | 5,681 | Add information about patterns search order to the doc about structuring repo | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892861,
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation",
"name": "documentation",
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation"
}
] | closed | false | {
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Good idea, I think I've seen this a couple of times before too on the forums. I can work on this :)",
"Closed in #5693 "
] | 2023-03-29T11:44:49 | 2023-04-03T18:31:11 | 2023-04-03T18:31:11 | CONTRIBUTOR | null | Following [this](https://github.com/huggingface/datasets/issues/5650) issue I think we should add a note about the order of patterns that is used to find splits, see [my comment](https://github.com/huggingface/datasets/issues/5650#issuecomment-1488412527). Also we should reference this page in pages about packaged loaders.
I have a dรฉjร vu that it had already been discussed as some point but I don't remember.... | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5681/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5681/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5680 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5680/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5680/comments | https://api.github.com/repos/huggingface/datasets/issues/5680/events | https://github.com/huggingface/datasets/pull/5680 | 1,645,430,103 | PR_kwDODunzps5NJYNz | 5,680 | Fix a description error for interleave_datasets. | {
"login": "QizhiPei",
"id": 55624066,
"node_id": "MDQ6VXNlcjU1NjI0MDY2",
"avatar_url": "https://avatars.githubusercontent.com/u/55624066?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/QizhiPei",
"html_url": "https://github.com/QizhiPei",
"followers_url": "https://api.github.com/users/QizhiPei/followers",
"following_url": "https://api.github.com/users/QizhiPei/following{/other_user}",
"gists_url": "https://api.github.com/users/QizhiPei/gists{/gist_id}",
"starred_url": "https://api.github.com/users/QizhiPei/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/QizhiPei/subscriptions",
"organizations_url": "https://api.github.com/users/QizhiPei/orgs",
"repos_url": "https://api.github.com/users/QizhiPei/repos",
"events_url": "https://api.github.com/users/QizhiPei/events{/privacy}",
"received_events_url": "https://api.github.com/users/QizhiPei/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006772 / 0.011353 (-0.004581) | 0.004674 / 0.011008 (-0.006335) | 0.098702 / 0.038508 (0.060194) | 0.028257 / 0.023109 (0.005148) | 0.368008 / 0.275898 (0.092110) | 0.402825 / 0.323480 (0.079345) | 0.005158 / 0.007986 (-0.002828) | 0.003470 / 0.004328 (-0.000858) | 0.075541 / 0.004250 (0.071291) | 0.039755 / 0.037052 (0.002702) | 0.373431 / 0.258489 (0.114942) | 0.410159 / 0.293841 (0.116318) | 0.031355 / 0.128546 (-0.097192) | 0.011632 / 0.075646 (-0.064014) | 0.325475 / 0.419271 (-0.093797) | 0.042574 / 0.043533 (-0.000958) | 0.373629 / 0.255139 (0.118490) | 0.393921 / 0.283200 (0.110721) | 0.084669 / 0.141683 (-0.057013) | 1.459947 / 1.452155 (0.007792) | 1.529593 / 1.492716 (0.036877) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.189994 / 0.018006 (0.171988) | 0.409091 / 0.000490 (0.408602) | 0.003693 / 0.000200 (0.003493) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024649 / 0.037411 (-0.012762) | 0.097702 / 0.014526 (0.083177) | 0.103650 / 0.176557 (-0.072906) | 0.167141 / 0.737135 (-0.569994) | 0.108460 / 0.296338 (-0.187879) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429544 / 0.215209 (0.214335) | 4.277106 / 2.077655 (2.199451) | 2.018745 / 1.504120 (0.514625) | 1.814782 / 1.541195 (0.273587) | 1.897030 / 1.468490 (0.428540) | 0.700332 / 4.584777 (-3.884445) | 3.421761 / 3.745712 (-0.323951) | 3.008281 / 5.269862 (-2.261581) | 1.554230 / 4.565676 (-3.011446) | 0.082922 / 0.424275 (-0.341353) | 0.012312 / 0.007607 (0.004705) | 0.527757 / 0.226044 (0.301713) | 5.287450 / 2.268929 (3.018522) | 2.329083 / 55.444624 (-53.115542) | 2.016651 / 6.876477 (-4.859826) | 2.214510 / 2.142072 (0.072437) | 0.807676 / 4.805227 (-3.997551) | 0.151752 / 6.500664 (-6.348912) | 0.066819 / 0.075469 (-0.008651) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239522 / 1.841788 (-0.602266) | 13.923672 / 8.074308 (5.849364) | 14.317394 / 10.191392 (4.126002) | 0.159379 / 0.680424 (-0.521045) | 0.016537 / 0.534201 (-0.517664) | 0.376808 / 0.579283 (-0.202475) | 0.376351 / 0.434364 (-0.058012) | 0.437124 / 0.540337 (-0.103213) | 0.520589 / 1.386936 (-0.866347) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006892 / 0.011353 (-0.004461) | 0.004671 / 0.011008 (-0.006337) | 0.075841 / 0.038508 (0.037333) | 0.028713 / 0.023109 (0.005604) | 0.345105 / 0.275898 (0.069207) | 0.380694 / 0.323480 (0.057214) | 0.005155 / 0.007986 (-0.002830) | 0.003379 / 0.004328 (-0.000949) | 0.075134 / 0.004250 (0.070883) | 0.039990 / 0.037052 (0.002938) | 0.345540 / 0.258489 (0.087051) | 0.389913 / 0.293841 (0.096072) | 0.032089 / 0.128546 (-0.096458) | 0.011583 / 0.075646 (-0.064063) | 0.085169 / 0.419271 (-0.334102) | 0.041847 / 0.043533 (-0.001686) | 0.341504 / 0.255139 (0.086365) | 0.367582 / 0.283200 (0.084382) | 0.092684 / 0.141683 (-0.048999) | 1.498647 / 1.452155 (0.046492) | 1.549056 / 1.492716 (0.056339) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228643 / 0.018006 (0.210637) | 0.410680 / 0.000490 (0.410191) | 0.000398 / 0.000200 (0.000198) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025354 / 0.037411 (-0.012057) | 0.101567 / 0.014526 (0.087041) | 0.108340 / 0.176557 (-0.068217) | 0.157804 / 0.737135 (-0.579332) | 0.113985 / 0.296338 (-0.182354) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436427 / 0.215209 (0.221218) | 4.359331 / 2.077655 (2.281676) | 2.047877 / 1.504120 (0.543757) | 1.844242 / 1.541195 (0.303047) | 1.924553 / 1.468490 (0.456063) | 0.695986 / 4.584777 (-3.888791) | 3.435571 / 3.745712 (-0.310141) | 1.905189 / 5.269862 (-3.364673) | 1.198542 / 4.565676 (-3.367134) | 0.083386 / 0.424275 (-0.340889) | 0.012442 / 0.007607 (0.004835) | 0.542562 / 0.226044 (0.316517) | 5.416554 / 2.268929 (3.147625) | 2.499496 / 55.444624 (-52.945128) | 2.160658 / 6.876477 (-4.715819) | 2.210535 / 2.142072 (0.068462) | 0.803324 / 4.805227 (-4.001903) | 0.151735 / 6.500664 (-6.348929) | 0.068392 / 0.075469 (-0.007078) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.319915 / 1.841788 (-0.521873) | 14.176755 / 8.074308 (6.102446) | 14.376366 / 10.191392 (4.184974) | 0.141219 / 0.680424 (-0.539204) | 0.017181 / 0.534201 (-0.517020) | 0.383589 / 0.579283 (-0.195694) | 0.389352 / 0.434364 (-0.045012) | 0.474465 / 0.540337 (-0.065873) | 0.563047 / 1.386936 (-0.823889) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c33e8ce68b5000988bf6b2e4bca27ffaa469acea \"CML watermark\")\n"
] | 2023-03-29T09:50:23 | 2023-03-30T13:14:19 | 2023-03-30T13:07:18 | CONTRIBUTOR | null | There is a description mistake in the annotation of interleave_dataset with "all_exhausted" stopping_strategy.
``` python
d1 = Dataset.from_dict({"a": [0, 1, 2]})
d2 = Dataset.from_dict({"a": [10, 11, 12, 13]})
d3 = Dataset.from_dict({"a": [20, 21, 22, 23, 24]})
dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted")
```
According to the interleave way, the correct output of `dataset["a"]` is `[0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 10, 24]`, not `[0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 0, 24]` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5680/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5680/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5680",
"html_url": "https://github.com/huggingface/datasets/pull/5680",
"diff_url": "https://github.com/huggingface/datasets/pull/5680.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5680.patch",
"merged_at": "2023-03-30T13:07:18"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5679 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5679/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5679/comments | https://api.github.com/repos/huggingface/datasets/issues/5679/events | https://github.com/huggingface/datasets/issues/5679 | 1,645,184,622 | I_kwDODunzps5iD4Zu | 5,679 | Allow load_dataset to take a working dir for intermediate data | {
"login": "lu-wang-dl",
"id": 38018689,
"node_id": "MDQ6VXNlcjM4MDE4Njg5",
"avatar_url": "https://avatars.githubusercontent.com/u/38018689?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lu-wang-dl",
"html_url": "https://github.com/lu-wang-dl",
"followers_url": "https://api.github.com/users/lu-wang-dl/followers",
"following_url": "https://api.github.com/users/lu-wang-dl/following{/other_user}",
"gists_url": "https://api.github.com/users/lu-wang-dl/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lu-wang-dl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lu-wang-dl/subscriptions",
"organizations_url": "https://api.github.com/users/lu-wang-dl/orgs",
"repos_url": "https://api.github.com/users/lu-wang-dl/repos",
"events_url": "https://api.github.com/users/lu-wang-dl/events{/privacy}",
"received_events_url": "https://api.github.com/users/lu-wang-dl/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"Hi ! AFAIK a dataset must be present on a local disk to be able to efficiently memory map the datasets Arrow files. What makes you think that it is possible to load from a cloud storage and have good performance ?\r\n\r\nAnyway it's already possible to download_and_prepare a dataset as Arrow files in a cloud storage with:\r\n```python\r\nbuilder = load_dataset_builder(..., cache_dir=\"/temp/dir\")\r\nbuilder.download_and_prepare(\"/cloud_dir\")\r\n```\r\n\r\nbut then \r\n```python\r\nds = builder.as_dataset()\r\n```\r\nwould fail if \"/cloud_dir\" is not a local directory.",
"In my use case, I am trying to mount the S3 bucket as local system with S3FS-FUSE / [goofys](https://github.com/kahing/goofys). I want to use S3 to save the download data and save checkpoint for training for persistent. Setting the s3 location as cache directory is not fast enough. That is why I want to set a work directory for temp data for memory map and only save the final result to s3 cache. ",
"You can try setting `HF_DATASETS_DOWNLOADED_DATASETS_PATH` and `HF_DATASETS_EXTRACTED_DATASETS_PATH` to S3, and `HF_DATASETS_CACHE` to your local disk.\r\n\r\nThis way all your downloaded and extracted data are on your mounted S3, but the datasets Arrow files are on your local disk",
"If we hope to also persist the Arrow files on the mounted S3 but work with the efficiency of local disk, is there any recommended way to do this, other than copying the Arrow files from local disk to S3?"
] | 2023-03-29T07:21:09 | 2023-04-12T22:30:25 | null | NONE | null | ### Feature request
As a user, I can set a working dir for intermediate data creation. The processed files will be moved to the cache dir, like
```
load_dataset(โฆ, working_dir=โ/temp/dirโ, cache_dir=โ/cloud_dirโ).
```
### Motivation
This will help the use case for using datasets with cloud storage as cache. It will help boost the performance.
### Your contribution
I can provide a PR to fix this if the proposal seems reasonable. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5679/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5679/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5678 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5678/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5678/comments | https://api.github.com/repos/huggingface/datasets/issues/5678/events | https://github.com/huggingface/datasets/issues/5678 | 1,645,018,359 | I_kwDODunzps5iDPz3 | 5,678 | Add support to create a Dataset from spark dataframe | {
"login": "lu-wang-dl",
"id": 38018689,
"node_id": "MDQ6VXNlcjM4MDE4Njg5",
"avatar_url": "https://avatars.githubusercontent.com/u/38018689?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lu-wang-dl",
"html_url": "https://github.com/lu-wang-dl",
"followers_url": "https://api.github.com/users/lu-wang-dl/followers",
"following_url": "https://api.github.com/users/lu-wang-dl/following{/other_user}",
"gists_url": "https://api.github.com/users/lu-wang-dl/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lu-wang-dl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lu-wang-dl/subscriptions",
"organizations_url": "https://api.github.com/users/lu-wang-dl/orgs",
"repos_url": "https://api.github.com/users/lu-wang-dl/repos",
"events_url": "https://api.github.com/users/lu-wang-dl/events{/privacy}",
"received_events_url": "https://api.github.com/users/lu-wang-dl/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | null | [] | null | [
"if i read spark Dataframe , got an error on multi-node Spark cluster.\r\nDid the Api (Dataset.from_spark) support Spark cluster, read dataframe and save_to_disk?\r\n\r\nError: \r\n_pickle.PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforma\r\ntion. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.\r\n23/06/16 21:17:20 WARN ExecutorPodsWatchSnapshotSource: Kubernetes client has been closed (this is expected if the application is shutting down.)\r\n\r\n",
"How to perform predictions on Dataset object in Spark with multi-node cluster parallelism?",
"Addressed in #5701"
] | 2023-03-29T04:36:28 | 2023-07-21T14:15:38 | 2023-07-21T14:15:38 | NONE | null | ### Feature request
Add a new API `Dataset.from_spark` to create a Dataset from Spark DataFrame.
### Motivation
Spark is a distributed computing framework that can handle large datasets. By supporting loading Spark DataFrames directly into Hugging Face Datasets, we enable take the advantages of spark to processing the data in parallel.
By providing a seamless integration between these two frameworks, we make it easier for data scientists and developers to work with both Spark and Hugging Face in the same workflow.
### Your contribution
We can discuss about the ideas and I can help preparing a PR for this feature. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5678/reactions",
"total_count": 2,
"+1": 2,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5678/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5677 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5677/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5677/comments | https://api.github.com/repos/huggingface/datasets/issues/5677/events | https://github.com/huggingface/datasets/issues/5677 | 1,644,828,606 | I_kwDODunzps5iChe- | 5,677 | Dataset.map() crashes when any column contains more than 1000 empty dictionaries | {
"login": "destigres",
"id": 7139344,
"node_id": "MDQ6VXNlcjcxMzkzNDQ=",
"avatar_url": "https://avatars.githubusercontent.com/u/7139344?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/destigres",
"html_url": "https://github.com/destigres",
"followers_url": "https://api.github.com/users/destigres/followers",
"following_url": "https://api.github.com/users/destigres/following{/other_user}",
"gists_url": "https://api.github.com/users/destigres/gists{/gist_id}",
"starred_url": "https://api.github.com/users/destigres/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/destigres/subscriptions",
"organizations_url": "https://api.github.com/users/destigres/orgs",
"repos_url": "https://api.github.com/users/destigres/repos",
"events_url": "https://api.github.com/users/destigres/events{/privacy}",
"received_events_url": "https://api.github.com/users/destigres/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-29T00:01:31 | 2023-07-07T14:01:14 | 2023-07-07T14:01:14 | NONE | null | ### Describe the bug
`Dataset.map()` crashes any time any column contains more than `writer_batch_size` (default 1000) empty dictionaries, regardless of whether the column is being operated on. The error does not occur if the dictionaries are non-empty.
### Steps to reproduce the bug
Example:
```
import datasets
def add_one(example):
example["col2"] += 1
return example
n = 1001 # crashes
# n = 999 # works
ds = datasets.Dataset.from_dict({"col1": [{}] * n, "col2": [1] * n})
ds = ds.map(add_one, writer_batch_size=1000)
```
### Expected behavior
Above code should not crash
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-5.4.0-120-generic-x86_64-with-glibc2.10
- Python version: 3.8.15
- PyArrow version: 9.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5677/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5677/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5675 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5675/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5675/comments | https://api.github.com/repos/huggingface/datasets/issues/5675/events | https://github.com/huggingface/datasets/issues/5675 | 1,641,763,478 | I_kwDODunzps5h21KW | 5,675 | Filter datasets by language code | {
"login": "named-entity",
"id": 5658496,
"node_id": "MDQ6VXNlcjU2NTg0OTY=",
"avatar_url": "https://avatars.githubusercontent.com/u/5658496?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/named-entity",
"html_url": "https://github.com/named-entity",
"followers_url": "https://api.github.com/users/named-entity/followers",
"following_url": "https://api.github.com/users/named-entity/following{/other_user}",
"gists_url": "https://api.github.com/users/named-entity/gists{/gist_id}",
"starred_url": "https://api.github.com/users/named-entity/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/named-entity/subscriptions",
"organizations_url": "https://api.github.com/users/named-entity/orgs",
"repos_url": "https://api.github.com/users/named-entity/repos",
"events_url": "https://api.github.com/users/named-entity/events{/privacy}",
"received_events_url": "https://api.github.com/users/named-entity/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The dataset still can be found, if instead of using the search form you just enter the language code in the url, like https://huggingface.co/datasets?language=language:myv. \r\n\r\nBut of course having a more complete list of languages in the search form (or just a fallback to the language codes, if they are missing from the code=>language mapping) would be much more convenient!",
"Hi! I've opened a PR to make these languages searchable on the Hub.",
"Thanks @mariosasko!\r\nDo you think it is possible to turn this into a more scalable pipeline? Such as:\r\n1. Looping through all the datasets on the hub and collecting the set of all their language codes;\r\n2. Selecting the codes not covered yet in `Language.ts`\r\n3. Looking up their codes at https://iso639-3.sil.org/code_tables/639/data\r\n4. Adding all the newly found language codes to `Language.ts`",
"@avidale This has been discussed in https://github.com/huggingface/datasets/issues/4881, so also feel free to share your opinion there."
] | 2023-03-27T09:42:28 | 2023-03-30T08:08:15 | 2023-03-30T08:08:15 | NONE | null | Hi! I use the language search field on https://huggingface.co/datasets
However, some of the datasets tagged by ISO language code are not accessible by this search form.
For example, [myv_ru_2022](https://huggingface.co/datasets/slone/myv_ru_2022) is has `myv` language tag but it is not included in Languages search form.
I've also noticed the same problem with `mhr` (see https://huggingface.co/datasets/AigizK/mari-russian-parallel-corpora) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5675/reactions",
"total_count": 6,
"+1": 6,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5675/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5674 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5674/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5674/comments | https://api.github.com/repos/huggingface/datasets/issues/5674/events | https://github.com/huggingface/datasets/issues/5674 | 1,641,084,105 | I_kwDODunzps5h0PTJ | 5,674 | Stored XSS | {
"login": "Fadavvi",
"id": 21213484,
"node_id": "MDQ6VXNlcjIxMjEzNDg0",
"avatar_url": "https://avatars.githubusercontent.com/u/21213484?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Fadavvi",
"html_url": "https://github.com/Fadavvi",
"followers_url": "https://api.github.com/users/Fadavvi/followers",
"following_url": "https://api.github.com/users/Fadavvi/following{/other_user}",
"gists_url": "https://api.github.com/users/Fadavvi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Fadavvi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Fadavvi/subscriptions",
"organizations_url": "https://api.github.com/users/Fadavvi/orgs",
"repos_url": "https://api.github.com/users/Fadavvi/repos",
"events_url": "https://api.github.com/users/Fadavvi/events{/privacy}",
"received_events_url": "https://api.github.com/users/Fadavvi/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! You can contact `[email protected]` to report this vulnerability."
] | 2023-03-26T20:55:58 | 2023-03-27T21:01:55 | 2023-03-27T21:01:55 | NONE | null | ### Describe the bug
I found a Stored XSS on a page that can be publicly accessible to all visitors. But I didn't find a suitable place to report.
Please guide me on this.
### Steps to reproduce the bug
Due to security restrictions, I don't want to publish it publicly.
### Expected behavior
User inputs must be sanitized before rendering.
### Environment info
https://huggingface.co/ Web UI | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5674/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5674/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5673 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5673/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5673/comments | https://api.github.com/repos/huggingface/datasets/issues/5673/events | https://github.com/huggingface/datasets/pull/5673 | 1,641,066,352 | PR_kwDODunzps5M6wc3 | 5,673 | Pass down storage options | {
"login": "dwyatte",
"id": 2512762,
"node_id": "MDQ6VXNlcjI1MTI3NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/2512762?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/dwyatte",
"html_url": "https://github.com/dwyatte",
"followers_url": "https://api.github.com/users/dwyatte/followers",
"following_url": "https://api.github.com/users/dwyatte/following{/other_user}",
"gists_url": "https://api.github.com/users/dwyatte/gists{/gist_id}",
"starred_url": "https://api.github.com/users/dwyatte/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dwyatte/subscriptions",
"organizations_url": "https://api.github.com/users/dwyatte/orgs",
"repos_url": "https://api.github.com/users/dwyatte/repos",
"events_url": "https://api.github.com/users/dwyatte/events{/privacy}",
"received_events_url": "https://api.github.com/users/dwyatte/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"> download_and_prepare is not called when streaming a dataset, so we may need to have storage_options in the DatasetBuilder.__init__ ? This way it could also be passed later to as_streaming_dataset and the StreamingDownloadManager\r\n\r\n> Currently the storage_options parameter in download_and_prepare are for the target filesystem where the dataset must be downloaded and prepared as arrow files\r\n\r\nAh, I noted this when looking for ways to plumb down `storage_options` although I think I was looking at adding to `BuilderConfig`. The `DatasetBuilder` constructor looks more appropriate for this, will get that added in a future commit",
"Noting as experimental SGTM. The only tests I can think of to add at the moment would be mocks that assert the storage options get passed all the way down using `mock.assert_called_with` but if Hugging Face has some S3/GCS buckets for testing, maybe those would be better in a future PR. Let me know what you think",
"I think adding tests with the mockfs fixture will do the job. Tests and docs can be added when request_etag and is_remote_url support fsspec (right now they would fail with mockfs).\r\n\r\nLet's see in a subsequent PR, this is exciting ! :)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009217 / 0.011353 (-0.002136) | 0.006275 / 0.011008 (-0.004733) | 0.124361 / 0.038508 (0.085853) | 0.035680 / 0.023109 (0.012570) | 0.395255 / 0.275898 (0.119357) | 0.426104 / 0.323480 (0.102624) | 0.006822 / 0.007986 (-0.001163) | 0.004467 / 0.004328 (0.000138) | 0.099404 / 0.004250 (0.095153) | 0.051919 / 0.037052 (0.014867) | 0.388286 / 0.258489 (0.129797) | 0.426361 / 0.293841 (0.132520) | 0.053100 / 0.128546 (-0.075446) | 0.019453 / 0.075646 (-0.056194) | 0.433139 / 0.419271 (0.013867) | 0.063240 / 0.043533 (0.019707) | 0.381175 / 0.255139 (0.126036) | 0.411686 / 0.283200 (0.128487) | 0.104843 / 0.141683 (-0.036840) | 1.853582 / 1.452155 (0.401427) | 1.935644 / 1.492716 (0.442928) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218969 / 0.018006 (0.200963) | 0.515011 / 0.000490 (0.514522) | 0.004017 / 0.000200 (0.003818) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028975 / 0.037411 (-0.008437) | 0.125239 / 0.014526 (0.110713) | 0.131371 / 0.176557 (-0.045185) | 0.203864 / 0.737135 (-0.533271) | 0.140784 / 0.296338 (-0.155554) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.620701 / 0.215209 (0.405492) | 6.263557 / 2.077655 (4.185903) | 2.510058 / 1.504120 (1.005938) | 2.085892 / 1.541195 (0.544697) | 2.170362 / 1.468490 (0.701872) | 1.325600 / 4.584777 (-3.259177) | 5.583355 / 3.745712 (1.837642) | 5.092791 / 5.269862 (-0.177071) | 2.814766 / 4.565676 (-1.750911) | 0.153568 / 0.424275 (-0.270707) | 0.014850 / 0.007607 (0.007243) | 0.787011 / 0.226044 (0.560967) | 7.948813 / 2.268929 (5.679885) | 3.320831 / 55.444624 (-52.123793) | 2.526327 / 6.876477 (-4.350150) | 2.691651 / 2.142072 (0.549579) | 1.521199 / 4.805227 (-3.284028) | 0.269738 / 6.500664 (-6.230926) | 0.082959 / 0.075469 (0.007490) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.740056 / 1.841788 (-0.101732) | 17.699732 / 8.074308 (9.625424) | 22.450689 / 10.191392 (12.259297) | 0.229350 / 0.680424 (-0.451073) | 0.027486 / 0.534201 (-0.506715) | 0.536153 / 0.579283 (-0.043130) | 0.608166 / 0.434364 (0.173802) | 0.629144 / 0.540337 (0.088807) | 0.732671 / 1.386936 (-0.654265) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010147 / 0.011353 (-0.001206) | 0.006484 / 0.011008 (-0.004524) | 0.098664 / 0.038508 (0.060156) | 0.036400 / 0.023109 (0.013291) | 0.432895 / 0.275898 (0.156997) | 0.466433 / 0.323480 (0.142954) | 0.008102 / 0.007986 (0.000117) | 0.004554 / 0.004328 (0.000225) | 0.100466 / 0.004250 (0.096216) | 0.054066 / 0.037052 (0.017013) | 0.439177 / 0.258489 (0.180688) | 0.502907 / 0.293841 (0.209066) | 0.059210 / 0.128546 (-0.069336) | 0.020220 / 0.075646 (-0.055426) | 0.124671 / 0.419271 (-0.294600) | 0.064278 / 0.043533 (0.020746) | 0.435659 / 0.255139 (0.180520) | 0.459670 / 0.283200 (0.176471) | 0.115574 / 0.141683 (-0.026109) | 1.826360 / 1.452155 (0.374205) | 1.943199 / 1.492716 (0.450483) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238463 / 0.018006 (0.220457) | 0.534889 / 0.000490 (0.534400) | 0.000404 / 0.000200 (0.000204) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033210 / 0.037411 (-0.004201) | 0.133529 / 0.014526 (0.119003) | 0.143813 / 0.176557 (-0.032743) | 0.213079 / 0.737135 (-0.524056) | 0.148427 / 0.296338 (-0.147912) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.656819 / 0.215209 (0.441610) | 6.414860 / 2.077655 (4.337205) | 2.756182 / 1.504120 (1.252062) | 2.405268 / 1.541195 (0.864073) | 2.436418 / 1.468490 (0.967928) | 1.289828 / 4.584777 (-3.294949) | 5.572731 / 3.745712 (1.827018) | 3.185432 / 5.269862 (-2.084429) | 2.093220 / 4.565676 (-2.472457) | 0.144817 / 0.424275 (-0.279458) | 0.015674 / 0.007607 (0.008067) | 0.801238 / 0.226044 (0.575194) | 7.955925 / 2.268929 (5.686996) | 3.605670 / 55.444624 (-51.838955) | 2.837568 / 6.876477 (-4.038908) | 2.873848 / 2.142072 (0.731775) | 1.493512 / 4.805227 (-3.311715) | 0.266251 / 6.500664 (-6.234413) | 0.082417 / 0.075469 (0.006948) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.608685 / 1.841788 (-0.233103) | 18.587875 / 8.074308 (10.513567) | 21.786119 / 10.191392 (11.594727) | 0.261748 / 0.680424 (-0.418675) | 0.026228 / 0.534201 (-0.507973) | 0.553538 / 0.579283 (-0.025745) | 0.599780 / 0.434364 (0.165416) | 0.665663 / 0.540337 (0.125325) | 0.792785 / 1.386936 (-0.594151) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1520e017a9bb6f80e82a38b578213e418ad7e845 \"CML watermark\")\n"
] | 2023-03-26T20:09:37 | 2023-03-28T15:03:38 | 2023-03-28T14:54:17 | CONTRIBUTOR | null | Remove implementation-specific kwargs from `file_utils.fsspec_get` and `file_utils.fsspec_head`, instead allowing them to be passed down via `storage_options`. This fixes an issue where s3fs did not recognize a timeout arg as well as fixes an issue mentioned in https://github.com/huggingface/datasets/issues/5281 by allowing users to pass down `storage_options` all the way from `datasets.load_dataset` to support implementation-specific credentials
Supports something like the following to provide credentials explicitly instead of relying on boto's methods of locating them
```
load_dataset(..., data_files=["s3://..."], storage_options={"profile": "..."})
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5673/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5673/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5673",
"html_url": "https://github.com/huggingface/datasets/pull/5673",
"diff_url": "https://github.com/huggingface/datasets/pull/5673.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5673.patch",
"merged_at": "2023-03-28T14:54:17"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5672 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5672/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5672/comments | https://api.github.com/repos/huggingface/datasets/issues/5672/events | https://github.com/huggingface/datasets/issues/5672 | 1,641,005,322 | I_kwDODunzps5hz8EK | 5,672 | Pushing dataset to hub crash | {
"login": "tzvc",
"id": 14275989,
"node_id": "MDQ6VXNlcjE0Mjc1OTg5",
"avatar_url": "https://avatars.githubusercontent.com/u/14275989?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tzvc",
"html_url": "https://github.com/tzvc",
"followers_url": "https://api.github.com/users/tzvc/followers",
"following_url": "https://api.github.com/users/tzvc/following{/other_user}",
"gists_url": "https://api.github.com/users/tzvc/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tzvc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tzvc/subscriptions",
"organizations_url": "https://api.github.com/users/tzvc/orgs",
"repos_url": "https://api.github.com/users/tzvc/repos",
"events_url": "https://api.github.com/users/tzvc/events{/privacy}",
"received_events_url": "https://api.github.com/users/tzvc/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi ! It's been fixed by https://github.com/huggingface/datasets/pull/5598. We're doing a new release tomorrow with the fix and you'll be able to push your 100k images ;)\r\n\r\nBasically `push_to_hub` used to fail if the remote repository already exists and has a README.md without dataset_info in the YAML tags.\r\n\r\nIn the meantime you can install datasets from source",
"Hi @lhoestq ,\r\n\r\nWhat version of datasets library fix this case? I am using the last `v2.10.1` and I get the same error.",
"We just released 2.11 which includes a fix :)"
] | 2023-03-26T17:42:13 | 2023-03-30T08:11:05 | 2023-03-30T08:11:05 | NONE | null | ### Describe the bug
Uploading a dataset with `push_to_hub()` fails without error description.
### Steps to reproduce the bug
Hey there,
I've built a image dataset of 100k images + text pair as described here https://huggingface.co/docs/datasets/image_dataset#imagefolder
Now I'm trying to push it to the hub but I'm running into issues. First, I tried doing it via git directly, I added all the files in git lfs and pushed but I got hit with an error saying huggingface only accept up to 10k files in a folder.
So I'm now trying with the `push_to_hub()` func as follow:
```python
from datasets import load_dataset
import os
dataset = load_dataset("imagefolder", data_dir="./data", split="train")
dataset.push_to_hub("tzvc/organization-logos", token=os.environ.get('HF_TOKEN'))
```
But again, this produces an error:
```
Resolving data files: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 100212/100212 [00:00<00:00, 439108.61it/s]
Downloading and preparing dataset imagefolder/default to /home/contact_theochampion/.cache/huggingface/datasets/imagefolder/default-20567ffc703aa314/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f...
Downloading data files: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 100211/100211 [00:00<00:00, 149323.73it/s]
Downloading data files: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 1/1 [00:00<00:00, 15947.92it/s]
Extracting data files: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 1/1 [00:00<00:00, 2245.34it/s]
Dataset imagefolder downloaded and prepared to /home/contact_theochampion/.cache/huggingface/datasets/imagefolder/default-20567ffc703aa314/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f. Subsequent calls will reuse this data.
Resuming upload of the dataset shards.
Pushing dataset shards to the dataset hub: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 14/14 [00:31<00:00, 2.24s/it]
Downloading metadata: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 118/118 [00:00<00:00, 225kB/s]
Traceback (most recent call last):
File "/home/contact_theochampion/organization-logos/push_to_hub.py", line 5, in <module>
dataset.push_to_hub("tzvc/organization-logos", token=os.environ.get('HF_TOKEN'))
File "/home/contact_theochampion/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 5245, in push_to_hub
repo_info = dataset_infos[next(iter(dataset_infos))]
StopIteration
```
What could be happening here ?
### Expected behavior
The dataset is pushed to the hub
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-5.10.0-21-cloud-amd64-x86_64-with-glibc2.31
- Python version: 3.9.2
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5672/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5672/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5671 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5671/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5671/comments | https://api.github.com/repos/huggingface/datasets/issues/5671/events | https://github.com/huggingface/datasets/issues/5671 | 1,640,840,012 | I_kwDODunzps5hzTtM | 5,671 | How to use `load_dataset('glue', 'cola')` | {
"login": "makinzm",
"id": 40193664,
"node_id": "MDQ6VXNlcjQwMTkzNjY0",
"avatar_url": "https://avatars.githubusercontent.com/u/40193664?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/makinzm",
"html_url": "https://github.com/makinzm",
"followers_url": "https://api.github.com/users/makinzm/followers",
"following_url": "https://api.github.com/users/makinzm/following{/other_user}",
"gists_url": "https://api.github.com/users/makinzm/gists{/gist_id}",
"starred_url": "https://api.github.com/users/makinzm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/makinzm/subscriptions",
"organizations_url": "https://api.github.com/users/makinzm/orgs",
"repos_url": "https://api.github.com/users/makinzm/repos",
"events_url": "https://api.github.com/users/makinzm/events{/privacy}",
"received_events_url": "https://api.github.com/users/makinzm/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Sounds like an issue with incompatible `transformers` dependencies versions.\r\n\r\nCan you try to update `transformers` ?\r\n\r\nEDIT: I checked the `transformers` dependencies and it seems like you need `tokenizers>=0.10.1,<0.11` with `transformers==4.5.1`\r\n\r\nEDIT2: this old version of `datasets` seems to import `transformers` but it's no longer the case, so you could also simply update `datasets` and `transformers` won't be imported",
"Thank you for advising me to update these libraries versions.\r\n\r\nI can implement codes using `datasets==2.10.1` and `transformers==4.27.3`"
] | 2023-03-26T09:40:34 | 2023-03-28T07:43:44 | 2023-03-28T07:43:43 | NONE | null | ### Describe the bug
I'm new to use HuggingFace datasets but I cannot use `load_dataset('glue', 'cola')`.
- I was stacked by the following problem:
```python
from datasets import load_dataset
cola_dataset = load_dataset('glue', 'cola')
---------------------------------------------------------------------------
InvalidVersion Traceback (most recent call last)
File <timed exec>:1
(Omit because of long error message)
File /usr/local/lib/python3.8/site-packages/packaging/version.py:197, in Version.__init__(self, version)
195 match = self._regex.search(version)
196 if not match:
--> 197 raise InvalidVersion(f"Invalid version: '{version}'")
199 # Store the parsed out pieces of the version
200 self._version = _Version(
201 epoch=int(match.group("epoch")) if match.group("epoch") else 0,
202 release=tuple(int(i) for i in match.group("release").split(".")),
(...)
208 local=_parse_local_version(match.group("local")),
209 )
InvalidVersion: Invalid version: '0.10.1,<0.11'
```
- You can check this full error message in my repository: [MLOps-Basics/week_0_project_setup/experimental_notebooks/data_exploration.ipynb](https://github.com/makinzm/MLOps-Basics/blob/eabab4b837880607d9968d3fa687c70177b2affd/week_0_project_setup/experimental_notebooks/data_exploration.ipynb)
### Steps to reproduce the bug
- This is my repository to reproduce: [MLOps-Basics/week_0_project_setup](https://github.com/makinzm/MLOps-Basics/tree/eabab4b837880607d9968d3fa687c70177b2affd/week_0_project_setup)
1. cd `/DockerImage` and command `docker build . -t week0`
2. cd `/` and command `docker-compose up`
3. Run `experimental_notebooks/data_exploration.ipynb`
----
Just to be sure, I wrote down Dockerfile and requirements.txt
- Dockerfile
```Dockerfile
FROM python:3.8
WORKDIR /root/working
RUN apt-get update && \
apt-get install -y python3-dev python3-pip python3-venv && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
COPY requirements.txt .
RUN pip3 install --no-cache-dir jupyter notebook && pip install --no-cache-dir -r requirements.txt
CMD ["bash"]
```
- requirements.txt
```txt
pytorch-lightning==1.2.10
datasets==1.6.2
transformers==4.5.1
scikit-learn==0.24.2
```
### Expected behavior
There is no bug to implement `load_dataset('glue', 'cola')`
### Environment info
I already wrote it. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5671/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5671/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5670 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5670/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5670/comments | https://api.github.com/repos/huggingface/datasets/issues/5670/events | https://github.com/huggingface/datasets/issues/5670 | 1,640,607,045 | I_kwDODunzps5hya1F | 5,670 | Unable to load multi class classification datasets | {
"login": "ysahil97",
"id": 19690506,
"node_id": "MDQ6VXNlcjE5NjkwNTA2",
"avatar_url": "https://avatars.githubusercontent.com/u/19690506?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ysahil97",
"html_url": "https://github.com/ysahil97",
"followers_url": "https://api.github.com/users/ysahil97/followers",
"following_url": "https://api.github.com/users/ysahil97/following{/other_user}",
"gists_url": "https://api.github.com/users/ysahil97/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ysahil97/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ysahil97/subscriptions",
"organizations_url": "https://api.github.com/users/ysahil97/orgs",
"repos_url": "https://api.github.com/users/ysahil97/repos",
"events_url": "https://api.github.com/users/ysahil97/events{/privacy}",
"received_events_url": "https://api.github.com/users/ysahil97/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi ! This sounds related to https://github.com/huggingface/datasets/issues/5406\r\n\r\nUpdating `datasets` fixes the issue ;)",
"Thanks @lhoestq!\r\n\r\nI'll close this issue now."
] | 2023-03-25T18:06:15 | 2023-03-27T22:54:56 | 2023-03-27T22:54:56 | NONE | null | ### Describe the bug
I've been playing around with huggingface library, mostly with `datasets` and wanted to download the multi class classification datasets to fine tune BERT on this task. ([link](https://huggingface.co/docs/transformers/training#train-with-pytorch-trainer)).
While loading the dataset, I'm getting the following error snippet.
```
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[44], line 3
1 from datasets import load_dataset
----> 3 imdb_dataset = load_dataset("yelp_review_full")
4 imdb_dataset
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/load.py:1719, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs)
1716 ignore_verifications = ignore_verifications or save_infos
1718 # Create a dataset builder
-> 1719 builder_instance = load_dataset_builder(
1720 path=path,
1721 name=name,
1722 data_dir=data_dir,
1723 data_files=data_files,
1724 cache_dir=cache_dir,
1725 features=features,
1726 download_config=download_config,
1727 download_mode=download_mode,
1728 revision=revision,
1729 use_auth_token=use_auth_token,
1730 **config_kwargs,
1731 )
1733 # Return iterable dataset in case of streaming
1734 if streaming:
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/load.py:1523, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, **config_kwargs)
1520 raise ValueError(error_msg)
1522 # Instantiate the dataset builder
-> 1523 builder_instance: DatasetBuilder = builder_cls(
1524 cache_dir=cache_dir,
1525 config_name=config_name,
1526 data_dir=data_dir,
1527 data_files=data_files,
1528 hash=hash,
1529 features=features,
1530 use_auth_token=use_auth_token,
1531 **builder_kwargs,
1532 **config_kwargs,
1533 )
1535 return builder_instance
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/builder.py:1292, in GeneratorBasedBuilder.__init__(self, writer_batch_size, *args, **kwargs)
1291 def __init__(self, *args, writer_batch_size=None, **kwargs):
-> 1292 super().__init__(*args, **kwargs)
1293 # Batch size used by the ArrowWriter
1294 # It defines the number of samples that are kept in memory before writing them
1295 # and also the length of the arrow chunks
1296 # None means that the ArrowWriter will use its default value
1297 self._writer_batch_size = writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/builder.py:312, in DatasetBuilder.__init__(self, cache_dir, config_name, hash, base_path, info, features, use_auth_token, repo_id, data_files, data_dir, name, **config_kwargs)
309 # prepare info: DatasetInfo are a standardized dataclass across all datasets
310 # Prefill datasetinfo
311 if info is None:
--> 312 info = self.get_exported_dataset_info()
313 info.update(self._info())
314 info.builder_name = self.name
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/builder.py:412, in DatasetBuilder.get_exported_dataset_info(self)
400 def get_exported_dataset_info(self) -> DatasetInfo:
401 """Empty DatasetInfo if doesn't exist
402
403 Example:
(...)
410 ```
411 """
--> 412 return self.get_all_exported_dataset_infos().get(self.config.name, DatasetInfo())
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/builder.py:398, in DatasetBuilder.get_all_exported_dataset_infos(cls)
385 @classmethod
386 def get_all_exported_dataset_infos(cls) -> DatasetInfosDict:
387 """Empty dict if doesn't exist
388
389 Example:
(...)
396 ```
397 """
--> 398 return DatasetInfosDict.from_directory(cls.get_imported_module_dir())
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/info.py:370, in DatasetInfosDict.from_directory(cls, dataset_infos_dir)
368 dataset_metadata = DatasetMetadata.from_readme(Path(dataset_infos_dir) / "README.md")
369 if "dataset_info" in dataset_metadata:
--> 370 return cls.from_metadata(dataset_metadata)
371 if os.path.exists(os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME)):
372 # this is just to have backward compatibility with dataset_infos.json files
373 with open(os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME), encoding="utf-8") as f:
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/info.py:396, in DatasetInfosDict.from_metadata(cls, dataset_metadata)
387 return cls(
388 {
389 dataset_info_yaml_dict.get("config_name", "default"): DatasetInfo._from_yaml_dict(
(...)
393 }
394 )
395 else:
--> 396 dataset_info = DatasetInfo._from_yaml_dict(dataset_metadata["dataset_info"])
397 dataset_info.config_name = dataset_metadata["dataset_info"].get("config_name", "default")
398 return cls({dataset_info.config_name: dataset_info})
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/info.py:332, in DatasetInfo._from_yaml_dict(cls, yaml_data)
330 yaml_data = copy.deepcopy(yaml_data)
331 if yaml_data.get("features") is not None:
--> 332 yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
333 if yaml_data.get("splits") is not None:
334 yaml_data["splits"] = SplitDict._from_yaml_list(yaml_data["splits"])
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/features/features.py:1745, in Features._from_yaml_list(cls, yaml_data)
1742 else:
1743 raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")
-> 1745 return cls.from_dict(from_yaml_inner(yaml_data))
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/features/features.py:1741, in Features._from_yaml_list.<locals>.from_yaml_inner(obj)
1739 elif isinstance(obj, list):
1740 names = [_feature.pop("name") for _feature in obj]
-> 1741 return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
1742 else:
1743 raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/features/features.py:1741, in <dictcomp>(.0)
1739 elif isinstance(obj, list):
1740 names = [_feature.pop("name") for _feature in obj]
-> 1741 return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
1742 else:
1743 raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/features/features.py:1736, in Features._from_yaml_list.<locals>.from_yaml_inner(obj)
1734 return {"_type": snakecase_to_camelcase(obj["dtype"])}
1735 else:
-> 1736 return from_yaml_inner(obj["dtype"])
1737 else:
1738 return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]}
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/features/features.py:1738, in Features._from_yaml_list.<locals>.from_yaml_inner(obj)
1736 return from_yaml_inner(obj["dtype"])
1737 else:
-> 1738 return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]}
1739 elif isinstance(obj, list):
1740 names = [_feature.pop("name") for _feature in obj]
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/features/features.py:1706, in Features._from_yaml_list.<locals>.unsimplify(feature)
1704 if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), dict):
1705 label_ids = sorted(feature["class_label"]["names"])
-> 1706 if label_ids and label_ids != list(range(label_ids[-1] + 1)):
1707 raise ValueError(
1708 f"ClassLabel expected a value for all label ids [0:{label_ids[-1] + 1}] but some ids are missing."
1709 )
1710 feature["class_label"]["names"] = [feature["class_label"]["names"][label_id] for label_id in label_ids]
TypeError: can only concatenate str (not "int") to str
```
The same issue happens when I try to load `go-emotions` multi class classification dataset. Could somebody guide me on how to fix this issue?
### Steps to reproduce the bug
Run the following code snippet in a python script/ notebook cell:
```
from datasets import load_dataset
yelp_dataset = load_dataset("yelp_review_full")
yelp_dataset
```
### Expected behavior
The dataset should be loaded perfectly, which showing the train, test and unsupervised splits with the basic data statistics
### Environment info
- `datasets` version: 2.6.1
- Platform: Linux-5.4.0-124-generic-x86_64-with-glibc2.31
- Python version: 3.10.9
- PyArrow version: 8.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5670/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5670/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5669 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5669/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5669/comments | https://api.github.com/repos/huggingface/datasets/issues/5669/events | https://github.com/huggingface/datasets/issues/5669 | 1,638,070,046 | I_kwDODunzps5hovce | 5,669 | Almost identical datasets, huge performance difference | {
"login": "eli-osherovich",
"id": 2437102,
"node_id": "MDQ6VXNlcjI0MzcxMDI=",
"avatar_url": "https://avatars.githubusercontent.com/u/2437102?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/eli-osherovich",
"html_url": "https://github.com/eli-osherovich",
"followers_url": "https://api.github.com/users/eli-osherovich/followers",
"following_url": "https://api.github.com/users/eli-osherovich/following{/other_user}",
"gists_url": "https://api.github.com/users/eli-osherovich/gists{/gist_id}",
"starred_url": "https://api.github.com/users/eli-osherovich/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/eli-osherovich/subscriptions",
"organizations_url": "https://api.github.com/users/eli-osherovich/orgs",
"repos_url": "https://api.github.com/users/eli-osherovich/repos",
"events_url": "https://api.github.com/users/eli-osherovich/events{/privacy}",
"received_events_url": "https://api.github.com/users/eli-osherovich/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Do I miss something here?",
"Hi! \r\n\r\nThe first dataset stores images as bytes (the \"image\" column type is `datasets.Image()`) and decodes them as `PIL.Image` objects and the second dataset stores them as variable-length lists (the \"image\" column type is `datasets.Sequence(...)`)), so I guess going from `arrow bytes -> NumPy -> decoding as PIL.Image -> PyTorch` is faster than going from `arrow list -> NumPy -> PyTorch`. \r\n\r\nTo store image bytes in the second example, you can do the following:\r\n\r\n```python\r\ndef transform(example):\r\n example[\"image2\"] = cv2.imread(example[\"image_file_path\"])\r\n return example\r\n\r\nfeatures = dataset.features.copy()\r\ndel features[\"image\"]\r\nfeatures[\"image2\"] = datasets.Image()\r\ndataset2 = dataset.map(transform, remove_columns=[\"image\"], features=features)\r\n\r\nfor x in DataLoader(dataset2.with_format(\"torch\"), batch_size=16, shuffle=True, num_workers=8):\r\n pass\r\n```",
"Thanks, @mariosasko. I could not understand why a (decoded) sequence should be MUCH slower than an encoded image (that must be decoded every time). At any rate, I tried you suggestion. It made the `map` step to run extremely slow (consumes all the 16GB of memory and starts swapping)\r\n\r\nI tried also the easiest (as I see it) scenario, where images are kept as bytes, but it made things even worse: not only it was extremely slow, but also crashes\r\n\r\n```python\r\n\r\ndef transform(example):\r\n example[\"image2\"] = cv2.imread(example[\"image_file_path\"]).tobytes()\r\n return example\r\n\r\ndataset2 = dataset.map(transform, remove_columns=[\"image\"])\r\n\r\nfor x in DataLoader(dataset2.with_format(\"torch\"), batch_size=16, shuffle=True, num_workers=8):\r\n pass\r\n\r\n\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nOutput exceeds the size limit. Open the full output data in a text editor\r\n---------------------------------------------------------------------------\r\nRuntimeError Traceback (most recent call last)\r\nFile ~/virtenvs/py310/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1133, in _MultiProcessingDataLoaderIter._try_get_data(self, timeout)\r\n 1132 try:\r\n-> 1133 data = self._data_queue.get(timeout=timeout)\r\n 1134 return (True, data)\r\n\r\nFile ~/virtenvs/py310/lib/python3.10/multiprocessing/queues.py:113, in Queue.get(self, block, timeout)\r\n 112 timeout = deadline - time.monotonic()\r\n--> 113 if not self._poll(timeout):\r\n 114 raise Empty\r\n\r\nFile ~/virtenvs/py310/lib/python3.10/multiprocessing/connection.py:257, in _ConnectionBase.poll(self, timeout)\r\n 256 self._check_readable()\r\n--> 257 return self._poll(timeout)\r\n\r\nFile ~/virtenvs/py310/lib/python3.10/multiprocessing/connection.py:424, in Connection._poll(self, timeout)\r\n 423 def _poll(self, timeout):\r\n--> 424 r = wait([self], timeout)\r\n 425 return bool(r)\r\n\r\nFile ~/virtenvs/py310/lib/python3.10/multiprocessing/connection.py:931, in wait(object_list, timeout)\r\n 930 while True:\r\n--> 931 ready = selector.select(timeout)\r\n 932 if ready:\r\n...\r\n-> 1146 raise RuntimeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str)) from e\r\n 1147 if isinstance(e, queue.Empty):\r\n 1148 return (False, None)\r\n\r\nRuntimeError: DataLoader worker (pid(s) 195393) exited unexpectedly\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nResource temporarily unavailable (src/thread.cpp:269)\r\n```\r\n",
"Correction: the `beans` dataset stores the image file paths, not the bytes.\r\n\r\nFor your use case, I think it makes more sense to use `with_tranform` than `map` and lazily decode images with `cv2.imread` when indexing an example/batch:\r\n```python\r\nimport cv2\r\n\r\ndef transform(batch):\r\n batch[\"image2\"] = np.stack([cv2.imread(image_file_path) for image_file_path in batch[\"image_file_path\"]])\r\n return batch\r\n\r\ndataset = dataset.with_transform(transform)\r\n```\r\n",
"This is incorrect.\n\nDid you try to run it? dataset[0] returns a tensor of numbers. dataset2[0]\nreturns the same tensor, but after a few long seconds. Looping over a\nthousand of images cannot take 15 minutes.\n\nOn Fri, 24 Mar 2023 at 19:28 Mario ล aลกko ***@***.***> wrote:\n\n> Correction: the beans dataset stores the image file paths, not the bytes.\n>\n> For your use case, I think it makes more sense to use with_tranform than\n> map and lazily decode images with cv2.imread when accessing an\n> example/batch:\n>\n> import cv2\n> def transform(batch):\n> batch[\"image2\"] = np.stack([cv2.imread(image_file_path) for image_file_path in batch[\"image_file_path\"]])\n> return batch\n> dataset = dataset.with_transform(transform)\n>\n> โ\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5669#issuecomment-1483084347>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AASS73SHRWXIQX6SCYCJ7ITW5XDUDANCNFSM6AAAAAAWFSHWEM>\n> .\n> You are receiving this because you authored the thread.Message ID:\n> ***@***.***>\n>\n",
"I updated the transform with the NumPy -> PyTorch conversion.\r\n\r\nI'm sharing the entire code:\r\n```python\r\nimport cv2\r\nimport numpy as np\r\nimport datasets\r\nimport torch\r\nfrom datasets import load_dataset\r\nfrom torch.utils.data import DataLoader\r\n\r\ndataset = load_dataset(\"beans\", split=\"train\")\r\n\r\ndef transform(batch):\r\n # # Pillow decodes as RGB\r\n # batch[\"image\"] = torch.stack([torch.from_numpy(cv2.cvtColor(cv2.imread(image_file_path), cv2.COLOR_BGR2RGB)) for image_file_path in batch[\"image_file_path\"]])\r\n batch[\"image\"] = torch.stack([torch.from_numpy(cv2.imread(image_file_path)) for image_file_path in batch[\"image_file_path\"]])\r\n batch[\"labels\"] = torch.tensor(batch[\"labels\"])\r\n return batch\r\n\r\ndataset2 = dataset.cast_column(\"image\", datasets.Image(decode=False)).with_transform(transform)\r\n\r\nfor x in DataLoader(dataset2, batch_size=16, shuffle=True, num_workers=8):\r\n pass\r\n```\r\n\r\nThis code is โ 10% faster on my machine than the default decoding with Pillow and `.with_format(\"torch\")`.",
"Thanks, @mariosasko \r\nMy question remain unanswered though. Why is the `map`ed dataset so slow? My understanding is that a dataset of numpy arrays should be must faster than a dataset that has to decode images into numpy arrays every time one accesses an item. "
] | 2023-03-23T18:20:20 | 2023-04-09T18:56:23 | null | CONTRIBUTOR | null | ### Describe the bug
I am struggling to understand (huge) performance difference between two datasets that are almost identical.
### Steps to reproduce the bug
# Fast (normal) dataset speed:
```python
import cv2
from datasets import load_dataset
from torch.utils.data import DataLoader
dataset = load_dataset("beans", split="train")
for x in DataLoader(dataset.with_format("torch"), batch_size=16, shuffle=True, num_workers=8):
pass
```
The above pass over the dataset takes about 1.5 seconds on my computer.
However, if I re-create (almost) the same dataset, the sweep takes HUGE amount of time: 15 minutes. Steps to reproduce:
```python
def transform(example):
example["image2"] = cv2.imread(example["image_file_path"])
return example
dataset2 = dataset.map(transform, remove_columns=["image"])
for x in DataLoader(dataset2.with_format("torch"), batch_size=16, shuffle=True, num_workers=8):
pass
```
### Expected behavior
Same timings
### Environment info
python==3.10.9
datasets==2.10.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5669/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5669/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5668 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5668/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5668/comments | https://api.github.com/repos/huggingface/datasets/issues/5668/events | https://github.com/huggingface/datasets/pull/5668 | 1,638,018,598 | PR_kwDODunzps5MwuIp | 5,668 | Support for downloading only provided split | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5668). All of your documentation changes will be reflected on that endpoint.",
"My previous comment didn't create the retro-link in the PR. I write it here again.\r\n\r\nYou can check the context and the discussions we had about this feature enhancement in this PR:\r\n- #2249"
] | 2023-03-23T17:53:39 | 2023-03-24T06:43:14 | null | CONTRIBUTOR | null | We can pass split to `_split_generators()`.
But I'm not sure if it's possible to solve cache issues, mostly with `dataset_info.json` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5668/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5668/timeline | null | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5668",
"html_url": "https://github.com/huggingface/datasets/pull/5668",
"diff_url": "https://github.com/huggingface/datasets/pull/5668.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5668.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5667 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5667/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5667/comments | https://api.github.com/repos/huggingface/datasets/issues/5667/events | https://github.com/huggingface/datasets/pull/5667 | 1,637,789,361 | PR_kwDODunzps5Mv8Im | 5,667 | Jax requires jaxlib | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008592 / 0.011353 (-0.002761) | 0.005182 / 0.011008 (-0.005826) | 0.097916 / 0.038508 (0.059408) | 0.034612 / 0.023109 (0.011503) | 0.313760 / 0.275898 (0.037862) | 0.353422 / 0.323480 (0.029942) | 0.005880 / 0.007986 (-0.002106) | 0.004123 / 0.004328 (-0.000205) | 0.073634 / 0.004250 (0.069384) | 0.049349 / 0.037052 (0.012297) | 0.317381 / 0.258489 (0.058892) | 0.365821 / 0.293841 (0.071980) | 0.036482 / 0.128546 (-0.092065) | 0.012126 / 0.075646 (-0.063521) | 0.334640 / 0.419271 (-0.084631) | 0.050551 / 0.043533 (0.007018) | 0.310472 / 0.255139 (0.055333) | 0.349049 / 0.283200 (0.065850) | 0.101343 / 0.141683 (-0.040340) | 1.447903 / 1.452155 (-0.004252) | 1.518793 / 1.492716 (0.026077) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210971 / 0.018006 (0.192965) | 0.449471 / 0.000490 (0.448982) | 0.003596 / 0.000200 (0.003396) | 0.000084 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027386 / 0.037411 (-0.010025) | 0.112683 / 0.014526 (0.098157) | 0.117603 / 0.176557 (-0.058954) | 0.174186 / 0.737135 (-0.562949) | 0.123510 / 0.296338 (-0.172829) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422595 / 0.215209 (0.207386) | 4.224713 / 2.077655 (2.147058) | 2.006359 / 1.504120 (0.502240) | 1.823767 / 1.541195 (0.282572) | 1.898340 / 1.468490 (0.429849) | 0.721656 / 4.584777 (-3.863121) | 3.823498 / 3.745712 (0.077785) | 2.172380 / 5.269862 (-3.097481) | 1.469773 / 4.565676 (-3.095904) | 0.086978 / 0.424275 (-0.337297) | 0.012642 / 0.007607 (0.005035) | 0.517830 / 0.226044 (0.291785) | 5.171150 / 2.268929 (2.902221) | 2.495238 / 55.444624 (-52.949386) | 2.114380 / 6.876477 (-4.762097) | 2.274329 / 2.142072 (0.132257) | 0.863855 / 4.805227 (-3.941372) | 0.174127 / 6.500664 (-6.326537) | 0.065939 / 0.075469 (-0.009530) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.208831 / 1.841788 (-0.632957) | 15.016704 / 8.074308 (6.942396) | 14.721231 / 10.191392 (4.529839) | 0.144140 / 0.680424 (-0.536284) | 0.017781 / 0.534201 (-0.516420) | 0.425679 / 0.579283 (-0.153604) | 0.416747 / 0.434364 (-0.017617) | 0.490160 / 0.540337 (-0.050177) | 0.583639 / 1.386936 (-0.803297) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007670 / 0.011353 (-0.003683) | 0.005383 / 0.011008 (-0.005626) | 0.075756 / 0.038508 (0.037248) | 0.033373 / 0.023109 (0.010263) | 0.341017 / 0.275898 (0.065119) | 0.378890 / 0.323480 (0.055410) | 0.005945 / 0.007986 (-0.002040) | 0.004179 / 0.004328 (-0.000150) | 0.074588 / 0.004250 (0.070337) | 0.048564 / 0.037052 (0.011511) | 0.338774 / 0.258489 (0.080285) | 0.391081 / 0.293841 (0.097240) | 0.036659 / 0.128546 (-0.091887) | 0.012241 / 0.075646 (-0.063406) | 0.086910 / 0.419271 (-0.332361) | 0.049745 / 0.043533 (0.006212) | 0.332810 / 0.255139 (0.077671) | 0.360317 / 0.283200 (0.077117) | 0.103399 / 0.141683 (-0.038283) | 1.456754 / 1.452155 (0.004599) | 1.542644 / 1.492716 (0.049928) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207182 / 0.018006 (0.189176) | 0.455659 / 0.000490 (0.455169) | 0.003609 / 0.000200 (0.003409) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029556 / 0.037411 (-0.007856) | 0.114215 / 0.014526 (0.099690) | 0.127721 / 0.176557 (-0.048836) | 0.177070 / 0.737135 (-0.560065) | 0.128840 / 0.296338 (-0.167499) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428176 / 0.215209 (0.212967) | 4.274324 / 2.077655 (2.196669) | 2.020058 / 1.504120 (0.515938) | 1.823343 / 1.541195 (0.282148) | 1.924688 / 1.468490 (0.456198) | 0.719195 / 4.584777 (-3.865582) | 3.760445 / 3.745712 (0.014733) | 2.133813 / 5.269862 (-3.136049) | 1.364876 / 4.565676 (-3.200801) | 0.087523 / 0.424275 (-0.336752) | 0.013712 / 0.007607 (0.006105) | 0.528403 / 0.226044 (0.302359) | 5.307780 / 2.268929 (3.038851) | 2.496747 / 55.444624 (-52.947877) | 2.169136 / 6.876477 (-4.707341) | 2.235719 / 2.142072 (0.093646) | 0.875281 / 4.805227 (-3.929946) | 0.172369 / 6.500664 (-6.328295) | 0.064667 / 0.075469 (-0.010802) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262594 / 1.841788 (-0.579193) | 15.182681 / 8.074308 (7.108373) | 14.725663 / 10.191392 (4.534271) | 0.180961 / 0.680424 (-0.499462) | 0.017632 / 0.534201 (-0.516569) | 0.427531 / 0.579283 (-0.151752) | 0.431741 / 0.434364 (-0.002622) | 0.503251 / 0.540337 (-0.037087) | 0.597423 / 1.386936 (-0.789513) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f4cf224dcb1043a272971ed331a214cf65c504be \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009761 / 0.011353 (-0.001592) | 0.006779 / 0.011008 (-0.004229) | 0.132786 / 0.038508 (0.094277) | 0.037721 / 0.023109 (0.014611) | 0.435685 / 0.275898 (0.159787) | 0.447488 / 0.323480 (0.124009) | 0.006848 / 0.007986 (-0.001137) | 0.005099 / 0.004328 (0.000771) | 0.097384 / 0.004250 (0.093133) | 0.056663 / 0.037052 (0.019610) | 0.463407 / 0.258489 (0.204918) | 0.502544 / 0.293841 (0.208703) | 0.053817 / 0.128546 (-0.074729) | 0.020253 / 0.075646 (-0.055393) | 0.446653 / 0.419271 (0.027382) | 0.064465 / 0.043533 (0.020932) | 0.455375 / 0.255139 (0.200236) | 0.458378 / 0.283200 (0.175178) | 0.109124 / 0.141683 (-0.032559) | 1.957338 / 1.452155 (0.505184) | 1.960391 / 1.492716 (0.467674) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219566 / 0.018006 (0.201560) | 0.558181 / 0.000490 (0.557691) | 0.004678 / 0.000200 (0.004478) | 0.000125 / 0.000054 (0.000071) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032643 / 0.037411 (-0.004768) | 0.147375 / 0.014526 (0.132849) | 0.130821 / 0.176557 (-0.045736) | 0.203202 / 0.737135 (-0.533933) | 0.145186 / 0.296338 (-0.151153) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.665773 / 0.215209 (0.450564) | 6.674021 / 2.077655 (4.596366) | 2.662372 / 1.504120 (1.158253) | 2.333327 / 1.541195 (0.792132) | 2.221413 / 1.468490 (0.752923) | 1.287001 / 4.584777 (-3.297776) | 5.534326 / 3.745712 (1.788614) | 3.188809 / 5.269862 (-2.081052) | 2.261717 / 4.565676 (-2.303960) | 0.151910 / 0.424275 (-0.272366) | 0.020509 / 0.007607 (0.012902) | 0.863608 / 0.226044 (0.637564) | 8.442155 / 2.268929 (6.173227) | 3.438260 / 55.444624 (-52.006364) | 2.692503 / 6.876477 (-4.183974) | 2.810997 / 2.142072 (0.668925) | 1.477345 / 4.805227 (-3.327882) | 0.261942 / 6.500664 (-6.238722) | 0.086347 / 0.075469 (0.010878) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.529072 / 1.841788 (-0.312716) | 17.213019 / 8.074308 (9.138711) | 21.887309 / 10.191392 (11.695917) | 0.259660 / 0.680424 (-0.420763) | 0.027916 / 0.534201 (-0.506285) | 0.554103 / 0.579283 (-0.025180) | 0.614566 / 0.434364 (0.180202) | 0.700456 / 0.540337 (0.160119) | 0.756860 / 1.386936 (-0.630077) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009267 / 0.011353 (-0.002086) | 0.006414 / 0.011008 (-0.004594) | 0.102404 / 0.038508 (0.063896) | 0.034885 / 0.023109 (0.011776) | 0.413191 / 0.275898 (0.137293) | 0.483901 / 0.323480 (0.160422) | 0.006614 / 0.007986 (-0.001372) | 0.004608 / 0.004328 (0.000280) | 0.096717 / 0.004250 (0.092467) | 0.055123 / 0.037052 (0.018071) | 0.417786 / 0.258489 (0.159297) | 0.490886 / 0.293841 (0.197045) | 0.056951 / 0.128546 (-0.071595) | 0.021073 / 0.075646 (-0.054574) | 0.116576 / 0.419271 (-0.302695) | 0.063968 / 0.043533 (0.020435) | 0.420495 / 0.255139 (0.165356) | 0.449667 / 0.283200 (0.166467) | 0.115318 / 0.141683 (-0.026365) | 1.899398 / 1.452155 (0.447243) | 1.992175 / 1.492716 (0.499459) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233076 / 0.018006 (0.215070) | 0.518377 / 0.000490 (0.517887) | 0.000809 / 0.000200 (0.000609) | 0.000101 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030951 / 0.037411 (-0.006460) | 0.134940 / 0.014526 (0.120414) | 0.147789 / 0.176557 (-0.028767) | 0.205854 / 0.737135 (-0.531281) | 0.146726 / 0.296338 (-0.149613) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.648006 / 0.215209 (0.432797) | 6.416688 / 2.077655 (4.339033) | 2.696462 / 1.504120 (1.192342) | 2.293071 / 1.541195 (0.751877) | 2.319426 / 1.468490 (0.850935) | 1.332398 / 4.584777 (-3.252379) | 5.706956 / 3.745712 (1.961244) | 4.464473 / 5.269862 (-0.805388) | 2.817364 / 4.565676 (-1.748312) | 0.157595 / 0.424275 (-0.266680) | 0.015721 / 0.007607 (0.008114) | 0.806055 / 0.226044 (0.580010) | 7.927795 / 2.268929 (5.658866) | 3.461251 / 55.444624 (-51.983373) | 2.664466 / 6.876477 (-4.212010) | 2.660041 / 2.142072 (0.517968) | 1.531135 / 4.805227 (-3.274092) | 0.260293 / 6.500664 (-6.240371) | 0.077440 / 0.075469 (0.001971) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.687325 / 1.841788 (-0.154463) | 17.905080 / 8.074308 (9.830772) | 21.046794 / 10.191392 (10.855402) | 0.245335 / 0.680424 (-0.435089) | 0.026830 / 0.534201 (-0.507371) | 0.510798 / 0.579283 (-0.068485) | 0.590041 / 0.434364 (0.155677) | 0.607440 / 0.540337 (0.067102) | 0.725030 / 1.386936 (-0.661906) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#91dcb3636e410a249177f5e0508ed101ad7ee25b \"CML watermark\")\n",
"I self-assigned #5666 and I was working on it... without success: https://github.com/huggingface/datasets/tree/fix-5666\r\n\r\nI think your approach is the right one because installation of jax is not trivial...\r\n\r\nNext time it would be better that you self-assign an issue before working on it, so that we avoid duplicate work... :sweat_smile: ",
"Oh sorry I forgot to self assign this time",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008436 / 0.011353 (-0.002917) | 0.005702 / 0.011008 (-0.005306) | 0.113518 / 0.038508 (0.075010) | 0.039639 / 0.023109 (0.016530) | 0.353200 / 0.275898 (0.077302) | 0.382428 / 0.323480 (0.058948) | 0.007419 / 0.007986 (-0.000566) | 0.005640 / 0.004328 (0.001311) | 0.083905 / 0.004250 (0.079655) | 0.053258 / 0.037052 (0.016205) | 0.371069 / 0.258489 (0.112580) | 0.390439 / 0.293841 (0.096598) | 0.042679 / 0.128546 (-0.085867) | 0.013438 / 0.075646 (-0.062208) | 0.390116 / 0.419271 (-0.029155) | 0.068782 / 0.043533 (0.025249) | 0.352620 / 0.255139 (0.097481) | 0.371939 / 0.283200 (0.088739) | 0.126157 / 0.141683 (-0.015525) | 1.694638 / 1.452155 (0.242484) | 1.799211 / 1.492716 (0.306495) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260099 / 0.018006 (0.242092) | 0.489852 / 0.000490 (0.489362) | 0.012549 / 0.000200 (0.012349) | 0.000275 / 0.000054 (0.000221) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032235 / 0.037411 (-0.005177) | 0.125325 / 0.014526 (0.110799) | 0.137242 / 0.176557 (-0.039315) | 0.206566 / 0.737135 (-0.530570) | 0.143260 / 0.296338 (-0.153078) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.478510 / 0.215209 (0.263301) | 4.746439 / 2.077655 (2.668784) | 2.195072 / 1.504120 (0.690952) | 1.958163 / 1.541195 (0.416969) | 2.028566 / 1.468490 (0.560075) | 0.821289 / 4.584777 (-3.763488) | 4.765529 / 3.745712 (1.019817) | 2.378753 / 5.269862 (-2.891108) | 1.514776 / 4.565676 (-3.050900) | 0.100673 / 0.424275 (-0.323602) | 0.014720 / 0.007607 (0.007113) | 0.606388 / 0.226044 (0.380343) | 5.975285 / 2.268929 (3.706357) | 2.866762 / 55.444624 (-52.577862) | 2.392132 / 6.876477 (-4.484345) | 2.546487 / 2.142072 (0.404415) | 0.982394 / 4.805227 (-3.822833) | 0.201195 / 6.500664 (-6.299469) | 0.077781 / 0.075469 (0.002312) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.420613 / 1.841788 (-0.421174) | 17.743030 / 8.074308 (9.668722) | 16.752344 / 10.191392 (6.560951) | 0.167464 / 0.680424 (-0.512960) | 0.020908 / 0.534201 (-0.513293) | 0.502919 / 0.579283 (-0.076364) | 0.506375 / 0.434364 (0.072011) | 0.602695 / 0.540337 (0.062358) | 0.689398 / 1.386936 (-0.697538) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008713 / 0.011353 (-0.002640) | 0.006152 / 0.011008 (-0.004856) | 0.091264 / 0.038508 (0.052756) | 0.040284 / 0.023109 (0.017174) | 0.417598 / 0.275898 (0.141700) | 0.460141 / 0.323480 (0.136661) | 0.006589 / 0.007986 (-0.001397) | 0.004671 / 0.004328 (0.000343) | 0.089360 / 0.004250 (0.085110) | 0.055113 / 0.037052 (0.018061) | 0.415241 / 0.258489 (0.156752) | 0.470566 / 0.293841 (0.176725) | 0.042963 / 0.128546 (-0.085584) | 0.014421 / 0.075646 (-0.061225) | 0.106333 / 0.419271 (-0.312939) | 0.057810 / 0.043533 (0.014277) | 0.417889 / 0.255139 (0.162750) | 0.444236 / 0.283200 (0.161036) | 0.119508 / 0.141683 (-0.022175) | 1.736209 / 1.452155 (0.284055) | 1.790319 / 1.492716 (0.297602) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219184 / 0.018006 (0.201178) | 0.493931 / 0.000490 (0.493441) | 0.006727 / 0.000200 (0.006527) | 0.000103 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034415 / 0.037411 (-0.002996) | 0.132165 / 0.014526 (0.117639) | 0.143138 / 0.176557 (-0.033418) | 0.200052 / 0.737135 (-0.537083) | 0.148906 / 0.296338 (-0.147433) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.483686 / 0.215209 (0.268476) | 4.849874 / 2.077655 (2.772220) | 2.374276 / 1.504120 (0.870156) | 2.168334 / 1.541195 (0.627139) | 2.285983 / 1.468490 (0.817493) | 0.833041 / 4.584777 (-3.751735) | 4.665915 / 3.745712 (0.920203) | 4.543559 / 5.269862 (-0.726302) | 2.246926 / 4.565676 (-2.318750) | 0.098490 / 0.424275 (-0.325785) | 0.014934 / 0.007607 (0.007327) | 0.591878 / 0.226044 (0.365834) | 6.039852 / 2.268929 (3.770923) | 2.881244 / 55.444624 (-52.563381) | 2.486297 / 6.876477 (-4.390179) | 2.564642 / 2.142072 (0.422569) | 0.985684 / 4.805227 (-3.819543) | 0.199101 / 6.500664 (-6.301563) | 0.078138 / 0.075469 (0.002669) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.647744 / 1.841788 (-0.194043) | 18.986464 / 8.074308 (10.912156) | 17.246575 / 10.191392 (7.055183) | 0.219151 / 0.680424 (-0.461273) | 0.022219 / 0.534201 (-0.511982) | 0.547207 / 0.579283 (-0.032076) | 0.525943 / 0.434364 (0.091579) | 0.616909 / 0.540337 (0.076572) | 0.757423 / 1.386936 (-0.629513) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f423b69cd4371bd03bb819c60450534f8850ad61 \"CML watermark\")\n"
] | 2023-03-23T15:41:09 | 2023-03-23T16:23:11 | 2023-03-23T16:14:52 | MEMBER | null | close https://github.com/huggingface/datasets/issues/5666 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5667/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5667/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5667",
"html_url": "https://github.com/huggingface/datasets/pull/5667",
"diff_url": "https://github.com/huggingface/datasets/pull/5667.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5667.patch",
"merged_at": "2023-03-23T16:14:52"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5666 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5666/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5666/comments | https://api.github.com/repos/huggingface/datasets/issues/5666/events | https://github.com/huggingface/datasets/issues/5666 | 1,637,675,062 | I_kwDODunzps5hnPA2 | 5,666 | Support tensorflow 2.12.0 in CI | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-23T14:37:51 | 2023-03-23T16:14:54 | 2023-03-23T16:14:54 | MEMBER | null | Once we find out the root cause of:
- #5663
we should revert the temporary pin on tensorflow introduced by:
- #5664 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5666/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5666/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5665 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5665/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5665/comments | https://api.github.com/repos/huggingface/datasets/issues/5665/events | https://github.com/huggingface/datasets/issues/5665 | 1,637,193,648 | I_kwDODunzps5hlZew | 5,665 | Feature request: IterableDataset.push_to_hub | {
"login": "NielsRogge",
"id": 48327001,
"node_id": "MDQ6VXNlcjQ4MzI3MDAx",
"avatar_url": "https://avatars.githubusercontent.com/u/48327001?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/NielsRogge",
"html_url": "https://github.com/NielsRogge",
"followers_url": "https://api.github.com/users/NielsRogge/followers",
"following_url": "https://api.github.com/users/NielsRogge/following{/other_user}",
"gists_url": "https://api.github.com/users/NielsRogge/gists{/gist_id}",
"starred_url": "https://api.github.com/users/NielsRogge/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NielsRogge/subscriptions",
"organizations_url": "https://api.github.com/users/NielsRogge/orgs",
"repos_url": "https://api.github.com/users/NielsRogge/repos",
"events_url": "https://api.github.com/users/NielsRogge/events{/privacy}",
"received_events_url": "https://api.github.com/users/NielsRogge/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [] | 2023-03-23T09:53:04 | 2023-03-23T09:53:16 | null | CONTRIBUTOR | null | ### Feature request
It'd be great to have a lazy push to hub, similar to the lazy loading we have with `IterableDataset`.
Suppose you'd like to filter [LAION](https://huggingface.co/datasets/laion/laion400m) based on certain conditions, but as LAION doesn't fit into your disk, you'd like to leverage streaming:
```
from datasets import load_dataset
dataset = load_dataset("laion/laion400m", streaming=True, split="train")
```
Then you could filter the dataset based on certain conditions:
```
filtered_dataset = dataset.filter(lambda example: example['HEIGHT'] > 400)
```
In order to persist this dataset and push it back to the hub, one currently needs to first load the entire filtered dataset on disk and then push:
```
from datasets import Dataset
Dataset.from_generator(filtered_dataset.__iter__).push_to_hub(...)
```
It would be great if we can instead lazy push to the data to the hub (basically stream the data to the hub), not being limited by our disk size:
```
filtered_dataset.push_to_hub("my-filtered-dataset")
```
### Motivation
This feature would be very useful for people that want to filter huge datasets without having to load the entire dataset or a filtered version thereof on their local disk.
### Your contribution
Happy to test out a PR :) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5665/reactions",
"total_count": 7,
"+1": 7,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5665/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5664 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5664/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5664/comments | https://api.github.com/repos/huggingface/datasets/issues/5664/events | https://github.com/huggingface/datasets/pull/5664 | 1,637,192,684 | PR_kwDODunzps5Mt6vp | 5,664 | Fix CI by temporarily pinning tensorflow < 2.12.0 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007500 / 0.011353 (-0.003853) | 0.005279 / 0.011008 (-0.005729) | 0.098848 / 0.038508 (0.060340) | 0.035290 / 0.023109 (0.012181) | 0.342676 / 0.275898 (0.066778) | 0.375310 / 0.323480 (0.051830) | 0.006037 / 0.007986 (-0.001948) | 0.004143 / 0.004328 (-0.000185) | 0.075757 / 0.004250 (0.071506) | 0.049436 / 0.037052 (0.012383) | 0.344734 / 0.258489 (0.086245) | 0.388111 / 0.293841 (0.094270) | 0.037079 / 0.128546 (-0.091467) | 0.011986 / 0.075646 (-0.063660) | 0.333911 / 0.419271 (-0.085361) | 0.050415 / 0.043533 (0.006882) | 0.341723 / 0.255139 (0.086584) | 0.364136 / 0.283200 (0.080936) | 0.099371 / 0.141683 (-0.042312) | 1.467030 / 1.452155 (0.014876) | 1.565472 / 1.492716 (0.072755) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212534 / 0.018006 (0.194528) | 0.435854 / 0.000490 (0.435364) | 0.000419 / 0.000200 (0.000219) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027957 / 0.037411 (-0.009454) | 0.106835 / 0.014526 (0.092309) | 0.115733 / 0.176557 (-0.060824) | 0.172374 / 0.737135 (-0.564761) | 0.121907 / 0.296338 (-0.174431) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413195 / 0.215209 (0.197986) | 4.144775 / 2.077655 (2.067120) | 1.885647 / 1.504120 (0.381527) | 1.645525 / 1.541195 (0.104331) | 1.690117 / 1.468490 (0.221627) | 0.705787 / 4.584777 (-3.878989) | 3.763338 / 3.745712 (0.017626) | 2.163044 / 5.269862 (-3.106818) | 1.478619 / 4.565676 (-3.087057) | 0.086458 / 0.424275 (-0.337817) | 0.012711 / 0.007607 (0.005103) | 0.503592 / 0.226044 (0.277547) | 5.031176 / 2.268929 (2.762248) | 2.345348 / 55.444624 (-53.099276) | 2.064573 / 6.876477 (-4.811903) | 2.203937 / 2.142072 (0.061865) | 0.838761 / 4.805227 (-3.966466) | 0.170116 / 6.500664 (-6.330548) | 0.064012 / 0.075469 (-0.011457) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.190887 / 1.841788 (-0.650901) | 15.091466 / 8.074308 (7.017158) | 14.549112 / 10.191392 (4.357720) | 0.180603 / 0.680424 (-0.499820) | 0.017387 / 0.534201 (-0.516814) | 0.421372 / 0.579283 (-0.157911) | 0.434644 / 0.434364 (0.000281) | 0.496958 / 0.540337 (-0.043380) | 0.593995 / 1.386936 (-0.792941) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007790 / 0.011353 (-0.003563) | 0.005307 / 0.011008 (-0.005701) | 0.074779 / 0.038508 (0.036271) | 0.034442 / 0.023109 (0.011332) | 0.337973 / 0.275898 (0.062075) | 0.371944 / 0.323480 (0.048464) | 0.006088 / 0.007986 (-0.001897) | 0.005619 / 0.004328 (0.001291) | 0.073757 / 0.004250 (0.069507) | 0.049385 / 0.037052 (0.012333) | 0.338326 / 0.258489 (0.079837) | 0.387916 / 0.293841 (0.094075) | 0.037197 / 0.128546 (-0.091350) | 0.012371 / 0.075646 (-0.063275) | 0.086938 / 0.419271 (-0.332334) | 0.051379 / 0.043533 (0.007846) | 0.331580 / 0.255139 (0.076441) | 0.355765 / 0.283200 (0.072565) | 0.103368 / 0.141683 (-0.038315) | 1.475963 / 1.452155 (0.023808) | 1.530579 / 1.492716 (0.037863) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223037 / 0.018006 (0.205031) | 0.441795 / 0.000490 (0.441305) | 0.003937 / 0.000200 (0.003737) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030081 / 0.037411 (-0.007330) | 0.110366 / 0.014526 (0.095841) | 0.124097 / 0.176557 (-0.052459) | 0.176237 / 0.737135 (-0.560898) | 0.127045 / 0.296338 (-0.169293) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420191 / 0.215209 (0.204982) | 4.186721 / 2.077655 (2.109066) | 1.992336 / 1.504120 (0.488216) | 1.800567 / 1.541195 (0.259373) | 1.917982 / 1.468490 (0.449491) | 0.700932 / 4.584777 (-3.883845) | 3.888631 / 3.745712 (0.142918) | 2.138168 / 5.269862 (-3.131693) | 1.364636 / 4.565676 (-3.201041) | 0.085404 / 0.424275 (-0.338871) | 0.012550 / 0.007607 (0.004943) | 0.526110 / 0.226044 (0.300066) | 5.258717 / 2.268929 (2.989789) | 2.454287 / 55.444624 (-52.990338) | 2.130539 / 6.876477 (-4.745937) | 2.207982 / 2.142072 (0.065909) | 0.839242 / 4.805227 (-3.965985) | 0.167611 / 6.500664 (-6.333053) | 0.065706 / 0.075469 (-0.009763) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266125 / 1.841788 (-0.575662) | 15.480513 / 8.074308 (7.406205) | 14.959376 / 10.191392 (4.767983) | 0.149195 / 0.680424 (-0.531229) | 0.017881 / 0.534201 (-0.516320) | 0.430863 / 0.579283 (-0.148420) | 0.432878 / 0.434364 (-0.001485) | 0.499605 / 0.540337 (-0.040733) | 0.605592 / 1.386936 (-0.781344) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c20230f8d8762fb67523677093e95e773ce88786 \"CML watermark\")\n"
] | 2023-03-23T09:52:26 | 2023-03-23T10:17:11 | 2023-03-23T10:09:54 | MEMBER | null | As a hotfix for our CI, temporarily pin `tensorflow` upper version:
- In Python 3.10, tensorflow-2.12.0 also installs `jax`
Fix #5663
Until root cause is fixed. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5664/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5664/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5664",
"html_url": "https://github.com/huggingface/datasets/pull/5664",
"diff_url": "https://github.com/huggingface/datasets/pull/5664.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5664.patch",
"merged_at": "2023-03-23T10:09:53"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5663 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5663/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5663/comments | https://api.github.com/repos/huggingface/datasets/issues/5663/events | https://github.com/huggingface/datasets/issues/5663 | 1,637,173,248 | I_kwDODunzps5hlUgA | 5,663 | CI is broken: ModuleNotFoundError: jax requires jaxlib to be installed | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-23T09:39:43 | 2023-03-23T10:09:55 | 2023-03-23T10:09:55 | MEMBER | null | CI test_py310 is broken: see https://github.com/huggingface/datasets/actions/runs/4498945505/jobs/7916194236?pr=5662
```
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_map_jax_in_memory - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_map_jax_on_disk - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_audio - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_device - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_image - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_jnp_array_kwargs - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/features/test_features.py::CastToPythonObjectsTest::test_cast_to_python_objects_jax - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
===== 8 failed, 2147 passed, 10 skipped, 37 warnings in 228.69s (0:03:48) ======
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5663/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5663/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5662 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5662/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5662/comments | https://api.github.com/repos/huggingface/datasets/issues/5662/events | https://github.com/huggingface/datasets/pull/5662 | 1,637,140,813 | PR_kwDODunzps5MtvsM | 5,662 | Fix unnecessary dict comprehension | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"I am merging because the CI error is unrelated.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009448 / 0.011353 (-0.001905) | 0.006156 / 0.011008 (-0.004852) | 0.123656 / 0.038508 (0.085147) | 0.034998 / 0.023109 (0.011889) | 0.374722 / 0.275898 (0.098824) | 0.418912 / 0.323480 (0.095432) | 0.007348 / 0.007986 (-0.000637) | 0.004779 / 0.004328 (0.000450) | 0.097541 / 0.004250 (0.093291) | 0.052523 / 0.037052 (0.015471) | 0.380118 / 0.258489 (0.121628) | 0.429448 / 0.293841 (0.135607) | 0.055156 / 0.128546 (-0.073390) | 0.019884 / 0.075646 (-0.055763) | 0.429613 / 0.419271 (0.010341) | 0.067554 / 0.043533 (0.024021) | 0.373940 / 0.255139 (0.118801) | 0.408115 / 0.283200 (0.124916) | 0.111353 / 0.141683 (-0.030329) | 1.821013 / 1.452155 (0.368858) | 1.972882 / 1.492716 (0.480165) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236686 / 0.018006 (0.218679) | 0.516519 / 0.000490 (0.516029) | 0.009582 / 0.000200 (0.009383) | 0.000404 / 0.000054 (0.000349) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029425 / 0.037411 (-0.007986) | 0.123972 / 0.014526 (0.109446) | 0.133768 / 0.176557 (-0.042789) | 0.207562 / 0.737135 (-0.529573) | 0.142841 / 0.296338 (-0.153497) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.618531 / 0.215209 (0.403322) | 6.216854 / 2.077655 (4.139199) | 2.480138 / 1.504120 (0.976018) | 2.139884 / 1.541195 (0.598689) | 2.122992 / 1.468490 (0.654502) | 1.233824 / 4.584777 (-3.350953) | 5.426142 / 3.745712 (1.680430) | 4.891039 / 5.269862 (-0.378822) | 2.767033 / 4.565676 (-1.798643) | 0.142224 / 0.424275 (-0.282051) | 0.015754 / 0.007607 (0.008147) | 0.772210 / 0.226044 (0.546166) | 7.620484 / 2.268929 (5.351556) | 3.141617 / 55.444624 (-52.303007) | 2.471406 / 6.876477 (-4.405070) | 2.648008 / 2.142072 (0.505935) | 1.429281 / 4.805227 (-3.375946) | 0.255981 / 6.500664 (-6.244683) | 0.077710 / 0.075469 (0.002241) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.547714 / 1.841788 (-0.294073) | 17.859985 / 8.074308 (9.785677) | 21.791878 / 10.191392 (11.600486) | 0.238569 / 0.680424 (-0.441854) | 0.027520 / 0.534201 (-0.506681) | 0.553960 / 0.579283 (-0.025324) | 0.616165 / 0.434364 (0.181801) | 0.622492 / 0.540337 (0.082154) | 0.716345 / 1.386936 (-0.670591) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009624 / 0.011353 (-0.001729) | 0.006091 / 0.011008 (-0.004917) | 0.096623 / 0.038508 (0.058115) | 0.034903 / 0.023109 (0.011793) | 0.421009 / 0.275898 (0.145111) | 0.459236 / 0.323480 (0.135756) | 0.007778 / 0.007986 (-0.000207) | 0.004726 / 0.004328 (0.000398) | 0.099603 / 0.004250 (0.095353) | 0.051426 / 0.037052 (0.014373) | 0.420461 / 0.258489 (0.161972) | 0.469747 / 0.293841 (0.175906) | 0.053769 / 0.128546 (-0.074777) | 0.020636 / 0.075646 (-0.055011) | 0.115785 / 0.419271 (-0.303486) | 0.062692 / 0.043533 (0.019160) | 0.419388 / 0.255139 (0.164249) | 0.448675 / 0.283200 (0.165475) | 0.112099 / 0.141683 (-0.029584) | 1.787982 / 1.452155 (0.335827) | 1.884581 / 1.492716 (0.391864) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208837 / 0.018006 (0.190831) | 0.515593 / 0.000490 (0.515103) | 0.000447 / 0.000200 (0.000247) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031025 / 0.037411 (-0.006386) | 0.125179 / 0.014526 (0.110653) | 0.137050 / 0.176557 (-0.039506) | 0.203582 / 0.737135 (-0.533553) | 0.139209 / 0.296338 (-0.157130) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.601507 / 0.215209 (0.386298) | 6.034778 / 2.077655 (3.957123) | 2.550277 / 1.504120 (1.046157) | 2.242277 / 1.541195 (0.701082) | 2.306378 / 1.468490 (0.837888) | 1.251219 / 4.584777 (-3.333558) | 5.448698 / 3.745712 (1.702986) | 3.044666 / 5.269862 (-2.225196) | 2.000684 / 4.565676 (-2.564992) | 0.148385 / 0.424275 (-0.275890) | 0.015175 / 0.007607 (0.007567) | 0.800839 / 0.226044 (0.574795) | 8.062099 / 2.268929 (5.793171) | 3.400980 / 55.444624 (-52.043644) | 2.639583 / 6.876477 (-4.236894) | 2.660691 / 2.142072 (0.518618) | 1.467715 / 4.805227 (-3.337512) | 0.266429 / 6.500664 (-6.234235) | 0.076981 / 0.075469 (0.001512) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.621128 / 1.841788 (-0.220659) | 17.949989 / 8.074308 (9.875680) | 20.946426 / 10.191392 (10.755034) | 0.259357 / 0.680424 (-0.421067) | 0.026094 / 0.534201 (-0.508107) | 0.527840 / 0.579283 (-0.051443) | 0.629027 / 0.434364 (0.194663) | 0.603931 / 0.540337 (0.063594) | 0.711370 / 1.386936 (-0.675566) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2ccf01db81bb7b70f3ea97b185e345c2b1df0274 \"CML watermark\")\n"
] | 2023-03-23T09:18:58 | 2023-03-23T09:46:59 | 2023-03-23T09:37:49 | MEMBER | null | After ruff-0.0.258 release, the C416 rule was updated with unnecessary dict comprehensions. See:
- https://github.com/charliermarsh/ruff/releases/tag/v0.0.258
- https://github.com/charliermarsh/ruff/pull/3605
This PR fixes one unnecessary dict comprehension in our code: no need to unpack and re-pack the tuple values.
Fix #5661 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5662/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5662/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5662",
"html_url": "https://github.com/huggingface/datasets/pull/5662",
"diff_url": "https://github.com/huggingface/datasets/pull/5662.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5662.patch",
"merged_at": "2023-03-23T09:37:49"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5661 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5661/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5661/comments | https://api.github.com/repos/huggingface/datasets/issues/5661/events | https://github.com/huggingface/datasets/issues/5661 | 1,637,129,445 | I_kwDODunzps5hlJzl | 5,661 | CI is broken: Unnecessary `dict` comprehension | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-23T09:13:01 | 2023-03-23T09:37:51 | 2023-03-23T09:37:51 | MEMBER | null | CI check_code_quality is broken:
```
src/datasets/arrow_dataset.py:3267:35: C416 [*] Unnecessary `dict` comprehension (rewrite using `dict()`)
Found 1 error.
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5661/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5661/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5660 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5660/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5660/comments | https://api.github.com/repos/huggingface/datasets/issues/5660/events | https://github.com/huggingface/datasets/issues/5660 | 1,635,543,646 | I_kwDODunzps5hfGpe | 5,660 | integration with imbalanced-learn | {
"login": "tansaku",
"id": 30216,
"node_id": "MDQ6VXNlcjMwMjE2",
"avatar_url": "https://avatars.githubusercontent.com/u/30216?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tansaku",
"html_url": "https://github.com/tansaku",
"followers_url": "https://api.github.com/users/tansaku/followers",
"following_url": "https://api.github.com/users/tansaku/following{/other_user}",
"gists_url": "https://api.github.com/users/tansaku/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tansaku/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tansaku/subscriptions",
"organizations_url": "https://api.github.com/users/tansaku/orgs",
"repos_url": "https://api.github.com/users/tansaku/repos",
"events_url": "https://api.github.com/users/tansaku/events{/privacy}",
"received_events_url": "https://api.github.com/users/tansaku/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 1935892913,
"node_id": "MDU6TGFiZWwxOTM1ODkyOTEz",
"url": "https://api.github.com/repos/huggingface/datasets/labels/wontfix",
"name": "wontfix",
"color": "ffffff",
"default": true,
"description": "This will not be worked on"
}
] | closed | false | null | [] | null | [
"You can convert any dataset to pandas to be used with imbalanced-learn using `.to_pandas()`\r\n\r\nOtherwise if you want to keep a `Dataset` object and still use e.g. [make_imbalance](https://imbalanced-learn.org/stable/references/generated/imblearn.datasets.make_imbalance.html#imblearn.datasets.make_imbalance), you just need to pass the list of rows ids and labels:\r\n\r\n```python\r\nrow_indices = list(range(len(dataset)))\r\nresampled_row_indices, _ = make_imbalance(\r\n row_indices,\r\n dataset[\"label\"],\r\n sampling_strategy={0: 25, 1: 50, 2: 50},\r\n random_state=RANDOM_STATE,\r\n)\r\n\r\nresampled_dataset = dataset.select(resampled_row_indices)\r\n```"
] | 2023-03-22T11:05:17 | 2023-07-06T18:10:15 | 2023-07-06T18:10:15 | NONE | null | ### Feature request
Wouldn't it be great if the various class balancing operations from imbalanced-learn were available as part of datasets?
### Motivation
I'm trying to use imbalanced-learn to balance a dataset, but it's not clear how to get the two to interoperate - what would be great would be some examples. I've looked online, asked gpt-4, but so far not making much progress.
### Your contribution
If I can get this working myself I can submit a PR with example code to go in the docs | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5660/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5660/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5659 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5659/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5659/comments | https://api.github.com/repos/huggingface/datasets/issues/5659/events | https://github.com/huggingface/datasets/issues/5659 | 1,635,447,540 | I_kwDODunzps5hevL0 | 5,659 | [Audio] Soundfile/libsndfile requirements too stringent for decoding mp3 files | {
"login": "sanchit-gandhi",
"id": 93869735,
"node_id": "U_kgDOBZhWpw",
"avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sanchit-gandhi",
"html_url": "https://github.com/sanchit-gandhi",
"followers_url": "https://api.github.com/users/sanchit-gandhi/followers",
"following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}",
"gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions",
"organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs",
"repos_url": "https://api.github.com/users/sanchit-gandhi/repos",
"events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}",
"received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"cc @polinaeterna @lhoestq ",
"@sanchit-gandhi can you please also post the logs of `pip install soundfile==0.12.1`? To check what wheel is being installed or if it's being built from source (I think it's the latter case). \r\nRequired `libsndfile` binary **should** be bundeled with `soundfile` wheel but I assume it **might not** be the case for some non standard Linux distributions. \r\nThe only solution for using `soundfile` here is to build [`libsndfile`](https://github.com/libsndfile/libsndfile) from source:\r\n\r\n```bash\r\ngit clone https://github.com/libsndfile/libsndfile.git\r\ncd libsndfile/\r\nautoreconf -vif\r\n./configure --enable-werror \r\nmake\r\nmake install\r\n```\r\nfor this, some building libraries should be installed, for Debian/Ubuntu it's like:\r\n```bash\r\napt install autoconf autogen automake build-essential libasound2-dev \\\r\n libflac-dev libogg-dev libtool libvorbis-dev libopus-dev libmp3lame-dev \\\r\n libmpg123-dev pkg-config python\r\n```\r\nbut for other Linux distributions it might be different.\r\n\r\nWhen the binary is compiled, it should be put into location where `soundfile` would search for it (the directory is named `_soundfile_data`), it depends on where`libsdfile` (from the previous step) and `soundfile` were installed, might be something like this:\r\n\r\n```bash\r\ncp /usr/local/lib/libsndfile.so /usr/local/lib/python3.7/dist-packages/_soundfile_data/\r\ncp /usr/local/lib/libsndfile.la /usr/local/lib/python3.7/dist-packages/_soundfile_data/\r\n```\r\n\r\nAnother solution is to not use `soundfile` and apply custom processing function with `torchaudio` while setting `decode=False` in `Audio` feature and passing custom function to `.map`. ",
"Not sure if it may help, but you could also try updating `pip` before installing soundfile",
"@lhoestq @sanchit-gandhi. I encountered the same error (also on the TPU v4) when trying to run `datasets` from source.\r\n\r\nDowngrading soundfile with `pip install soundfile==0.12.0` seems to fix the issue for me.",
"Maybe let's open an issue at https://github.com/bastibe/python-soundfile/issues in case they might know why you get `OSError: cannot load library 'libsndfile.so'` ?",
"> @sanchit-gandhi can you please also post the logs of `pip install soundfile==0.12.1`? To check what wheel is being installed or if it's being built from source (I think it's the latter case). Required `libsndfile` binary **should** be bundeled with `soundfile` wheel but I assume it **might not** be the case for some non standard Linux distributions. The only solution for using `soundfile` here is to build [`libsndfile`](https://github.com/libsndfile/libsndfile) from source:\r\n> \r\n> ```shell\r\n> git clone https://github.com/libsndfile/libsndfile.git\r\n> cd libsndfile/\r\n> autoreconf -vif\r\n> ./configure --enable-werror \r\n> make\r\n> make install\r\n> ```\r\n\r\nThis fixed the issue for me. After installing libsndfile as described above, I had to uninstall soundfile and re-install it with this command. `pip install \"soundfile>=0.12.1\"`",
"Thank you so much for the comprehensive instructions @polinaeterna! Also confirming that they worked for me ๐ค In my case, I had to run several of these commands under \"sudo\" for privileges, but otherwise this workaround gave a successful `libsndfile` install:\r\n\r\n1. Grab source code:\r\n```\r\ngit clone https://github.com/libsndfile/libsndfile.git\r\n```\r\n\r\n2. Set up a build environment:\r\n```\r\nsudo apt install autoconf autogen automake build-essential libasound2-dev \\\r\n libflac-dev libogg-dev libtool libvorbis-dev libopus-dev libmp3lame-dev \\\r\n libmpg123-dev pkg-config python\r\n```\r\n\r\n3. Build and test `libsndfile`:\r\n\r\n```\r\nautoreconf -vif\r\n./configure --enable-werror\r\nsudo make\r\nsudo make check\r\n```\r\n\r\n4. Create `_soundfile_data` submodule (if it does not exist already):\r\n```\r\nsudo mkdir /usr/local/lib/python3.8/dist-packages/_soundfile_data/\r\n```\r\n\r\n5. Copy `libsndfile` files into submodule:\r\n```\r\nsudo cp /usr/local/lib/libsndfile.* /usr/local/lib/python3.8/dist-packages/_soundfile_data/\r\n```",
"On a different machine, I also tried separately by first upgrading pip, then installing soundfile. This worked too! Thanks @lhoestq ๐",
"> @sanchit-gandhi can you please also post the logs of `pip install soundfile==0.12.1`? To check what wheel is being installed or if it's being built from source (I think it's the latter case). Required `libsndfile` binary **should** be bundeled with `soundfile` wheel but I assume it **might not** be the case for some non standard Linux distributions. The only solution for using `soundfile` here is to build [`libsndfile`](https://github.com/libsndfile/libsndfile) from source:\r\n> \r\n> ```shell\r\n> git clone https://github.com/libsndfile/libsndfile.git\r\n> cd libsndfile/\r\n> autoreconf -vif\r\n> ./configure --enable-werror \r\n> make\r\n> make install\r\n> ```\r\n> \r\n> for this, some building libraries should be installed, for Debian/Ubuntu it's like:\r\n> \r\n> ```shell\r\n> apt install autoconf autogen automake build-essential libasound2-dev \\\r\n> libflac-dev libogg-dev libtool libvorbis-dev libopus-dev libmp3lame-dev \\\r\n> libmpg123-dev pkg-config python\r\n> ```\r\n> \r\n> but for other Linux distributions it might be different.\r\n> \r\n> When the binary is compiled, it should be put into location where `soundfile` would search for it (the directory is named `_soundfile_data`), it depends on where`libsdfile` (from the previous step) and `soundfile` were installed, might be something like this:\r\n> \r\n> ```shell\r\n> cp /usr/local/lib/libsndfile.so /usr/local/lib/python3.7/dist-packages/_soundfile_data/\r\n> cp /usr/local/lib/libsndfile.la /usr/local/lib/python3.7/dist-packages/_soundfile_data/\r\n> ```\r\n> \r\n> Another solution is to not use `soundfile` and apply custom processing function with `torchaudio` while setting `decode=False` in `Audio` feature and passing custom function to `.map`.\r\n\r\nThanks, the solution solved my problem. \r\n\r\n1. Purge uninstall libsndfile, uninstall python-soundfile.\r\n2. Build libsndfile from source code and install.\r\n3. Build python-soundfile from source code and install\r\n4. Well done."
] | 2023-03-22T10:07:33 | 2023-04-28T03:25:39 | 2023-04-07T08:51:28 | CONTRIBUTOR | null | ### Describe the bug
I'm encountering several issues trying to load mp3 audio files using `datasets` on a TPU v4.
The PR https://github.com/huggingface/datasets/pull/5573 updated the audio loading logic to rely solely on the `soundfile`/`libsndfile` libraries for loading audio samples, regardless of their file type.
The installation guide suggests that `libsndfile` is bundled in when `soundfile` is pip installed:
https://github.com/huggingface/datasets/blob/e1af108015e43f9df8734a1faeeaeb9eafce3971/docs/source/installation.md?plain=1#L70-L71
However, just pip installing `soundfile==0.12.1` throws an error that `libsndfile` is missing:
```
pip install soundfile==0.12.1
```
Then:
```python
>>> soundfile
>>> soundfile.__libsndfile_version__
```
<details>
<summary> Traceback (most recent call last): </summary>
```
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/soundfile.py", line 161, in <module>
import _soundfile_data # ImportError if this doesn't exist
ModuleNotFoundError: No module named '_soundfile_data'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/soundfile.py", line 170, in <module>
raise OSError('sndfile library not found using ctypes.util.find_library')
OSError: sndfile library not found using ctypes.util.find_library
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/soundfile.py", line 192, in <module>
_snd = _ffi.dlopen(_explicit_libname)
OSError: cannot load library 'libsndfile.so': libsndfile.so: cannot open shared object file: No such file or directory
```
</details>
Thus, I've followed the official instructions for installing the `soundfile` package from https://github.com/bastibe/python-soundfile#installation, which states that `libsndfile` needs to be installed separately as:
```
pip install --upgrade soundfile
sudo apt install libsndfile1
```
We can now import `soundfile`:
```python
>>> import soundfile
>>> soundfile.__version__
'0.12.1'
>>> soundfile.__libsndfile_version__
'1.0.28'
```
We see that we have `soundfile==0.12.1`, which matches the `datasets[audio]` package constraints:
https://github.com/huggingface/datasets/blob/e1af108015e43f9df8734a1faeeaeb9eafce3971/setup.py#L144-L147
But we have `libsndfile==1.0.28`, which is too low for decoding mp3 files:
https://github.com/huggingface/datasets/blob/e1af108015e43f9df8734a1faeeaeb9eafce3971/src/datasets/config.py#L136-L138
Updating/upgrading the `libsndfile` doesn't change this:
```
sudo apt-get update
sudo apt-get upgrade
```
Is there any other suggestion for how to get a compatible `libsndfile` version? Currently, the version bundled with Ubuntu `apt-get` is too low for decoding mp3 files.
Maybe we could add this under `setup.py` such that we install the correct `libsndfile` version when we do `pip install datasets[audio]`? IMO this would help circumvent such version issues.
### Steps to reproduce the bug
Environment described above. Loading mp3 files:
```python
from datasets import load_dataset
common_voice_es = load_dataset("common_voice", "es", split="validation", streaming=True)
print(next(iter(common_voice_es)))
```
```python
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
Cell In[4], line 2
1 common_voice_es = load_dataset("common_voice", "es", split="validation", streaming=True)
----> 2 print(next(iter(common_voice_es)))
File ~/datasets/src/datasets/iterable_dataset.py:941, in IterableDataset.__iter__(self)
937 for key, example in ex_iterable:
938 if self.features:
939 # `IterableDataset` automatically fills missing columns with None.
940 # This is done with `_apply_feature_types_on_example`.
--> 941 yield _apply_feature_types_on_example(
942 example, self.features, token_per_repo_id=self._token_per_repo_id
943 )
944 else:
945 yield example
File ~/datasets/src/datasets/iterable_dataset.py:700, in _apply_feature_types_on_example(example, features, token_per_repo_id)
698 encoded_example = features.encode_example(example)
699 # Decode example for Audio feature, e.g.
--> 700 decoded_example = features.decode_example(encoded_example, token_per_repo_id=token_per_repo_id)
701 return decoded_example
File ~/datasets/src/datasets/features/features.py:1864, in Features.decode_example(self, example, token_per_repo_id)
1850 def decode_example(self, example: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None):
1851 """Decode example with custom feature decoding.
1852
1853 Args:
(...)
1861 `dict[str, Any]`
1862 """
-> 1864 return {
1865 column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id)
1866 if self._column_requires_decoding[column_name]
1867 else value
1868 for column_name, (feature, value) in zip_dict(
1869 {key: value for key, value in self.items() if key in example}, example
1870 )
1871 }
File ~/datasets/src/datasets/features/features.py:1865, in <dictcomp>(.0)
1850 def decode_example(self, example: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None):
1851 """Decode example with custom feature decoding.
1852
1853 Args:
(...)
1861 `dict[str, Any]`
1862 """
1864 return {
-> 1865 column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id)
1866 if self._column_requires_decoding[column_name]
1867 else value
1868 for column_name, (feature, value) in zip_dict(
1869 {key: value for key, value in self.items() if key in example}, example
1870 )
1871 }
File ~/datasets/src/datasets/features/features.py:1308, in decode_nested_example(schema, obj, token_per_repo_id)
1305 elif isinstance(schema, (Audio, Image)):
1306 # we pass the token to read and decode files from private repositories in streaming mode
1307 if obj is not None and schema.decode:
-> 1308 return schema.decode_example(obj, token_per_repo_id=token_per_repo_id)
1309 return obj
File ~/datasets/src/datasets/features/audio.py:167, in Audio.decode_example(self, value, token_per_repo_id)
162 raise RuntimeError(
163 "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, "
164 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. '
165 )
166 elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
--> 167 raise RuntimeError(
168 "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, "
169 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. '
170 )
172 if file is None:
173 token_per_repo_id = token_per_repo_id or {}
RuntimeError: Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`.
```
### Expected behavior
Load mp3 files!
### Environment info
- `datasets` version: 2.10.2.dev0
- Platform: Linux-5.13.0-1023-gcp-x86_64-with-glibc2.29
- Python version: 3.8.10
- Huggingface_hub version: 0.13.1
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
- Soundfile version: 0.12.1
- Libsndfile version: 1.0.28 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5659/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5659/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5658 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5658/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5658/comments | https://api.github.com/repos/huggingface/datasets/issues/5658/events | https://github.com/huggingface/datasets/pull/5658 | 1,634,867,204 | PR_kwDODunzps5MmJe0 | 5,658 | docs: Update num_shards docs to mention num_proc on Dataset and DatasetDict | {
"login": "connor-henderson",
"id": 78612354,
"node_id": "MDQ6VXNlcjc4NjEyMzU0",
"avatar_url": "https://avatars.githubusercontent.com/u/78612354?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/connor-henderson",
"html_url": "https://github.com/connor-henderson",
"followers_url": "https://api.github.com/users/connor-henderson/followers",
"following_url": "https://api.github.com/users/connor-henderson/following{/other_user}",
"gists_url": "https://api.github.com/users/connor-henderson/gists{/gist_id}",
"starred_url": "https://api.github.com/users/connor-henderson/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/connor-henderson/subscriptions",
"organizations_url": "https://api.github.com/users/connor-henderson/orgs",
"repos_url": "https://api.github.com/users/connor-henderson/repos",
"events_url": "https://api.github.com/users/connor-henderson/events{/privacy}",
"received_events_url": "https://api.github.com/users/connor-henderson/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007351 / 0.011353 (-0.004002) | 0.005025 / 0.011008 (-0.005983) | 0.095978 / 0.038508 (0.057470) | 0.033486 / 0.023109 (0.010377) | 0.294427 / 0.275898 (0.018529) | 0.325157 / 0.323480 (0.001677) | 0.005671 / 0.007986 (-0.002315) | 0.005284 / 0.004328 (0.000955) | 0.073159 / 0.004250 (0.068909) | 0.045162 / 0.037052 (0.008110) | 0.294004 / 0.258489 (0.035515) | 0.343545 / 0.293841 (0.049704) | 0.036857 / 0.128546 (-0.091689) | 0.012245 / 0.075646 (-0.063401) | 0.332258 / 0.419271 (-0.087014) | 0.051909 / 0.043533 (0.008377) | 0.295701 / 0.255139 (0.040562) | 0.315247 / 0.283200 (0.032048) | 0.102363 / 0.141683 (-0.039320) | 1.441944 / 1.452155 (-0.010211) | 1.527161 / 1.492716 (0.034445) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211769 / 0.018006 (0.193763) | 0.452015 / 0.000490 (0.451525) | 0.004041 / 0.000200 (0.003841) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027396 / 0.037411 (-0.010015) | 0.108318 / 0.014526 (0.093793) | 0.116851 / 0.176557 (-0.059706) | 0.172658 / 0.737135 (-0.564478) | 0.122876 / 0.296338 (-0.173462) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.406484 / 0.215209 (0.191275) | 4.053849 / 2.077655 (1.976194) | 1.842947 / 1.504120 (0.338827) | 1.649473 / 1.541195 (0.108278) | 1.728629 / 1.468490 (0.260139) | 0.699519 / 4.584777 (-3.885258) | 3.730823 / 3.745712 (-0.014889) | 2.139624 / 5.269862 (-3.130237) | 1.487839 / 4.565676 (-3.077837) | 0.086699 / 0.424275 (-0.337576) | 0.012815 / 0.007607 (0.005208) | 0.514014 / 0.226044 (0.287969) | 5.153315 / 2.268929 (2.884387) | 2.324431 / 55.444624 (-53.120193) | 1.971533 / 6.876477 (-4.904944) | 2.074480 / 2.142072 (-0.067592) | 0.842419 / 4.805227 (-3.962808) | 0.169140 / 6.500664 (-6.331524) | 0.065206 / 0.075469 (-0.010263) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180887 / 1.841788 (-0.660901) | 14.627401 / 8.074308 (6.553093) | 14.382699 / 10.191392 (4.191307) | 0.143986 / 0.680424 (-0.536438) | 0.017460 / 0.534201 (-0.516741) | 0.422100 / 0.579283 (-0.157183) | 0.417474 / 0.434364 (-0.016890) | 0.493712 / 0.540337 (-0.046625) | 0.589744 / 1.386936 (-0.797193) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007538 / 0.011353 (-0.003815) | 0.005122 / 0.011008 (-0.005887) | 0.073858 / 0.038508 (0.035350) | 0.034561 / 0.023109 (0.011451) | 0.341250 / 0.275898 (0.065352) | 0.373063 / 0.323480 (0.049583) | 0.005785 / 0.007986 (-0.002200) | 0.005393 / 0.004328 (0.001065) | 0.072354 / 0.004250 (0.068104) | 0.047005 / 0.037052 (0.009953) | 0.341179 / 0.258489 (0.082690) | 0.386299 / 0.293841 (0.092458) | 0.038315 / 0.128546 (-0.090231) | 0.012200 / 0.075646 (-0.063446) | 0.086132 / 0.419271 (-0.333140) | 0.049873 / 0.043533 (0.006340) | 0.337985 / 0.255139 (0.082846) | 0.354806 / 0.283200 (0.071607) | 0.103557 / 0.141683 (-0.038126) | 1.445682 / 1.452155 (-0.006473) | 1.551008 / 1.492716 (0.058291) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235873 / 0.018006 (0.217867) | 0.448445 / 0.000490 (0.447955) | 0.001307 / 0.000200 (0.001108) | 0.000087 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029809 / 0.037411 (-0.007603) | 0.108833 / 0.014526 (0.094307) | 0.123289 / 0.176557 (-0.053268) | 0.176516 / 0.737135 (-0.560620) | 0.127186 / 0.296338 (-0.169153) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422037 / 0.215209 (0.206828) | 4.188073 / 2.077655 (2.110418) | 1.999295 / 1.504120 (0.495175) | 1.809229 / 1.541195 (0.268034) | 1.930798 / 1.468490 (0.462308) | 0.694371 / 4.584777 (-3.890406) | 3.833432 / 3.745712 (0.087719) | 3.235600 / 5.269862 (-2.034262) | 1.867822 / 4.565676 (-2.697854) | 0.085734 / 0.424275 (-0.338541) | 0.012727 / 0.007607 (0.005120) | 0.542261 / 0.226044 (0.316217) | 5.289366 / 2.268929 (3.020437) | 2.469636 / 55.444624 (-52.974988) | 2.139392 / 6.876477 (-4.737084) | 2.193305 / 2.142072 (0.051233) | 0.846747 / 4.805227 (-3.958481) | 0.168965 / 6.500664 (-6.331699) | 0.064463 / 0.075469 (-0.011006) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.263818 / 1.841788 (-0.577970) | 15.254642 / 8.074308 (7.180334) | 14.428111 / 10.191392 (4.236719) | 0.164770 / 0.680424 (-0.515654) | 0.017476 / 0.534201 (-0.516725) | 0.420198 / 0.579283 (-0.159085) | 0.443250 / 0.434364 (0.008886) | 0.496904 / 0.540337 (-0.043434) | 0.596541 / 1.386936 (-0.790395) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4db8e33eb9cf6cd4453cdfa246c065e0eedf170c \"CML watermark\")\n"
] | 2023-03-22T00:12:18 | 2023-03-24T16:43:34 | 2023-03-24T16:36:21 | CONTRIBUTOR | null | Closes #5653
@mariosasko | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5658/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5658/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5658",
"html_url": "https://github.com/huggingface/datasets/pull/5658",
"diff_url": "https://github.com/huggingface/datasets/pull/5658.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5658.patch",
"merged_at": "2023-03-24T16:36:21"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5656 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5656/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5656/comments | https://api.github.com/repos/huggingface/datasets/issues/5656/events | https://github.com/huggingface/datasets/pull/5656 | 1,634,156,563 | PR_kwDODunzps5Mjxoo | 5,656 | Fix `fsspec.open` when using an HTTP proxy | {
"login": "bryant1410",
"id": 3905501,
"node_id": "MDQ6VXNlcjM5MDU1MDE=",
"avatar_url": "https://avatars.githubusercontent.com/u/3905501?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bryant1410",
"html_url": "https://github.com/bryant1410",
"followers_url": "https://api.github.com/users/bryant1410/followers",
"following_url": "https://api.github.com/users/bryant1410/following{/other_user}",
"gists_url": "https://api.github.com/users/bryant1410/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bryant1410/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bryant1410/subscriptions",
"organizations_url": "https://api.github.com/users/bryant1410/orgs",
"repos_url": "https://api.github.com/users/bryant1410/repos",
"events_url": "https://api.github.com/users/bryant1410/events{/privacy}",
"received_events_url": "https://api.github.com/users/bryant1410/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007980 / 0.011353 (-0.003373) | 0.005351 / 0.011008 (-0.005657) | 0.096325 / 0.038508 (0.057817) | 0.034204 / 0.023109 (0.011095) | 0.328080 / 0.275898 (0.052182) | 0.361519 / 0.323480 (0.038039) | 0.005954 / 0.007986 (-0.002032) | 0.004106 / 0.004328 (-0.000222) | 0.072827 / 0.004250 (0.068576) | 0.050522 / 0.037052 (0.013470) | 0.326975 / 0.258489 (0.068486) | 0.373180 / 0.293841 (0.079339) | 0.037024 / 0.128546 (-0.091522) | 0.012347 / 0.075646 (-0.063299) | 0.332341 / 0.419271 (-0.086931) | 0.050695 / 0.043533 (0.007162) | 0.328298 / 0.255139 (0.073159) | 0.352808 / 0.283200 (0.069608) | 0.101637 / 0.141683 (-0.040046) | 1.435172 / 1.452155 (-0.016982) | 1.529797 / 1.492716 (0.037080) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.305727 / 0.018006 (0.287721) | 0.583951 / 0.000490 (0.583462) | 0.011699 / 0.000200 (0.011499) | 0.000345 / 0.000054 (0.000290) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027917 / 0.037411 (-0.009495) | 0.107698 / 0.014526 (0.093173) | 0.120572 / 0.176557 (-0.055985) | 0.176066 / 0.737135 (-0.561069) | 0.125348 / 0.296338 (-0.170991) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.411980 / 0.215209 (0.196771) | 4.113135 / 2.077655 (2.035480) | 1.868725 / 1.504120 (0.364605) | 1.677422 / 1.541195 (0.136227) | 1.796759 / 1.468490 (0.328269) | 0.701957 / 4.584777 (-3.882820) | 3.830742 / 3.745712 (0.085030) | 2.170444 / 5.269862 (-3.099418) | 1.345097 / 4.565676 (-3.220580) | 0.086661 / 0.424275 (-0.337614) | 0.013073 / 0.007607 (0.005466) | 0.519150 / 0.226044 (0.293106) | 5.193447 / 2.268929 (2.924518) | 2.391155 / 55.444624 (-53.053470) | 2.076610 / 6.876477 (-4.799867) | 2.245557 / 2.142072 (0.103484) | 0.846496 / 4.805227 (-3.958731) | 0.169246 / 6.500664 (-6.331418) | 0.066360 / 0.075469 (-0.009109) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196344 / 1.841788 (-0.645444) | 15.640363 / 8.074308 (7.566055) | 14.936144 / 10.191392 (4.744752) | 0.163613 / 0.680424 (-0.516811) | 0.017900 / 0.534201 (-0.516301) | 0.425377 / 0.579283 (-0.153906) | 0.431119 / 0.434364 (-0.003245) | 0.513669 / 0.540337 (-0.026669) | 0.592970 / 1.386936 (-0.793966) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007958 / 0.011353 (-0.003395) | 0.005707 / 0.011008 (-0.005301) | 0.075377 / 0.038508 (0.036869) | 0.037126 / 0.023109 (0.014016) | 0.344589 / 0.275898 (0.068691) | 0.381060 / 0.323480 (0.057580) | 0.006592 / 0.007986 (-0.001393) | 0.004479 / 0.004328 (0.000151) | 0.074456 / 0.004250 (0.070206) | 0.054087 / 0.037052 (0.017035) | 0.344942 / 0.258489 (0.086453) | 0.393174 / 0.293841 (0.099333) | 0.037926 / 0.128546 (-0.090620) | 0.012638 / 0.075646 (-0.063009) | 0.087743 / 0.419271 (-0.331529) | 0.050081 / 0.043533 (0.006548) | 0.340406 / 0.255139 (0.085267) | 0.361487 / 0.283200 (0.078287) | 0.108546 / 0.141683 (-0.033137) | 1.424626 / 1.452155 (-0.027529) | 1.553958 / 1.492716 (0.061242) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.329922 / 0.018006 (0.311916) | 0.523239 / 0.000490 (0.522749) | 0.012164 / 0.000200 (0.011964) | 0.000137 / 0.000054 (0.000082) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031935 / 0.037411 (-0.005477) | 0.115680 / 0.014526 (0.101154) | 0.130062 / 0.176557 (-0.046494) | 0.180679 / 0.737135 (-0.556457) | 0.135548 / 0.296338 (-0.160790) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429648 / 0.215209 (0.214439) | 4.303342 / 2.077655 (2.225687) | 1.999395 / 1.504120 (0.495275) | 1.810354 / 1.541195 (0.269160) | 1.963132 / 1.468490 (0.494642) | 0.701654 / 4.584777 (-3.883122) | 3.844687 / 3.745712 (0.098975) | 2.153425 / 5.269862 (-3.116436) | 1.351541 / 4.565676 (-3.214135) | 0.086292 / 0.424275 (-0.337983) | 0.012491 / 0.007607 (0.004883) | 0.523144 / 0.226044 (0.297099) | 5.243283 / 2.268929 (2.974355) | 2.465849 / 55.444624 (-52.978775) | 2.154505 / 6.876477 (-4.721972) | 2.245500 / 2.142072 (0.103428) | 0.838902 / 4.805227 (-3.966326) | 0.169441 / 6.500664 (-6.331223) | 0.065631 / 0.075469 (-0.009838) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262175 / 1.841788 (-0.579612) | 15.424650 / 8.074308 (7.350342) | 15.000718 / 10.191392 (4.809326) | 0.186328 / 0.680424 (-0.494096) | 0.018076 / 0.534201 (-0.516125) | 0.433458 / 0.579283 (-0.145825) | 0.424213 / 0.434364 (-0.010151) | 0.546568 / 0.540337 (0.006231) | 0.643529 / 1.386936 (-0.743407) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ea7298bf121d7ae8079f0a59deb67c2fa1d4df6a \"CML watermark\")\n"
] | 2023-03-21T15:23:29 | 2023-03-23T14:14:50 | 2023-03-23T13:15:46 | CONTRIBUTOR | null | Most HTTP(S) downloads from this library support proxy automatically by reading the `HTTP_PROXY` environment variable (et al.) because `requests` is widely used. However, in some parts of the code, `fsspec` is used, which in turn uses `aiohttp` for HTTP(S) requests (as opposed to `requests`), which in turn doesn't support reading proxy env variables by default. This PR enables reading them automatically.
Read [aiohttp docs on using proxies](https://docs.aiohttp.org/en/stable/client_advanced.html?highlight=trust_env#proxy-support).
For context, [the Python library requests](https://requests.readthedocs.io/en/latest/user/advanced/?highlight=http_proxy#proxies) and [the official Python library via `urllib.urlopen` support this automatically by default](https://docs.python.org/3/library/urllib.request.html#urllib.request.urlopen). Many (most common ones?) programs also do the same, including cURL, APT, Wget, and many others. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5656/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5656/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5656",
"html_url": "https://github.com/huggingface/datasets/pull/5656",
"diff_url": "https://github.com/huggingface/datasets/pull/5656.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5656.patch",
"merged_at": "2023-03-23T13:15:46"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5655 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5655/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5655/comments | https://api.github.com/repos/huggingface/datasets/issues/5655/events | https://github.com/huggingface/datasets/pull/5655 | 1,634,030,017 | PR_kwDODunzps5MjWYy | 5,655 | Improve features decoding in to_iterable_dataset | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009691 / 0.011353 (-0.001662) | 0.006160 / 0.011008 (-0.004848) | 0.127528 / 0.038508 (0.089020) | 0.034445 / 0.023109 (0.011335) | 0.391483 / 0.275898 (0.115585) | 0.425922 / 0.323480 (0.102442) | 0.006621 / 0.007986 (-0.001365) | 0.004550 / 0.004328 (0.000221) | 0.099134 / 0.004250 (0.094884) | 0.051089 / 0.037052 (0.014037) | 0.398675 / 0.258489 (0.140186) | 0.456740 / 0.293841 (0.162899) | 0.052279 / 0.128546 (-0.076267) | 0.020878 / 0.075646 (-0.054768) | 0.414954 / 0.419271 (-0.004317) | 0.061903 / 0.043533 (0.018370) | 0.393088 / 0.255139 (0.137949) | 0.410289 / 0.283200 (0.127089) | 0.101684 / 0.141683 (-0.039998) | 1.747102 / 1.452155 (0.294947) | 1.896976 / 1.492716 (0.404260) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203193 / 0.018006 (0.185187) | 0.495011 / 0.000490 (0.494521) | 0.006290 / 0.000200 (0.006090) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034840 / 0.037411 (-0.002571) | 0.122529 / 0.014526 (0.108003) | 0.133870 / 0.176557 (-0.042686) | 0.207771 / 0.737135 (-0.529364) | 0.141441 / 0.296338 (-0.154897) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.604190 / 0.215209 (0.388981) | 6.040295 / 2.077655 (3.962641) | 2.405703 / 1.504120 (0.901583) | 2.062767 / 1.541195 (0.521572) | 2.079313 / 1.468490 (0.610823) | 1.240107 / 4.584777 (-3.344670) | 5.316583 / 3.745712 (1.570871) | 3.104758 / 5.269862 (-2.165103) | 2.056489 / 4.565676 (-2.509187) | 0.149060 / 0.424275 (-0.275215) | 0.014467 / 0.007607 (0.006860) | 0.736882 / 0.226044 (0.510838) | 7.324142 / 2.268929 (5.055213) | 3.048752 / 55.444624 (-52.395872) | 2.385013 / 6.876477 (-4.491463) | 2.457478 / 2.142072 (0.315405) | 1.459276 / 4.805227 (-3.345951) | 0.253882 / 6.500664 (-6.246782) | 0.076756 / 0.075469 (0.001287) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.499166 / 1.841788 (-0.342622) | 17.294165 / 8.074308 (9.219857) | 20.385668 / 10.191392 (10.194276) | 0.254633 / 0.680424 (-0.425791) | 0.026253 / 0.534201 (-0.507948) | 0.532928 / 0.579283 (-0.046355) | 0.606095 / 0.434364 (0.171731) | 0.615025 / 0.540337 (0.074687) | 0.728651 / 1.386936 (-0.658285) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009376 / 0.011353 (-0.001977) | 0.005981 / 0.011008 (-0.005027) | 0.109898 / 0.038508 (0.071390) | 0.033746 / 0.023109 (0.010637) | 0.410226 / 0.275898 (0.134328) | 0.470606 / 0.323480 (0.147126) | 0.006706 / 0.007986 (-0.001279) | 0.004482 / 0.004328 (0.000153) | 0.092280 / 0.004250 (0.088030) | 0.047988 / 0.037052 (0.010935) | 0.430628 / 0.258489 (0.172139) | 0.480668 / 0.293841 (0.186827) | 0.052099 / 0.128546 (-0.076447) | 0.018743 / 0.075646 (-0.056903) | 0.112204 / 0.419271 (-0.307068) | 0.059838 / 0.043533 (0.016305) | 0.418230 / 0.255139 (0.163091) | 0.451568 / 0.283200 (0.168368) | 0.107026 / 0.141683 (-0.034657) | 1.708111 / 1.452155 (0.255956) | 1.839268 / 1.492716 (0.346552) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229558 / 0.018006 (0.211552) | 0.488099 / 0.000490 (0.487609) | 0.004643 / 0.000200 (0.004443) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030461 / 0.037411 (-0.006951) | 0.120993 / 0.014526 (0.106467) | 0.130874 / 0.176557 (-0.045682) | 0.193550 / 0.737135 (-0.543585) | 0.138164 / 0.296338 (-0.158174) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.635709 / 0.215209 (0.420500) | 6.225112 / 2.077655 (4.147457) | 2.639584 / 1.504120 (1.135465) | 2.254487 / 1.541195 (0.713293) | 2.280478 / 1.468490 (0.811988) | 1.205712 / 4.584777 (-3.379065) | 5.367845 / 3.745712 (1.622133) | 3.020207 / 5.269862 (-2.249655) | 2.001897 / 4.565676 (-2.563779) | 0.149582 / 0.424275 (-0.274693) | 0.014867 / 0.007607 (0.007260) | 0.759050 / 0.226044 (0.533006) | 7.692969 / 2.268929 (5.424041) | 3.274009 / 55.444624 (-52.170615) | 2.635529 / 6.876477 (-4.240948) | 2.672960 / 2.142072 (0.530888) | 1.426487 / 4.805227 (-3.378740) | 0.253368 / 6.500664 (-6.247296) | 0.078650 / 0.075469 (0.003181) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.620265 / 1.841788 (-0.221523) | 17.674168 / 8.074308 (9.599860) | 21.120528 / 10.191392 (10.929136) | 0.244205 / 0.680424 (-0.436218) | 0.029646 / 0.534201 (-0.504555) | 0.510948 / 0.579283 (-0.068335) | 0.586255 / 0.434364 (0.151891) | 0.589286 / 0.540337 (0.048949) | 0.736561 / 1.386936 (-0.650375) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#de5fe9ae5df84c489e08dcbdc3d2d20272b312c3 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007778 / 0.011353 (-0.003575) | 0.005432 / 0.011008 (-0.005577) | 0.098776 / 0.038508 (0.060268) | 0.035196 / 0.023109 (0.012087) | 0.305646 / 0.275898 (0.029748) | 0.342661 / 0.323480 (0.019181) | 0.006513 / 0.007986 (-0.001472) | 0.005897 / 0.004328 (0.001568) | 0.075797 / 0.004250 (0.071547) | 0.056060 / 0.037052 (0.019007) | 0.306645 / 0.258489 (0.048156) | 0.352447 / 0.293841 (0.058606) | 0.037304 / 0.128546 (-0.091242) | 0.012514 / 0.075646 (-0.063132) | 0.334949 / 0.419271 (-0.084323) | 0.051600 / 0.043533 (0.008067) | 0.302302 / 0.255139 (0.047163) | 0.322238 / 0.283200 (0.039038) | 0.106896 / 0.141683 (-0.034787) | 1.483163 / 1.452155 (0.031008) | 1.587483 / 1.492716 (0.094767) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292318 / 0.018006 (0.274312) | 0.541541 / 0.000490 (0.541051) | 0.008342 / 0.000200 (0.008142) | 0.000339 / 0.000054 (0.000285) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028287 / 0.037411 (-0.009124) | 0.107775 / 0.014526 (0.093250) | 0.119112 / 0.176557 (-0.057445) | 0.174002 / 0.737135 (-0.563134) | 0.126531 / 0.296338 (-0.169808) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401684 / 0.215209 (0.186475) | 4.024708 / 2.077655 (1.947053) | 1.812763 / 1.504120 (0.308643) | 1.629540 / 1.541195 (0.088345) | 1.731733 / 1.468490 (0.263243) | 0.711066 / 4.584777 (-3.873711) | 3.867499 / 3.745712 (0.121786) | 3.615968 / 5.269862 (-1.653893) | 1.876077 / 4.565676 (-2.689600) | 0.087003 / 0.424275 (-0.337272) | 0.012445 / 0.007607 (0.004838) | 0.499106 / 0.226044 (0.273061) | 4.975920 / 2.268929 (2.706992) | 2.279074 / 55.444624 (-53.165550) | 1.952311 / 6.876477 (-4.924166) | 2.167480 / 2.142072 (0.025408) | 0.855882 / 4.805227 (-3.949346) | 0.171378 / 6.500664 (-6.329287) | 0.066731 / 0.075469 (-0.008738) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.184226 / 1.841788 (-0.657561) | 15.383396 / 8.074308 (7.309088) | 15.069783 / 10.191392 (4.878391) | 0.161489 / 0.680424 (-0.518935) | 0.017763 / 0.534201 (-0.516438) | 0.427103 / 0.579283 (-0.152180) | 0.434295 / 0.434364 (-0.000069) | 0.496848 / 0.540337 (-0.043489) | 0.592572 / 1.386936 (-0.794364) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008014 / 0.011353 (-0.003339) | 0.005607 / 0.011008 (-0.005401) | 0.076826 / 0.038508 (0.038318) | 0.035283 / 0.023109 (0.012174) | 0.347809 / 0.275898 (0.071911) | 0.382482 / 0.323480 (0.059003) | 0.006276 / 0.007986 (-0.001709) | 0.005978 / 0.004328 (0.001650) | 0.074938 / 0.004250 (0.070687) | 0.054323 / 0.037052 (0.017271) | 0.344027 / 0.258489 (0.085538) | 0.397623 / 0.293841 (0.103783) | 0.037851 / 0.128546 (-0.090695) | 0.012649 / 0.075646 (-0.062997) | 0.086169 / 0.419271 (-0.333103) | 0.051510 / 0.043533 (0.007977) | 0.341112 / 0.255139 (0.085973) | 0.357957 / 0.283200 (0.074757) | 0.110949 / 0.141683 (-0.030734) | 1.479573 / 1.452155 (0.027419) | 1.578572 / 1.492716 (0.085855) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.310678 / 0.018006 (0.292672) | 0.525504 / 0.000490 (0.525015) | 0.000447 / 0.000200 (0.000247) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031262 / 0.037411 (-0.006149) | 0.113801 / 0.014526 (0.099275) | 0.124967 / 0.176557 (-0.051590) | 0.175226 / 0.737135 (-0.561909) | 0.129377 / 0.296338 (-0.166962) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420672 / 0.215209 (0.205463) | 4.181337 / 2.077655 (2.103682) | 1.985524 / 1.504120 (0.481404) | 1.803468 / 1.541195 (0.262273) | 1.952915 / 1.468490 (0.484425) | 0.710928 / 4.584777 (-3.873849) | 3.886245 / 3.745712 (0.140533) | 3.737837 / 5.269862 (-1.532024) | 1.806859 / 4.565676 (-2.758818) | 0.088461 / 0.424275 (-0.335814) | 0.013125 / 0.007607 (0.005518) | 0.522410 / 0.226044 (0.296365) | 5.232591 / 2.268929 (2.963663) | 2.451188 / 55.444624 (-52.993437) | 2.127725 / 6.876477 (-4.748751) | 2.232859 / 2.142072 (0.090786) | 0.854257 / 4.805227 (-3.950970) | 0.171004 / 6.500664 (-6.329661) | 0.066724 / 0.075469 (-0.008746) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257700 / 1.841788 (-0.584088) | 15.738605 / 8.074308 (7.664297) | 15.021698 / 10.191392 (4.830306) | 0.147422 / 0.680424 (-0.533002) | 0.017928 / 0.534201 (-0.516273) | 0.428121 / 0.579283 (-0.151162) | 0.432056 / 0.434364 (-0.002308) | 0.498318 / 0.540337 (-0.042020) | 0.591040 / 1.386936 (-0.795896) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1ac74267032ef3608779a8c8c4361b95a83ecbcb \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007014 / 0.011353 (-0.004339) | 0.004792 / 0.011008 (-0.006216) | 0.099822 / 0.038508 (0.061314) | 0.029333 / 0.023109 (0.006224) | 0.306453 / 0.275898 (0.030555) | 0.344598 / 0.323480 (0.021118) | 0.005121 / 0.007986 (-0.002865) | 0.004850 / 0.004328 (0.000522) | 0.076668 / 0.004250 (0.072417) | 0.039980 / 0.037052 (0.002927) | 0.312276 / 0.258489 (0.053787) | 0.354722 / 0.293841 (0.060881) | 0.031653 / 0.128546 (-0.096893) | 0.011743 / 0.075646 (-0.063903) | 0.322998 / 0.419271 (-0.096274) | 0.042813 / 0.043533 (-0.000720) | 0.308855 / 0.255139 (0.053716) | 0.332650 / 0.283200 (0.049451) | 0.087155 / 0.141683 (-0.054528) | 1.454946 / 1.452155 (0.002791) | 1.550589 / 1.492716 (0.057873) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192921 / 0.018006 (0.174914) | 0.411155 / 0.000490 (0.410666) | 0.004779 / 0.000200 (0.004579) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024462 / 0.037411 (-0.012950) | 0.100320 / 0.014526 (0.085794) | 0.105509 / 0.176557 (-0.071048) | 0.168533 / 0.737135 (-0.568602) | 0.110018 / 0.296338 (-0.186321) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415025 / 0.215209 (0.199816) | 4.144583 / 2.077655 (2.066928) | 1.871627 / 1.504120 (0.367507) | 1.671638 / 1.541195 (0.130443) | 1.734458 / 1.468490 (0.265968) | 0.693435 / 4.584777 (-3.891342) | 3.487999 / 3.745712 (-0.257713) | 3.196553 / 5.269862 (-2.073308) | 1.628499 / 4.565676 (-2.937178) | 0.082999 / 0.424275 (-0.341276) | 0.012822 / 0.007607 (0.005215) | 0.514904 / 0.226044 (0.288860) | 5.157525 / 2.268929 (2.888596) | 2.313093 / 55.444624 (-53.131531) | 1.968335 / 6.876477 (-4.908142) | 2.083462 / 2.142072 (-0.058610) | 0.804485 / 4.805227 (-4.000742) | 0.152290 / 6.500664 (-6.348374) | 0.066813 / 0.075469 (-0.008656) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.210370 / 1.841788 (-0.631418) | 14.261779 / 8.074308 (6.187471) | 14.268121 / 10.191392 (4.076729) | 0.149216 / 0.680424 (-0.531207) | 0.016529 / 0.534201 (-0.517672) | 0.378814 / 0.579283 (-0.200469) | 0.386304 / 0.434364 (-0.048060) | 0.439653 / 0.540337 (-0.100684) | 0.523658 / 1.386936 (-0.863278) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006979 / 0.011353 (-0.004374) | 0.004718 / 0.011008 (-0.006290) | 0.077023 / 0.038508 (0.038514) | 0.029080 / 0.023109 (0.005971) | 0.343145 / 0.275898 (0.067247) | 0.380633 / 0.323480 (0.057153) | 0.006057 / 0.007986 (-0.001928) | 0.003541 / 0.004328 (-0.000788) | 0.075773 / 0.004250 (0.071523) | 0.039112 / 0.037052 (0.002060) | 0.342355 / 0.258489 (0.083866) | 0.386002 / 0.293841 (0.092161) | 0.033238 / 0.128546 (-0.095308) | 0.011696 / 0.075646 (-0.063950) | 0.086178 / 0.419271 (-0.333093) | 0.045219 / 0.043533 (0.001686) | 0.360710 / 0.255139 (0.105571) | 0.367490 / 0.283200 (0.084290) | 0.093041 / 0.141683 (-0.048642) | 1.523670 / 1.452155 (0.071516) | 1.595280 / 1.492716 (0.102564) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235888 / 0.018006 (0.217882) | 0.410205 / 0.000490 (0.409715) | 0.000405 / 0.000200 (0.000205) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025752 / 0.037411 (-0.011659) | 0.103343 / 0.014526 (0.088818) | 0.108722 / 0.176557 (-0.067834) | 0.159241 / 0.737135 (-0.577894) | 0.113684 / 0.296338 (-0.182654) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441809 / 0.215209 (0.226600) | 4.410893 / 2.077655 (2.333238) | 2.104061 / 1.504120 (0.599941) | 1.854016 / 1.541195 (0.312821) | 1.947100 / 1.468490 (0.478610) | 0.697682 / 4.584777 (-3.887095) | 3.467513 / 3.745712 (-0.278199) | 1.911603 / 5.269862 (-3.358258) | 1.187479 / 4.565676 (-3.378197) | 0.083153 / 0.424275 (-0.341122) | 0.012651 / 0.007607 (0.005044) | 0.542081 / 0.226044 (0.316036) | 5.444622 / 2.268929 (3.175693) | 2.524236 / 55.444624 (-52.920388) | 2.190463 / 6.876477 (-4.686014) | 2.265764 / 2.142072 (0.123691) | 0.810778 / 4.805227 (-3.994450) | 0.152459 / 6.500664 (-6.348205) | 0.067815 / 0.075469 (-0.007654) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.334388 / 1.841788 (-0.507400) | 14.640459 / 8.074308 (6.566151) | 14.714874 / 10.191392 (4.523482) | 0.153479 / 0.680424 (-0.526945) | 0.016709 / 0.534201 (-0.517492) | 0.379427 / 0.579283 (-0.199856) | 0.391602 / 0.434364 (-0.042762) | 0.438297 / 0.540337 (-0.102041) | 0.524170 / 1.386936 (-0.862766) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b277cef5cb56c0c506eda082fb69fddb839156a1 \"CML watermark\")\n"
] | 2023-03-21T14:18:09 | 2023-03-23T13:19:27 | 2023-03-23T13:12:25 | MEMBER | null | Following discussion at https://github.com/huggingface/datasets/pull/5589
Right now `to_iterable_dataset` on images/audio hurts iterable dataset performance a lot (e.g. x4 slower because it encodes+decodes images/audios unnecessarily).
I fixed it by providing a generator that yields undecoded examples | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5655/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5655/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5655",
"html_url": "https://github.com/huggingface/datasets/pull/5655",
"diff_url": "https://github.com/huggingface/datasets/pull/5655.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5655.patch",
"merged_at": "2023-03-23T13:12:25"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5654 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5654/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5654/comments | https://api.github.com/repos/huggingface/datasets/issues/5654/events | https://github.com/huggingface/datasets/issues/5654 | 1,633,523,705 | I_kwDODunzps5hXZf5 | 5,654 | Offset overflow when executing Dataset.map | {
"login": "jan-pair",
"id": 118280608,
"node_id": "U_kgDOBwzRoA",
"avatar_url": "https://avatars.githubusercontent.com/u/118280608?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jan-pair",
"html_url": "https://github.com/jan-pair",
"followers_url": "https://api.github.com/users/jan-pair/followers",
"following_url": "https://api.github.com/users/jan-pair/following{/other_user}",
"gists_url": "https://api.github.com/users/jan-pair/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jan-pair/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jan-pair/subscriptions",
"organizations_url": "https://api.github.com/users/jan-pair/orgs",
"repos_url": "https://api.github.com/users/jan-pair/repos",
"events_url": "https://api.github.com/users/jan-pair/events{/privacy}",
"received_events_url": "https://api.github.com/users/jan-pair/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Upd. the above code works if we replace `25` with `1`, but the result value at key \"hr\" is not a tensor but a list of lists of lists of uint8.\r\n\r\nAdding `train_data.set_format(\"torch\")` after map fixes this, but the original issue remains\r\n\r\n",
"As a workaround, one can replace\r\n`return {\"hr\": torch.stack([crop_transf(tensor) for _ in range(25)])}`\r\nwith\r\n`return {f\"hr_crop_{i}\": crop_transf(tensor) for i in range(25)}`\r\nand then choose appropriate crop randomly in further processing, but I still don't understand why the original approach doesn't work(\r\n"
] | 2023-03-21T09:33:27 | 2023-03-21T10:32:07 | null | NONE | null | ### Describe the bug
Hi, I'm trying to use `.map` method to cache multiple random crops from the image to speed up data processing during training, as the image size is too big.
The map function executes all iterations, and then returns the following error:
```bash
Traceback (most recent call last):
File "/home/ubuntu/miniconda3/envs/enhancement/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 3353, in _map_single
writer.finalize() # close_stream=bool(buf_writer is None)) # We only close if we are writing in a file
File "/home/ubuntu/miniconda3/envs/enhancement/lib/python3.8/site-packages/datasets/arrow_writer.py", line 582, in finalize
self.write_examples_on_file()
File "/home/ubuntu/miniconda3/envs/enhancement/lib/python3.8/site-packages/datasets/arrow_writer.py", line 446, in write_examples_on_file
self.write_batch(batch_examples=batch_examples)
File "/home/ubuntu/miniconda3/envs/enhancement/lib/python3.8/site-packages/datasets/arrow_writer.py", line 555, in write_batch
self.write_table(pa_table, writer_batch_size)
File "/home/ubuntu/miniconda3/envs/enhancement/lib/python3.8/site-packages/datasets/arrow_writer.py", line 567, in write_table
pa_table = pa_table.combine_chunks()
File "pyarrow/table.pxi", line 3315, in pyarrow.lib.Table.combine_chunks
File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: offset overflow while concatenating arrays
```
Here is the minimal code (`/home/datasets/DIV2K_train_HR` is just a folder of images that can be replaced by any appropriate):
### Steps to reproduce the bug
```python
from glob import glob
import torch
from datasets import Dataset, Image
from torchvision.transforms import PILToTensor, RandomCrop
file_paths = glob("/home/datasets/DIV2K_train_HR/*")
to_tensor = PILToTensor()
crop_transf = RandomCrop(size=256)
def prepare_data(example):
tensor = to_tensor(example["image"].convert("RGB"))
return {"hr": torch.stack([crop_transf(tensor) for _ in range(25)])}
train_data = Dataset.from_dict({"image": file_paths}).cast_column("image", Image())
train_data = train_data.map(
prepare_data,
cache_file_name="/home/datasets/DIV2K_train_HR_crops.tmp",
desc="Caching multiple random crops of image",
remove_columns="image",
)
print(train_data[0].keys(), train_data[0]["hr"].shape)
```
### Expected behavior
Cached file is stored at `"/home/datasets/DIV2K_train_HR_crops.tmp"`, output is `dict_keys(['hr']) torch.Size([25, 3, 256, 256])`
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-5.15.0-67-generic-x86_64-with-glibc2.10
- Python version: 3.8.16
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
- Pytorch version: 2.0.0+cu117
- torchvision version: 0.15.1+cu117 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5654/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5654/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5653 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5653/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5653/comments | https://api.github.com/repos/huggingface/datasets/issues/5653/events | https://github.com/huggingface/datasets/issues/5653 | 1,633,254,159 | I_kwDODunzps5hWXsP | 5,653 | Doc: save_to_disk, `num_proc` will affect `num_shards`, but it's not documented | {
"login": "RmZeta2718",
"id": 42400165,
"node_id": "MDQ6VXNlcjQyNDAwMTY1",
"avatar_url": "https://avatars.githubusercontent.com/u/42400165?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/RmZeta2718",
"html_url": "https://github.com/RmZeta2718",
"followers_url": "https://api.github.com/users/RmZeta2718/followers",
"following_url": "https://api.github.com/users/RmZeta2718/following{/other_user}",
"gists_url": "https://api.github.com/users/RmZeta2718/gists{/gist_id}",
"starred_url": "https://api.github.com/users/RmZeta2718/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/RmZeta2718/subscriptions",
"organizations_url": "https://api.github.com/users/RmZeta2718/orgs",
"repos_url": "https://api.github.com/users/RmZeta2718/repos",
"events_url": "https://api.github.com/users/RmZeta2718/events{/privacy}",
"received_events_url": "https://api.github.com/users/RmZeta2718/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892861,
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation",
"name": "documentation",
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation"
},
{
"id": 1935892877,
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue",
"name": "good first issue",
"color": "7057ff",
"default": true,
"description": "Good for newcomers"
}
] | closed | false | null | [] | null | [
"I agree this should be documented"
] | 2023-03-21T05:25:35 | 2023-03-24T16:36:23 | 2023-03-24T16:36:23 | NONE | null | ### Describe the bug
[`num_proc`](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.DatasetDict.save_to_disk.num_proc) will affect `num_shards`, but it's not documented
### Steps to reproduce the bug
Nothing to reproduce
### Expected behavior
[document of `num_shards`](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.DatasetDict.save_to_disk.num_shards) explicitly says that it depends on `max_shard_size`, it should also mention `num_proc`.
### Environment info
datasets main document | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5653/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5653/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5652 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5652/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5652/comments | https://api.github.com/repos/huggingface/datasets/issues/5652/events | https://github.com/huggingface/datasets/pull/5652 | 1,632,546,073 | PR_kwDODunzps5MeVUR | 5,652 | Copy features | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007455 / 0.011353 (-0.003898) | 0.005278 / 0.011008 (-0.005731) | 0.098981 / 0.038508 (0.060473) | 0.029208 / 0.023109 (0.006099) | 0.304132 / 0.275898 (0.028234) | 0.340010 / 0.323480 (0.016530) | 0.005514 / 0.007986 (-0.002472) | 0.003636 / 0.004328 (-0.000692) | 0.076737 / 0.004250 (0.072486) | 0.041985 / 0.037052 (0.004933) | 0.314941 / 0.258489 (0.056452) | 0.346686 / 0.293841 (0.052845) | 0.032528 / 0.128546 (-0.096018) | 0.011795 / 0.075646 (-0.063851) | 0.322122 / 0.419271 (-0.097150) | 0.051548 / 0.043533 (0.008015) | 0.310561 / 0.255139 (0.055422) | 0.329443 / 0.283200 (0.046243) | 0.092820 / 0.141683 (-0.048863) | 1.495764 / 1.452155 (0.043609) | 1.586734 / 1.492716 (0.094018) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.195830 / 0.018006 (0.177824) | 0.422075 / 0.000490 (0.421586) | 0.005483 / 0.000200 (0.005283) | 0.000133 / 0.000054 (0.000078) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023468 / 0.037411 (-0.013943) | 0.097713 / 0.014526 (0.083187) | 0.105331 / 0.176557 (-0.071225) | 0.166237 / 0.737135 (-0.570898) | 0.108924 / 0.296338 (-0.187415) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.671901 / 0.215209 (0.456692) | 6.745691 / 2.077655 (4.668036) | 2.132508 / 1.504120 (0.628388) | 1.693808 / 1.541195 (0.152614) | 1.715282 / 1.468490 (0.246792) | 0.955354 / 4.584777 (-3.629422) | 3.810296 / 3.745712 (0.064584) | 2.214891 / 5.269862 (-3.054970) | 1.461513 / 4.565676 (-3.104164) | 0.109846 / 0.424275 (-0.314430) | 0.013546 / 0.007607 (0.005939) | 0.780046 / 0.226044 (0.554001) | 7.789020 / 2.268929 (5.520091) | 2.602411 / 55.444624 (-52.842213) | 1.995096 / 6.876477 (-4.881380) | 2.009022 / 2.142072 (-0.133051) | 1.069215 / 4.805227 (-3.736012) | 0.179812 / 6.500664 (-6.320852) | 0.068125 / 0.075469 (-0.007344) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.201866 / 1.841788 (-0.639921) | 13.878814 / 8.074308 (5.804506) | 14.179264 / 10.191392 (3.987872) | 0.128908 / 0.680424 (-0.551515) | 0.017257 / 0.534201 (-0.516944) | 0.379500 / 0.579283 (-0.199783) | 0.393308 / 0.434364 (-0.041056) | 0.444700 / 0.540337 (-0.095638) | 0.531043 / 1.386936 (-0.855893) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007413 / 0.011353 (-0.003940) | 0.005431 / 0.011008 (-0.005577) | 0.078158 / 0.038508 (0.039650) | 0.028837 / 0.023109 (0.005728) | 0.343635 / 0.275898 (0.067737) | 0.383041 / 0.323480 (0.059561) | 0.005283 / 0.007986 (-0.002703) | 0.003673 / 0.004328 (-0.000655) | 0.076461 / 0.004250 (0.072211) | 0.038625 / 0.037052 (0.001573) | 0.341109 / 0.258489 (0.082620) | 0.387027 / 0.293841 (0.093186) | 0.032512 / 0.128546 (-0.096034) | 0.011903 / 0.075646 (-0.063744) | 0.086340 / 0.419271 (-0.332931) | 0.043211 / 0.043533 (-0.000321) | 0.339994 / 0.255139 (0.084855) | 0.370868 / 0.283200 (0.087668) | 0.091679 / 0.141683 (-0.050004) | 1.547188 / 1.452155 (0.095033) | 1.578545 / 1.492716 (0.085829) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216981 / 0.018006 (0.198975) | 0.412206 / 0.000490 (0.411716) | 0.004243 / 0.000200 (0.004043) | 0.000130 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025392 / 0.037411 (-0.012020) | 0.102577 / 0.014526 (0.088051) | 0.107672 / 0.176557 (-0.068884) | 0.160657 / 0.737135 (-0.576478) | 0.111646 / 0.296338 (-0.184692) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.698815 / 0.215209 (0.483606) | 6.958931 / 2.077655 (4.881276) | 2.344216 / 1.504120 (0.840096) | 1.907752 / 1.541195 (0.366557) | 1.964251 / 1.468490 (0.495761) | 0.950754 / 4.584777 (-3.634023) | 3.829700 / 3.745712 (0.083988) | 3.055565 / 5.269862 (-2.214297) | 1.575851 / 4.565676 (-2.989825) | 0.109227 / 0.424275 (-0.315048) | 0.013163 / 0.007607 (0.005556) | 0.804613 / 0.226044 (0.578569) | 8.015035 / 2.268929 (5.746107) | 2.796358 / 55.444624 (-52.648266) | 2.212561 / 6.876477 (-4.663916) | 2.229918 / 2.142072 (0.087845) | 1.062041 / 4.805227 (-3.743186) | 0.181384 / 6.500664 (-6.319280) | 0.068564 / 0.075469 (-0.006905) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.287904 / 1.841788 (-0.553884) | 14.539222 / 8.074308 (6.464914) | 14.232097 / 10.191392 (4.040705) | 0.130870 / 0.680424 (-0.549554) | 0.016710 / 0.534201 (-0.517491) | 0.384454 / 0.579283 (-0.194829) | 0.391750 / 0.434364 (-0.042614) | 0.443995 / 0.540337 (-0.096343) | 0.526255 / 1.386936 (-0.860681) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bd46874a580b888bdc82b53daace79884f04bc62 \"CML watermark\")\n",
"Arf I need to fix some tests first - sorry",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008393 / 0.011353 (-0.002959) | 0.005635 / 0.011008 (-0.005373) | 0.114840 / 0.038508 (0.076332) | 0.039272 / 0.023109 (0.016163) | 0.352116 / 0.275898 (0.076218) | 0.386614 / 0.323480 (0.063134) | 0.006348 / 0.007986 (-0.001638) | 0.005872 / 0.004328 (0.001544) | 0.086437 / 0.004250 (0.082187) | 0.054003 / 0.037052 (0.016951) | 0.350302 / 0.258489 (0.091813) | 0.400148 / 0.293841 (0.106308) | 0.042436 / 0.128546 (-0.086111) | 0.013987 / 0.075646 (-0.061660) | 0.399434 / 0.419271 (-0.019837) | 0.059223 / 0.043533 (0.015690) | 0.354511 / 0.255139 (0.099372) | 0.377764 / 0.283200 (0.094564) | 0.112297 / 0.141683 (-0.029386) | 1.677483 / 1.452155 (0.225328) | 1.784942 / 1.492716 (0.292226) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233334 / 0.018006 (0.215328) | 0.450575 / 0.000490 (0.450085) | 0.000376 / 0.000200 (0.000176) | 0.000068 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031995 / 0.037411 (-0.005416) | 0.126798 / 0.014526 (0.112272) | 0.138453 / 0.176557 (-0.038104) | 0.207360 / 0.737135 (-0.529775) | 0.147744 / 0.296338 (-0.148594) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.481496 / 0.215209 (0.266287) | 4.810495 / 2.077655 (2.732840) | 2.457917 / 1.504120 (0.953797) | 2.300073 / 1.541195 (0.758879) | 2.065595 / 1.468490 (0.597105) | 0.814589 / 4.584777 (-3.770188) | 4.566496 / 3.745712 (0.820784) | 2.386947 / 5.269862 (-2.882914) | 1.531639 / 4.565676 (-3.034037) | 0.099569 / 0.424275 (-0.324706) | 0.014971 / 0.007607 (0.007364) | 0.590359 / 0.226044 (0.364314) | 5.885250 / 2.268929 (3.616322) | 2.706799 / 55.444624 (-52.737826) | 2.324485 / 6.876477 (-4.551992) | 2.452751 / 2.142072 (0.310678) | 0.966955 / 4.805227 (-3.838272) | 0.198165 / 6.500664 (-6.302499) | 0.076877 / 0.075469 (0.001408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.499085 / 1.841788 (-0.342702) | 17.705516 / 8.074308 (9.631208) | 16.481174 / 10.191392 (6.289782) | 0.191832 / 0.680424 (-0.488592) | 0.021417 / 0.534201 (-0.512784) | 0.519647 / 0.579283 (-0.059636) | 0.498432 / 0.434364 (0.064068) | 0.598206 / 0.540337 (0.057868) | 0.700990 / 1.386936 (-0.685946) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008746 / 0.011353 (-0.002607) | 0.006052 / 0.011008 (-0.004956) | 0.092938 / 0.038508 (0.054430) | 0.038932 / 0.023109 (0.015823) | 0.406919 / 0.275898 (0.131021) | 0.444325 / 0.323480 (0.120845) | 0.006735 / 0.007986 (-0.001251) | 0.005972 / 0.004328 (0.001643) | 0.088152 / 0.004250 (0.083902) | 0.051009 / 0.037052 (0.013957) | 0.407415 / 0.258489 (0.148926) | 0.481048 / 0.293841 (0.187207) | 0.043268 / 0.128546 (-0.085278) | 0.014574 / 0.075646 (-0.061072) | 0.103555 / 0.419271 (-0.315716) | 0.058251 / 0.043533 (0.014719) | 0.406294 / 0.255139 (0.151155) | 0.429229 / 0.283200 (0.146029) | 0.116977 / 0.141683 (-0.024705) | 1.765885 / 1.452155 (0.313730) | 1.885557 / 1.492716 (0.392841) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284014 / 0.018006 (0.266008) | 0.458066 / 0.000490 (0.457576) | 0.022286 / 0.000200 (0.022086) | 0.000158 / 0.000054 (0.000104) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033971 / 0.037411 (-0.003440) | 0.132030 / 0.014526 (0.117504) | 0.141725 / 0.176557 (-0.034831) | 0.199818 / 0.737135 (-0.537318) | 0.149176 / 0.296338 (-0.147162) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.511463 / 0.215209 (0.296254) | 4.917921 / 2.077655 (2.840267) | 2.382377 / 1.504120 (0.878257) | 2.154599 / 1.541195 (0.613404) | 2.247858 / 1.468490 (0.779368) | 0.834524 / 4.584777 (-3.750253) | 4.560010 / 3.745712 (0.814297) | 2.403055 / 5.269862 (-2.866806) | 1.780784 / 4.565676 (-2.784893) | 0.101409 / 0.424275 (-0.322866) | 0.014657 / 0.007607 (0.007050) | 0.610137 / 0.226044 (0.384093) | 6.051011 / 2.268929 (3.782083) | 2.887357 / 55.444624 (-52.557267) | 2.518225 / 6.876477 (-4.358252) | 2.559654 / 2.142072 (0.417582) | 0.981226 / 4.805227 (-3.824001) | 0.197323 / 6.500664 (-6.303341) | 0.076851 / 0.075469 (0.001382) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.554662 / 1.841788 (-0.287126) | 18.038993 / 8.074308 (9.964685) | 16.719948 / 10.191392 (6.528556) | 0.195641 / 0.680424 (-0.484783) | 0.020699 / 0.534201 (-0.513502) | 0.498949 / 0.579283 (-0.080334) | 0.487775 / 0.434364 (0.053411) | 0.591413 / 0.540337 (0.051075) | 0.708520 / 1.386936 (-0.678416) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#39de0d78224c070be33d0820ec9203018fb721d1 \"CML watermark\")\n",
"Ready for review @mariosasko :)",
"Yea it does behave as expected, but modifying a dataset's features dict is not recommended and can lead to unpredictable behaviors. By copying the features, we make sure users don't modify the dataset's features dict.\r\n\r\nSince the attribute is public, users expect to be able to do whatever they want with it, without checking if they have to copy it or not",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008069 / 0.011353 (-0.003284) | 0.005051 / 0.011008 (-0.005958) | 0.096587 / 0.038508 (0.058079) | 0.032954 / 0.023109 (0.009844) | 0.317877 / 0.275898 (0.041979) | 0.328677 / 0.323480 (0.005197) | 0.005524 / 0.007986 (-0.002462) | 0.003958 / 0.004328 (-0.000370) | 0.072692 / 0.004250 (0.068441) | 0.044554 / 0.037052 (0.007502) | 0.311121 / 0.258489 (0.052632) | 0.355912 / 0.293841 (0.062071) | 0.035934 / 0.128546 (-0.092612) | 0.012056 / 0.075646 (-0.063590) | 0.332575 / 0.419271 (-0.086696) | 0.049788 / 0.043533 (0.006255) | 0.307918 / 0.255139 (0.052779) | 0.326757 / 0.283200 (0.043557) | 0.098671 / 0.141683 (-0.043012) | 1.424625 / 1.452155 (-0.027530) | 1.507944 / 1.492716 (0.015228) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207976 / 0.018006 (0.189970) | 0.439604 / 0.000490 (0.439114) | 0.000435 / 0.000200 (0.000235) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026961 / 0.037411 (-0.010451) | 0.106627 / 0.014526 (0.092101) | 0.115292 / 0.176557 (-0.061264) | 0.171901 / 0.737135 (-0.565234) | 0.123276 / 0.296338 (-0.173062) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407679 / 0.215209 (0.192469) | 4.071958 / 2.077655 (1.994303) | 1.854270 / 1.504120 (0.350151) | 1.678406 / 1.541195 (0.137211) | 1.715890 / 1.468490 (0.247400) | 0.705536 / 4.584777 (-3.879241) | 3.774198 / 3.745712 (0.028486) | 2.096429 / 5.269862 (-3.173432) | 1.431810 / 4.565676 (-3.133866) | 0.085557 / 0.424275 (-0.338718) | 0.012191 / 0.007607 (0.004584) | 0.502937 / 0.226044 (0.276893) | 5.034391 / 2.268929 (2.765463) | 2.393826 / 55.444624 (-53.050799) | 2.037383 / 6.876477 (-4.839094) | 2.192037 / 2.142072 (0.049964) | 0.829298 / 4.805227 (-3.975929) | 0.167781 / 6.500664 (-6.332883) | 0.063405 / 0.075469 (-0.012064) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.179189 / 1.841788 (-0.662599) | 14.464132 / 8.074308 (6.389824) | 14.869024 / 10.191392 (4.677632) | 0.172864 / 0.680424 (-0.507560) | 0.017817 / 0.534201 (-0.516384) | 0.427849 / 0.579283 (-0.151434) | 0.434447 / 0.434364 (0.000083) | 0.502077 / 0.540337 (-0.038260) | 0.599587 / 1.386936 (-0.787349) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007366 / 0.011353 (-0.003987) | 0.004939 / 0.011008 (-0.006069) | 0.074982 / 0.038508 (0.036474) | 0.032611 / 0.023109 (0.009501) | 0.340670 / 0.275898 (0.064772) | 0.372471 / 0.323480 (0.048991) | 0.005567 / 0.007986 (-0.002418) | 0.003956 / 0.004328 (-0.000372) | 0.074550 / 0.004250 (0.070300) | 0.047097 / 0.037052 (0.010045) | 0.337049 / 0.258489 (0.078560) | 0.391512 / 0.293841 (0.097671) | 0.035712 / 0.128546 (-0.092835) | 0.012040 / 0.075646 (-0.063606) | 0.087126 / 0.419271 (-0.332146) | 0.048290 / 0.043533 (0.004757) | 0.335069 / 0.255139 (0.079930) | 0.362080 / 0.283200 (0.078881) | 0.098606 / 0.141683 (-0.043077) | 1.456802 / 1.452155 (0.004647) | 1.554652 / 1.492716 (0.061936) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200015 / 0.018006 (0.182009) | 0.442772 / 0.000490 (0.442283) | 0.004594 / 0.000200 (0.004394) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028510 / 0.037411 (-0.008901) | 0.109654 / 0.014526 (0.095128) | 0.119921 / 0.176557 (-0.056636) | 0.170289 / 0.737135 (-0.566846) | 0.125288 / 0.296338 (-0.171051) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430919 / 0.215209 (0.215710) | 4.274132 / 2.077655 (2.196478) | 2.014385 / 1.504120 (0.510265) | 1.822094 / 1.541195 (0.280899) | 1.938188 / 1.468490 (0.469698) | 0.707812 / 4.584777 (-3.876965) | 3.925730 / 3.745712 (0.180018) | 2.117481 / 5.269862 (-3.152381) | 1.369521 / 4.565676 (-3.196155) | 0.088414 / 0.424275 (-0.335861) | 0.013101 / 0.007607 (0.005494) | 0.538468 / 0.226044 (0.312424) | 5.384614 / 2.268929 (3.115685) | 2.487709 / 55.444624 (-52.956915) | 2.152060 / 6.876477 (-4.724417) | 2.225777 / 2.142072 (0.083705) | 0.856749 / 4.805227 (-3.948479) | 0.173299 / 6.500664 (-6.327366) | 0.068872 / 0.075469 (-0.006597) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268009 / 1.841788 (-0.573778) | 15.102648 / 8.074308 (7.028340) | 14.216810 / 10.191392 (4.025418) | 0.163661 / 0.680424 (-0.516763) | 0.017394 / 0.534201 (-0.516807) | 0.418030 / 0.579283 (-0.161253) | 0.413717 / 0.434364 (-0.020647) | 0.487526 / 0.540337 (-0.052811) | 0.581499 / 1.386936 (-0.805437) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#46bb11e96d053c497035a2436702860de9960a65 \"CML watermark\")\n"
] | 2023-03-20T17:17:23 | 2023-03-23T13:19:19 | 2023-03-23T13:12:08 | MEMBER | null | Some users (even internally at HF) are doing
```python
dset_features = dset.features
dset_features.pop(col_to_remove)
dset = dset.map(..., features=dset_features)
```
Right now this causes issues because it modifies the features dict in place before the map.
In this PR I modified `dset.features` to return a copy of the features, so that users can modify it if they want. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5652/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5652/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5652",
"html_url": "https://github.com/huggingface/datasets/pull/5652",
"diff_url": "https://github.com/huggingface/datasets/pull/5652.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5652.patch",
"merged_at": "2023-03-23T13:12:08"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5651 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5651/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5651/comments | https://api.github.com/repos/huggingface/datasets/issues/5651/events | https://github.com/huggingface/datasets/issues/5651 | 1,631,967,509 | I_kwDODunzps5hRdkV | 5,651 | expanduser in save_to_disk | {
"login": "RmZeta2718",
"id": 42400165,
"node_id": "MDQ6VXNlcjQyNDAwMTY1",
"avatar_url": "https://avatars.githubusercontent.com/u/42400165?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/RmZeta2718",
"html_url": "https://github.com/RmZeta2718",
"followers_url": "https://api.github.com/users/RmZeta2718/followers",
"following_url": "https://api.github.com/users/RmZeta2718/following{/other_user}",
"gists_url": "https://api.github.com/users/RmZeta2718/gists{/gist_id}",
"starred_url": "https://api.github.com/users/RmZeta2718/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/RmZeta2718/subscriptions",
"organizations_url": "https://api.github.com/users/RmZeta2718/orgs",
"repos_url": "https://api.github.com/users/RmZeta2718/repos",
"events_url": "https://api.github.com/users/RmZeta2718/events{/privacy}",
"received_events_url": "https://api.github.com/users/RmZeta2718/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892877,
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue",
"name": "good first issue",
"color": "7057ff",
"default": true,
"description": "Good for newcomers"
}
] | open | false | {
"login": "benjaminbrown038",
"id": 35114142,
"node_id": "MDQ6VXNlcjM1MTE0MTQy",
"avatar_url": "https://avatars.githubusercontent.com/u/35114142?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/benjaminbrown038",
"html_url": "https://github.com/benjaminbrown038",
"followers_url": "https://api.github.com/users/benjaminbrown038/followers",
"following_url": "https://api.github.com/users/benjaminbrown038/following{/other_user}",
"gists_url": "https://api.github.com/users/benjaminbrown038/gists{/gist_id}",
"starred_url": "https://api.github.com/users/benjaminbrown038/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/benjaminbrown038/subscriptions",
"organizations_url": "https://api.github.com/users/benjaminbrown038/orgs",
"repos_url": "https://api.github.com/users/benjaminbrown038/repos",
"events_url": "https://api.github.com/users/benjaminbrown038/events{/privacy}",
"received_events_url": "https://api.github.com/users/benjaminbrown038/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "benjaminbrown038",
"id": 35114142,
"node_id": "MDQ6VXNlcjM1MTE0MTQy",
"avatar_url": "https://avatars.githubusercontent.com/u/35114142?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/benjaminbrown038",
"html_url": "https://github.com/benjaminbrown038",
"followers_url": "https://api.github.com/users/benjaminbrown038/followers",
"following_url": "https://api.github.com/users/benjaminbrown038/following{/other_user}",
"gists_url": "https://api.github.com/users/benjaminbrown038/gists{/gist_id}",
"starred_url": "https://api.github.com/users/benjaminbrown038/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/benjaminbrown038/subscriptions",
"organizations_url": "https://api.github.com/users/benjaminbrown038/orgs",
"repos_url": "https://api.github.com/users/benjaminbrown038/repos",
"events_url": "https://api.github.com/users/benjaminbrown038/events{/privacy}",
"received_events_url": "https://api.github.com/users/benjaminbrown038/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"`save_to_disk` should indeed expand `~`. Marking it as a \"good first issue\".",
"#self-assign\r\n\r\nFile path to code: \r\n\r\nhttps://github.com/huggingface/datasets/blob/2.13.0/src/datasets/arrow_dataset.py#L1364\r\n\r\n@RmZeta2718 I created a pull request for this issue. ",
"Hello, \r\nIt says `save_to_disk` is deprecated in 2.8.0, so the alternative to this will be `storage_options`? \r\n\r\nhttps://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.save_to_disk",
"@ashikshafi08 I think you misunderstood the warning. The method `save_to_disk` is not deprecated only the optional parameter `fs`.\r\nAlso @benjaminbrown038 as I cannot find your PR I would like to work on this if you don't mind."
] | 2023-03-20T12:02:18 | 2023-07-26T16:18:06 | null | NONE | null | ### Describe the bug
save_to_disk() does not expand `~`
1. `dataset = load_datasets("any dataset")`
2. `dataset.save_to_disk("~/data")`
3. a folder named "~" created in current folder
4. FileNotFoundError is raised, because the expanded path does not exist (`/home/<user>/data`)
related issue https://github.com/huggingface/transformers/issues/10628
### Steps to reproduce the bug
As described above.
### Expected behavior
expanduser correctly
### Environment info
- datasets 2.10.1
- python 3.10 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5651/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5651/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5650 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5650/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5650/comments | https://api.github.com/repos/huggingface/datasets/issues/5650/events | https://github.com/huggingface/datasets/issues/5650 | 1,630,336,919 | I_kwDODunzps5hLPeX | 5,650 | load_dataset can't work correct with my image data | {
"login": "WiNE-iNEFF",
"id": 41611046,
"node_id": "MDQ6VXNlcjQxNjExMDQ2",
"avatar_url": "https://avatars.githubusercontent.com/u/41611046?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/WiNE-iNEFF",
"html_url": "https://github.com/WiNE-iNEFF",
"followers_url": "https://api.github.com/users/WiNE-iNEFF/followers",
"following_url": "https://api.github.com/users/WiNE-iNEFF/following{/other_user}",
"gists_url": "https://api.github.com/users/WiNE-iNEFF/gists{/gist_id}",
"starred_url": "https://api.github.com/users/WiNE-iNEFF/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/WiNE-iNEFF/subscriptions",
"organizations_url": "https://api.github.com/users/WiNE-iNEFF/orgs",
"repos_url": "https://api.github.com/users/WiNE-iNEFF/repos",
"events_url": "https://api.github.com/users/WiNE-iNEFF/events{/privacy}",
"received_events_url": "https://api.github.com/users/WiNE-iNEFF/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Can you post a reproducible code snippet of what you tried to do?\r\n\r\n",
"> Can you post a reproducible code snippet of what you tried to do?\n> \n> \n\n```python\nfrom datasets import load_dataset\n\ndataset = load_dataset(\"my_folder_name\", split=\"train\")\n```",
"hi @WiNE-iNEFF ! can you please also tell a bit more about how your data is structured (directory structure and filenames patterns)?",
"> hi @WiNE-iNEFF ! can you please also tell a bit more about how your data is structured (directory structure and filenames patterns)?\n\nAll file have format .png converted in RGBA. \nIn main folder \"MyData\" contain 4 folder with images. In function load_dataset i use folder \"MyData\"",
"@WiNE-iNEFF I'm sorry there is still not enough information to answer your question :( For now I can only assume that your [filenames contain split names](https://huggingface.co/docs/datasets/repository_structure#splits-and-file-names) which are somehow incorrectly parsed. \r\nWhat would be the output if you omit `split` while loading? Like just\r\n```python\r\nds = load_dataset(\"MyData\")\r\nprint(ds)\r\n```\r\n\r\n",
"> @WiNE-iNEFF I'm sorry there is still not enough information to answer your question :( For now I can only assume that your [filenames contain split names](https://huggingface.co/docs/datasets/repository_structure#splits-and-file-names) which are somehow incorrectly parsed. \n> What would be the output if you omit `split` while loading? Like just\n> ```python\n> ds = load_dataset(\"MyData\")\n> print(ds)\n> ```\n> \n> \n\n```python\nDataset({\n features: ['image', 'label'],\n num_rows: 4\n})\n```",
"@WiNE-iNEFF My only guess is that 4 images in your data have `\"train\"` string in their names (something like `\"train_image_0.png\"`) and others do not and the loader ignores all the files that do not contain split name in filename. If it's true, please try to remove \"train\" from filenames. Or maybe they are inside a directory named \"train\", then the directory should be renamed (unless you want to put only these 4 specific images to the train but apparently you do not).\r\n\r\nIf there is a bug I cannot investigate it unfortunately because I cannot reproduce your case without some data samples. ",
"> @WiNE-iNEFF My only guess is that 4 images in your data have `\"train\"` string in their names (something like `\"train_image_0.png\"`) and others do not and the loader ignores all the files that do not contain split name in filename. If it's true, please try to remove \"train\" from filenames. Or maybe they are inside a directory named \"train\", then the directory should be renamed (unless you want to put only these 4 specific images to the train but apparently you do not).\n> \n> If there is a bug I cannot investigate it unfortunately because I cannot reproduce your case without some data samples. \n\nI checked my files and some of them do have the words train, valid and test in their names, but the number of such images is more than 500, not 4.",
"@WiNE-iNEFF Probably they are named inconsistently so that the correct pattern for which files should correspond to which split cannot be inferred. You can make it clearer to the loader by removing split names from filenames and putting files in separate folder for each split (you can take a look at the [documentation for imagefolder](https://huggingface.co/docs/datasets/image_dataset#imagefolder)):\r\n```\r\n Fuaimeanna2/\r\nโโ test\r\nโย ย โโ label_0\r\nโย ย โย ย โโโ filename_0.jpg\r\nโย ย โย ย โโโ filename_1.jpg\r\nโย ย โย ย โโโ ...\r\nโย ย โโ label_1\r\nโย ย โย ย โโโ ...\r\nโย ย โโ label_2\r\nโย ย โย ย โโโ ...\r\nโย ย โโ label_3\r\nโย ย โโโ ...\r\nโโ train\r\nโย ย โโ label_0\r\nโย ย โย ย โโโ ...\r\nโย ย โโ label_1\r\nโย ย โย ย โโโ ...\r\nโย ย โโ label_2\r\nโย ย โย ย โโโ ...\r\nโย ย โโ label_3\r\nโย ย โโโ ...\r\nโโโ validation\r\n ย ย โโ label_0\r\nย ย โย ย โโโ ...\r\n ย ย โโ label_1\r\nย ย โย ย โโโ ...\r\n ย ย โโ label_2\r\nย ย โย ย โโโ ...\r\n โโ label_3\r\n โโโ ...\r\n```",
"> @WiNE-iNEFF Probably they are named inconsistently so that the correct pattern for which files should correspond to which split cannot be inferred. You can make it clearer to the loader by removing split names from filenames and putting files in separate folder for each split (you can take a look at the [documentation for imagefolder](https://huggingface.co/docs/datasets/image_dataset#imagefolder)):\n> ```\n> Fuaimeanna2/\n> โโ test\n> โย ย โโ label_0\n> โย ย โย ย โโโ filename_0.jpg\n> โย ย โย ย โโโ filename_1.jpg\n> โย ย โย ย โโโ ...\n> โย ย โโ label_1\n> โย ย โย ย โโโ ...\n> โย ย โโ label_2\n> โย ย โย ย โโโ ...\n> โย ย โโ label_3\n> โย ย โโโ ...\n> โโ train\n> โย ย โโ label_0\n> โย ย โย ย โโโ ...\n> โย ย โโ label_1\n> โย ย โย ย โโโ ...\n> โย ย โโ label_2\n> โย ย โย ย โโโ ...\n> โย ย โโ label_3\n> โย ย โโโ ...\n> โโโ validation\n> ย ย โโ label_0\n> ย ย โย ย โโโ ...\n> ย ย โโ label_1\n> ย ย โย ย โโโ ...\n> ย ย โโ label_2\n> ย ย โย ย โโโ ...\n> โโ label_3\n> โโโ ...\n> ```\n\nI have read this documentation more than once. It just wasn't a problem before.",
"Hi,\r\n\r\nYou need to use:\r\n```\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"imagefolder\", split=\"train\", data_dir=\"path_to_your_folder\")\r\n```\r\ninstead of \r\n```\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"my_folder_name\", split=\"train\")\r\n```\r\nTo create an image dataset from your local folders.",
"> Hi,\r\n> \r\n> You need to use:\r\n> \r\n> ```\r\n> from datasets import load_dataset\r\n> \r\n> dataset = load_dataset(\"imagefolder\", split=\"train\", data_dir=\"path_to_your_folder\")\r\n> ```\r\n> \r\n> instead of\r\n> \r\n> ```\r\n> from datasets import load_dataset\r\n> \r\n> dataset = load_dataset(\"my_folder_name\", split=\"train\")\r\n> ```\r\n> \r\n> To create an image dataset from your local folders.\r\n\r\nThank you, but even using the method that you wrote above absolutely nothing changes, especially without using data_dir on my other data everything works fine",
"@WiNE-iNEFF have you tried the suggestion I posted above? with removing split names from filenames and structuring files in folders? \r\n\r\n\r\n> even using the method that you wrote above absolutely nothing changes\r\n\r\nfyi - nothing changed because these two approaches are basically the same. it's just that when you pass your data directory as a dataset name (`load_dataset(\"my_folder_name\"`), not as `data_dir` (`load_dataset(\"imagefolder\", data_dir=\"my_folder_name\"`), `datasets` infers what module to use (`imagefolder` in your case) automatically, by file extensions.",
"Oh I didn't know that! OK but in any case, not sure why the image builder isn't working for @WiNE-iNEFF. But it's hard for us to help if we can't reproduce. I'd just check the structure of the folders, see if the splits are correctly set up, etc.",
"> @WiNE-iNEFF have you tried the suggestion I posted above? with removing split names from filenames and structuring files in folders? \n> \n> \n> > even using the method that you wrote above absolutely nothing changes\n> \n> fyi - nothing changed because these two approaches are basically the same. it's just that when you pass your data directory as a dataset name (`load_dataset(\"my_folder_name\"`), not as `data_dir` (`load_dataset(\"imagefolder\", data_dir=\"my_folder_name\"`), `datasets` infers what module to use (`imagefolder` in your case) automatically, by file extensions.\n\nI'll try to try your method over the next few days, then I'll write it turned out ",
"> @WiNE-iNEFF have you tried the suggestion I posted above? with removing split names from filenames and structuring files in folders? \n> \n> \n> > even using the method that you wrote above absolutely nothing changes\n> \n> fyi - nothing changed because these two approaches are basically the same. it's just that when you pass your data directory as a dataset name (`load_dataset(\"my_folder_name\"`), not as `data_dir` (`load_dataset(\"imagefolder\", data_dir=\"my_folder_name\"`), `datasets` infers what module to use (`imagefolder` in your case) automatically, by file extensions.\n\nI tried creating a `train` folder and put my image folders in it. As a result, all 18,000 images were loaded. ",
"@WiNE-iNEFF great! So to explain what happened according to my assumptions:\r\n\r\nWhen you use a standard packaged loader (like `imagefolder`, `csv`, `jsonl`, and so on) and load your data like `load_dataset(\"my_folder_name\")` or `load_dataset(\"imagefolder\", data_dir=\"my_folder_name\"`, the library searches for patterns to divide files into splits. This is described a bit in [this doc](https://huggingface.co/docs/datasets/v2.10.0/en/repository_structure#splits-and-file-names). And the order to search for patterns is the following:\r\n1. first it checks for [pattern like `data/<split_name>-xxxxx-of-xxxxx`](https://huggingface.co/docs/datasets/v2.10.0/en/repository_structure#custom-split-names) (which allows to pass custom split names)\r\n2. then for directories named as splits (if you have directories named `train`, `test` etc.)\r\n3. then for [splits in filenames](https://huggingface.co/docs/datasets/v2.10.0/en/repository_structure#splits-and-file-names) (like if you have files named `train-image.jpg`, `test_0.jpg`, ...)\r\n4. then if no pattern was found, it treats all files as belonging to a single `train` split\r\n\r\nThe code is [here](https://github.com/huggingface/datasets/blob/main/src/datasets/data_files.py#L215).\r\nSo I assume that in your case, since you didn't have directories for splits (pattern 2), some files that included split keywords (pattern 3) were included and others were ignored as not matching the pattern. And when you added `train` directory, the pattern for directories (pattern 2) was triggered first and everything worked as expected. Everything worked in your previous cases probably because you didn't have split names keywords in filenames, so all the files ended up being a part of a single train split (pattern 4).\r\n\r\nAnother way to mitigate this apart from structuring your data according to the patterns is to explicitly state with files belong to which splits by passing them with `data_files` parameter:\r\n```python\r\nload_dataset(\"my_folder_name\", data_files={\"train\": \"**\"}) # to tell that all files should be included \r\n```\r\n\r\nNow I see that this order should be explained in documentation and also referenced in sections for packaged modules like `imagefolder`, thank you for pointing this out. \r\n\r\n \r\n",
"@NielsRogge @polinaeterna I have a similar problem when reading my dataset. I want to use DETR for object detection, but my data is in YOLO format. With a dataset of 10k images, yolo format involves having 10k labels. As far as I read regarding [COCO format](https://auto.gluon.ai/stable/tutorials/multimodal/object_detection/data_preparation/convert_data_to_coco_format.html), there must be one JSON per split. However, as I post in the [Hugging Face forum](https://discuss.huggingface.co/t/prepare-dataset-from-yolo-format-to-coco-for-detr/34894), when it is read, the number of rows is 1, which does not make sense. \r\nThe instruction to read the train-val-test splits are: \r\n```python\r\nfrom datasets import load_dataset\r\ndata_files = {\r\n\t\"train\": './train_labels.json',\r\n\t\"validation\": './val_labels.json',\r\n\t\"test\": './test_labels.json'\r\n}\r\ndataset = load_dataset(\"json\", data_files=data_files)\r\n```\r\nAn example of the short version of the json file I read, to reproduce my error, is the following: \r\n\r\n``` json\r\n{\r\n \"info\": {},\r\n \"licenses\": [],\r\n \"images\": [\r\n {\r\n \"id\": 1,\r\n \"file_name\": \"aceca_100.mp4frame21.png\",\r\n \"width\": 1280,\r\n \"height\": 720,\r\n \"pixel_values\": null,\r\n \"pixel_mask\": null\r\n },\r\n {\r\n \"id\": 2,\r\n \"file_name\": \"aceca_100.mp4frame24.png\",\r\n \"width\": 1280,\r\n \"height\": 720,\r\n \"pixel_values\": null,\r\n \"pixel_mask\": null\r\n },\r\n {\r\n \"id\": 3,\r\n \"file_name\": \"aceca_100.mp4frame25.png\",\r\n \"width\": 1280,\r\n \"height\": 720,\r\n \"pixel_values\": null,\r\n \"pixel_mask\": null}],\r\n \"annotations\": [\r\n {\r\n \"id\": 1,\r\n \"image_id\": 1,\r\n \"category_id\": 0,\r\n \"bbox\": [0.0, 278.21896388398557, 86.94096523844935, 156.0293445072134],\r\n \"area\": 13565.341816979679,\r\n \"iscrowd\": 0\r\n },\r\n {\r\n \"id\": 2,\r\n \"image_id\": 2,\r\n \"category_id\": 0,\r\n \"bbox\": [149.28851295721816, 297.6359759754418, 34.76802347007475, 98.03908698442889],\r\n \"area\": 3408.625277259324,\r\n \"iscrowd\": 0\r\n },\r\n {\r\n \"id\": 3,\r\n \"image_id\": 3,\r\n \"category_id\": 0,\r\n \"bbox\": [153.3817197549372, 300.168969412891, 31.787555842913775, 89.69583163436312],\r\n \"area\": 2851.2112569539095,\r\n \"iscrowd\": 0\r\n }\r\n ],\r\n \"categories\": [\r\n {\r\n \"id\": 0, \"name\": \"person\"\r\n }\r\n ]\r\n }\r\n```\r\nIf full files required, my email is [email protected]",
"Hi @Alberto1404, to load an object detection dataset it's recommended to make use of the metadata feature as explained [here](https://huggingface.co/docs/datasets/image_dataset#object-detection). ",
"Thank you @NielsRogge! It works!!!",
"You can now refer to https://huggingface.co/docs/datasets/repository_structure to learn about the `datasets`' data files inference, so I'm closing this issue."
] | 2023-03-18T13:59:13 | 2023-07-24T14:13:02 | 2023-07-24T14:13:01 | NONE | null | I have about 20000 images in my folder which divided into 4 folders with class names.
When i use load_dataset("my_folder_name", split="train") this function create dataset in which there are only 4 images, the remaining 19000 images were not added there. What is the problem and did not understand. Tried converting images and the like but absolutely nothing worked | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5650/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5650/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5649 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5649/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5649/comments | https://api.github.com/repos/huggingface/datasets/issues/5649/events | https://github.com/huggingface/datasets/issues/5649 | 1,630,173,460 | I_kwDODunzps5hKnkU | 5,649 | The index column created with .to_sql() is dependent on the batch_size when writing | {
"login": "lsb",
"id": 45281,
"node_id": "MDQ6VXNlcjQ1Mjgx",
"avatar_url": "https://avatars.githubusercontent.com/u/45281?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lsb",
"html_url": "https://github.com/lsb",
"followers_url": "https://api.github.com/users/lsb/followers",
"following_url": "https://api.github.com/users/lsb/following{/other_user}",
"gists_url": "https://api.github.com/users/lsb/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lsb/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lsb/subscriptions",
"organizations_url": "https://api.github.com/users/lsb/orgs",
"repos_url": "https://api.github.com/users/lsb/repos",
"events_url": "https://api.github.com/users/lsb/events{/privacy}",
"received_events_url": "https://api.github.com/users/lsb/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for reporting, @lsb. \r\n\r\nWe are investigating it.\r\n\r\nOn the other hand, please note that in the next `datasets` release, the index will not be created by default (see #5583). If you would like to have it, you will need to explicitly pass `index=True`. ",
"I think this is low enough priority for me to close this as Won't Fix. If I need any primary keys I can generate them beforehand. Feel free to reopen."
] | 2023-03-18T05:25:17 | 2023-06-17T07:01:57 | 2023-06-17T07:01:57 | NONE | null | ### Describe the bug
It seems like the "index" column is designed to be unique? The values are only unique per batch. The SQL index is not a unique index.
This can be a problem, for instance, when building a faiss index on a dataset and then trying to match up ids with a sql export.
### Steps to reproduce the bug
```
from datasets import Dataset
import sqlite3
db = sqlite3.connect(":memory:")
nice_numbers = Dataset.from_dict({"nice_number": range(101,106)})
nice_numbers.to_sql("nice1", db, batch_size=1)
nice_numbers.to_sql("nice2", db, batch_size=2)
print(db.execute("select * from nice1").fetchall()) # [(0, 101), (0, 102), (0, 103), (0, 104), (0, 105)]
print(db.execute("select * from nice2").fetchall()) # [(0, 101), (1, 102), (0, 103), (1, 104), (0, 105)]
```
### Expected behavior
I expected the "index" column to be unique
### Environment info
```
% datasets-cli env
Copy-and-paste the text below in your GitHub issue.
- `datasets` version: 2.10.1
- Platform: macOS-13.2.1-arm64-arm-64bit
- Python version: 3.9.6
- PyArrow version: 7.0.0
- Pandas version: 1.5.2
zsh: segmentation fault datasets-cli env
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5649/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5649/timeline | null | not_planned | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5648 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5648/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5648/comments | https://api.github.com/repos/huggingface/datasets/issues/5648/events | https://github.com/huggingface/datasets/issues/5648 | 1,629,253,719 | I_kwDODunzps5hHHBX | 5,648 | flatten_indices doesn't work with pandas format | {
"login": "alialamiidrissi",
"id": 14365168,
"node_id": "MDQ6VXNlcjE0MzY1MTY4",
"avatar_url": "https://avatars.githubusercontent.com/u/14365168?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alialamiidrissi",
"html_url": "https://github.com/alialamiidrissi",
"followers_url": "https://api.github.com/users/alialamiidrissi/followers",
"following_url": "https://api.github.com/users/alialamiidrissi/following{/other_user}",
"gists_url": "https://api.github.com/users/alialamiidrissi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alialamiidrissi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alialamiidrissi/subscriptions",
"organizations_url": "https://api.github.com/users/alialamiidrissi/orgs",
"repos_url": "https://api.github.com/users/alialamiidrissi/repos",
"events_url": "https://api.github.com/users/alialamiidrissi/events{/privacy}",
"received_events_url": "https://api.github.com/users/alialamiidrissi/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | open | false | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for reporting! This can be fixed by setting the format to `arrow` in `flatten_indices` and restoring the original format after the flattening. I'm working on a PR that reduces the number of the `flatten_indices` calls in our codebase and makes `flatten_indices` a no-op when a dataset does not have an indices mapping, so I'll incorporate the fix in that PR."
] | 2023-03-17T12:44:25 | 2023-03-21T13:12:03 | null | NONE | null | ### Describe the bug
Hi,
I noticed that `flatten_indices` throws an error when the batch format is `pandas`. This is probably due to the fact that flatten_indices uses map internally which doesn't accept dataframes as the transformation function output
### Steps to reproduce the bug
tabular_data = pd.DataFrame(np.random.randn(10,10))
tabular_data = datasets.arrow_dataset.Dataset.from_pandas(tabular_data)
tabular_data.with_format("pandas").select([0,1,2,3]).flatten_indices()
### Expected behavior
No error thrown
### Environment info
- `datasets` version: 2.10.1
- Python version: 3.9.5
- PyArrow version: 11.0.0
- Pandas version: 1.4.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5648/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5648/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5647 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5647/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5647/comments | https://api.github.com/repos/huggingface/datasets/issues/5647/events | https://github.com/huggingface/datasets/issues/5647 | 1,628,225,544 | I_kwDODunzps5hDMAI | 5,647 | Make all print statements optional | {
"login": "gagan3012",
"id": 49101362,
"node_id": "MDQ6VXNlcjQ5MTAxMzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/49101362?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gagan3012",
"html_url": "https://github.com/gagan3012",
"followers_url": "https://api.github.com/users/gagan3012/followers",
"following_url": "https://api.github.com/users/gagan3012/following{/other_user}",
"gists_url": "https://api.github.com/users/gagan3012/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gagan3012/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gagan3012/subscriptions",
"organizations_url": "https://api.github.com/users/gagan3012/orgs",
"repos_url": "https://api.github.com/users/gagan3012/repos",
"events_url": "https://api.github.com/users/gagan3012/events{/privacy}",
"received_events_url": "https://api.github.com/users/gagan3012/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | null | [] | null | [
"related to #5444 ",
"We now log these messages instead of printing them (addressed in #6019), so I'm closing this issue."
] | 2023-03-16T20:30:07 | 2023-07-21T14:20:25 | 2023-07-21T14:20:24 | NONE | null | ### Feature request
Make all print statements optional to speed up the development
### Motivation
Im loading multiple tiny datasets and all the print statements make the loading slower
### Your contribution
I can help contribute | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5647/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5647/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5646 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5646/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5646/comments | https://api.github.com/repos/huggingface/datasets/issues/5646/events | https://github.com/huggingface/datasets/pull/5646 | 1,627,838,762 | PR_kwDODunzps5MOqjj | 5,646 | Allow self as key in `Features` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009980 / 0.011353 (-0.001373) | 0.006643 / 0.011008 (-0.004366) | 0.140722 / 0.038508 (0.102214) | 0.036693 / 0.023109 (0.013584) | 0.430019 / 0.275898 (0.154121) | 0.463218 / 0.323480 (0.139738) | 0.006977 / 0.007986 (-0.001008) | 0.006488 / 0.004328 (0.002160) | 0.099385 / 0.004250 (0.095134) | 0.047160 / 0.037052 (0.010108) | 0.431440 / 0.258489 (0.172951) | 0.500232 / 0.293841 (0.206391) | 0.057968 / 0.128546 (-0.070578) | 0.020197 / 0.075646 (-0.055449) | 0.438269 / 0.419271 (0.018998) | 0.071149 / 0.043533 (0.027617) | 0.428502 / 0.255139 (0.173363) | 0.486861 / 0.283200 (0.203661) | 0.119855 / 0.141683 (-0.021828) | 1.875372 / 1.452155 (0.423218) | 1.955055 / 1.492716 (0.462339) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243468 / 0.018006 (0.225462) | 0.547842 / 0.000490 (0.547352) | 0.004885 / 0.000200 (0.004685) | 0.000144 / 0.000054 (0.000089) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031555 / 0.037411 (-0.005856) | 0.125869 / 0.014526 (0.111343) | 0.137816 / 0.176557 (-0.038741) | 0.206581 / 0.737135 (-0.530555) | 0.142976 / 0.296338 (-0.153362) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.624773 / 0.215209 (0.409564) | 6.154861 / 2.077655 (4.077206) | 2.504586 / 1.504120 (1.000466) | 1.989118 / 1.541195 (0.447923) | 2.092280 / 1.468490 (0.623790) | 1.240108 / 4.584777 (-3.344669) | 5.584893 / 3.745712 (1.839181) | 3.075369 / 5.269862 (-2.194492) | 2.174285 / 4.565676 (-2.391391) | 0.141555 / 0.424275 (-0.282720) | 0.016099 / 0.007607 (0.008492) | 0.720543 / 0.226044 (0.494498) | 7.489000 / 2.268929 (5.220071) | 3.239189 / 55.444624 (-52.205435) | 2.525772 / 6.876477 (-4.350704) | 2.773514 / 2.142072 (0.631441) | 1.410084 / 4.805227 (-3.395143) | 0.259252 / 6.500664 (-6.241412) | 0.082573 / 0.075469 (0.007104) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.458186 / 1.841788 (-0.383602) | 17.503738 / 8.074308 (9.429430) | 20.817682 / 10.191392 (10.626290) | 0.231221 / 0.680424 (-0.449203) | 0.032550 / 0.534201 (-0.501651) | 0.559020 / 0.579283 (-0.020263) | 0.592987 / 0.434364 (0.158623) | 0.602661 / 0.540337 (0.062324) | 0.731912 / 1.386936 (-0.655024) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009543 / 0.011353 (-0.001810) | 0.006953 / 0.011008 (-0.004055) | 0.087651 / 0.038508 (0.049143) | 0.031717 / 0.023109 (0.008608) | 0.437813 / 0.275898 (0.161915) | 0.468448 / 0.323480 (0.144968) | 0.007378 / 0.007986 (-0.000607) | 0.005170 / 0.004328 (0.000842) | 0.102286 / 0.004250 (0.098035) | 0.043643 / 0.037052 (0.006591) | 0.458788 / 0.258489 (0.200299) | 0.519891 / 0.293841 (0.226050) | 0.052875 / 0.128546 (-0.075671) | 0.020518 / 0.075646 (-0.055128) | 0.112675 / 0.419271 (-0.306597) | 0.066390 / 0.043533 (0.022858) | 0.423037 / 0.255139 (0.167898) | 0.420345 / 0.283200 (0.137146) | 0.119221 / 0.141683 (-0.022462) | 1.632244 / 1.452155 (0.180090) | 1.829585 / 1.492716 (0.336869) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242312 / 0.018006 (0.224305) | 0.547592 / 0.000490 (0.547102) | 0.006520 / 0.000200 (0.006320) | 0.000185 / 0.000054 (0.000131) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032204 / 0.037411 (-0.005207) | 0.113320 / 0.014526 (0.098794) | 0.135667 / 0.176557 (-0.040889) | 0.194360 / 0.737135 (-0.542775) | 0.127934 / 0.296338 (-0.168404) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.648134 / 0.215209 (0.432925) | 6.470574 / 2.077655 (4.392920) | 2.799121 / 1.504120 (1.295001) | 2.160450 / 1.541195 (0.619255) | 2.261648 / 1.468490 (0.793158) | 1.244660 / 4.584777 (-3.340117) | 5.694636 / 3.745712 (1.948923) | 5.316191 / 5.269862 (0.046329) | 2.764551 / 4.565676 (-1.801126) | 0.152225 / 0.424275 (-0.272051) | 0.015959 / 0.007607 (0.008351) | 0.833606 / 0.226044 (0.607562) | 8.099765 / 2.268929 (5.830836) | 3.523005 / 55.444624 (-51.921620) | 2.855126 / 6.876477 (-4.021351) | 2.730849 / 2.142072 (0.588776) | 1.434351 / 4.805227 (-3.370876) | 0.251963 / 6.500664 (-6.248701) | 0.085718 / 0.075469 (0.010249) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.722466 / 1.841788 (-0.119322) | 17.846981 / 8.074308 (9.772673) | 21.578684 / 10.191392 (11.387292) | 0.239987 / 0.680424 (-0.440437) | 0.029189 / 0.534201 (-0.505012) | 0.543181 / 0.579283 (-0.036102) | 0.626527 / 0.434364 (0.192163) | 0.614334 / 0.540337 (0.073997) | 0.745934 / 1.386936 (-0.641002) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4c506ad7cd22668f37ec51ff01b7c7f7235b9212 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007395 / 0.011353 (-0.003958) | 0.004965 / 0.011008 (-0.006043) | 0.096376 / 0.038508 (0.057868) | 0.033243 / 0.023109 (0.010134) | 0.299990 / 0.275898 (0.024092) | 0.336287 / 0.323480 (0.012807) | 0.005528 / 0.007986 (-0.002458) | 0.004003 / 0.004328 (-0.000326) | 0.072820 / 0.004250 (0.068569) | 0.042867 / 0.037052 (0.005815) | 0.296719 / 0.258489 (0.038230) | 0.337313 / 0.293841 (0.043472) | 0.036809 / 0.128546 (-0.091738) | 0.012239 / 0.075646 (-0.063407) | 0.332351 / 0.419271 (-0.086921) | 0.050449 / 0.043533 (0.006916) | 0.301483 / 0.255139 (0.046344) | 0.316673 / 0.283200 (0.033474) | 0.102526 / 0.141683 (-0.039157) | 1.415429 / 1.452155 (-0.036726) | 1.544381 / 1.492716 (0.051665) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211158 / 0.018006 (0.193152) | 0.434718 / 0.000490 (0.434228) | 0.003386 / 0.000200 (0.003186) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027945 / 0.037411 (-0.009466) | 0.108743 / 0.014526 (0.094217) | 0.119771 / 0.176557 (-0.056785) | 0.178667 / 0.737135 (-0.558468) | 0.123718 / 0.296338 (-0.172620) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413908 / 0.215209 (0.198699) | 4.136828 / 2.077655 (2.059174) | 1.932547 / 1.504120 (0.428427) | 1.715389 / 1.541195 (0.174194) | 1.791679 / 1.468490 (0.323189) | 0.692715 / 4.584777 (-3.892062) | 3.741807 / 3.745712 (-0.003905) | 2.066274 / 5.269862 (-3.203587) | 1.314106 / 4.565676 (-3.251570) | 0.087191 / 0.424275 (-0.337084) | 0.012866 / 0.007607 (0.005259) | 0.510012 / 0.226044 (0.283968) | 5.116419 / 2.268929 (2.847490) | 2.408562 / 55.444624 (-53.036063) | 2.002044 / 6.876477 (-4.874433) | 2.121868 / 2.142072 (-0.020204) | 0.837141 / 4.805227 (-3.968086) | 0.166596 / 6.500664 (-6.334068) | 0.063190 / 0.075469 (-0.012279) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.204152 / 1.841788 (-0.637636) | 14.739793 / 8.074308 (6.665485) | 14.403469 / 10.191392 (4.212077) | 0.165781 / 0.680424 (-0.514642) | 0.017826 / 0.534201 (-0.516375) | 0.423527 / 0.579283 (-0.155756) | 0.431410 / 0.434364 (-0.002954) | 0.499422 / 0.540337 (-0.040915) | 0.596116 / 1.386936 (-0.790820) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007365 / 0.011353 (-0.003988) | 0.005165 / 0.011008 (-0.005844) | 0.073403 / 0.038508 (0.034895) | 0.032542 / 0.023109 (0.009433) | 0.339304 / 0.275898 (0.063406) | 0.371892 / 0.323480 (0.048412) | 0.005544 / 0.007986 (-0.002442) | 0.004108 / 0.004328 (-0.000221) | 0.073750 / 0.004250 (0.069500) | 0.045613 / 0.037052 (0.008561) | 0.366159 / 0.258489 (0.107670) | 0.389864 / 0.293841 (0.096023) | 0.036006 / 0.128546 (-0.092540) | 0.012402 / 0.075646 (-0.063244) | 0.085137 / 0.419271 (-0.334135) | 0.048485 / 0.043533 (0.004952) | 0.334172 / 0.255139 (0.079033) | 0.353168 / 0.283200 (0.069969) | 0.099393 / 0.141683 (-0.042290) | 1.460584 / 1.452155 (0.008429) | 1.518601 / 1.492716 (0.025885) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227352 / 0.018006 (0.209346) | 0.444211 / 0.000490 (0.443721) | 0.000410 / 0.000200 (0.000210) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029517 / 0.037411 (-0.007894) | 0.115557 / 0.014526 (0.101031) | 0.125855 / 0.176557 (-0.050701) | 0.175214 / 0.737135 (-0.561922) | 0.129324 / 0.296338 (-0.167014) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429783 / 0.215209 (0.214574) | 4.301159 / 2.077655 (2.223504) | 2.084939 / 1.504120 (0.580819) | 1.887781 / 1.541195 (0.346586) | 2.045712 / 1.468490 (0.577222) | 0.693319 / 4.584777 (-3.891458) | 3.788595 / 3.745712 (0.042883) | 2.087080 / 5.269862 (-3.182781) | 1.325247 / 4.565676 (-3.240429) | 0.085919 / 0.424275 (-0.338356) | 0.012710 / 0.007607 (0.005103) | 0.533432 / 0.226044 (0.307387) | 5.339468 / 2.268929 (3.070540) | 2.578351 / 55.444624 (-52.866273) | 2.224905 / 6.876477 (-4.651572) | 2.301064 / 2.142072 (0.158992) | 0.839622 / 4.805227 (-3.965605) | 0.166523 / 6.500664 (-6.334141) | 0.065254 / 0.075469 (-0.010215) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262223 / 1.841788 (-0.579565) | 15.042523 / 8.074308 (6.968215) | 14.542719 / 10.191392 (4.351327) | 0.142230 / 0.680424 (-0.538194) | 0.017610 / 0.534201 (-0.516591) | 0.422357 / 0.579283 (-0.156926) | 0.417785 / 0.434364 (-0.016579) | 0.491990 / 0.540337 (-0.048348) | 0.585835 / 1.386936 (-0.801101) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c2fcedd2a561fe6f5b6972ad18bfef722e1d2c77 \"CML watermark\")\n"
] | 2023-03-16T16:17:03 | 2023-03-16T17:21:58 | 2023-03-16T17:14:50 | CONTRIBUTOR | null | Fix #5641 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5646/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5646/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5646",
"html_url": "https://github.com/huggingface/datasets/pull/5646",
"diff_url": "https://github.com/huggingface/datasets/pull/5646.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5646.patch",
"merged_at": "2023-03-16T17:14:50"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5645 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5645/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5645/comments | https://api.github.com/repos/huggingface/datasets/issues/5645/events | https://github.com/huggingface/datasets/issues/5645 | 1,627,108,278 | I_kwDODunzps5g-7O2 | 5,645 | Datasets map and select(range()) is giving dill error | {
"login": "Tanya-11",
"id": 90728105,
"node_id": "MDQ6VXNlcjkwNzI4MTA1",
"avatar_url": "https://avatars.githubusercontent.com/u/90728105?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Tanya-11",
"html_url": "https://github.com/Tanya-11",
"followers_url": "https://api.github.com/users/Tanya-11/followers",
"following_url": "https://api.github.com/users/Tanya-11/following{/other_user}",
"gists_url": "https://api.github.com/users/Tanya-11/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Tanya-11/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Tanya-11/subscriptions",
"organizations_url": "https://api.github.com/users/Tanya-11/orgs",
"repos_url": "https://api.github.com/users/Tanya-11/repos",
"events_url": "https://api.github.com/users/Tanya-11/events{/privacy}",
"received_events_url": "https://api.github.com/users/Tanya-11/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"It looks like an error that we observed once in https://github.com/huggingface/datasets/pull/5166\r\n\r\nCan you try to update `datasets` ?\r\n\r\n```\r\npip install -U datasets\r\n```\r\n\r\nif it doesn't work, can you make sure you don't have packages installed that may modify `dill`'s behavior, such as `apache-beam` ?",
"@lhoestq That fixed the problem, Thanks :)"
] | 2023-03-16T10:01:28 | 2023-03-17T04:24:51 | 2023-03-17T04:24:51 | NONE | null | ### Describe the bug
I'm using Huggingface Datasets library to load the dataset in google colab
When I do,
> data = train_dataset.select(range(10))
or
> train_datasets = train_dataset.map(
> process_data_to_model_inputs,
> batched=True,
> batch_size=batch_size,
> remove_columns=["article", "abstract"],
> )
I get following error: `module 'dill._dill' has no attribute 'log'`
I've tried downgrading the dill version from latest to 0.2.8, but no luck.
Stack trace:
> ---------------------------------------------------------------------------
> ModuleNotFoundError Traceback (most recent call last)
> /usr/local/lib/python3.9/dist-packages/datasets/utils/py_utils.py in _no_cache_fields(obj)
> 367 try:
> --> 368 import transformers as tr
> 369
>
> ModuleNotFoundError: No module named 'transformers'
>
> During handling of the above exception, another exception occurred:
>
> AttributeError Traceback (most recent call last)
> 17 frames
> <ipython-input-13-dd14813880a6> in <module>
> ----> 1 test = train_dataset.select(range(10))
>
> /usr/local/lib/python3.9/dist-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs)
> 155 }
> 156 # apply actual function
> --> 157 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
> 158 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
> 159 # re-apply format to the output
>
> /usr/local/lib/python3.9/dist-packages/datasets/fingerprint.py in wrapper(*args, **kwargs)
> 155 if kwargs.get(fingerprint_name) is None:
> 156 kwargs_for_fingerprint["fingerprint_name"] = fingerprint_name
> --> 157 kwargs[fingerprint_name] = update_fingerprint(
> 158 self._fingerprint, transform, kwargs_for_fingerprint
> 159 )
>
> /usr/local/lib/python3.9/dist-packages/datasets/fingerprint.py in update_fingerprint(fingerprint, transform, transform_args)
> 103 for key in sorted(transform_args):
> 104 hasher.update(key)
> --> 105 hasher.update(transform_args[key])
> 106 return hasher.hexdigest()
> 107
>
> /usr/local/lib/python3.9/dist-packages/datasets/fingerprint.py in update(self, value)
> 55 def update(self, value):
> 56 self.m.update(f"=={type(value)}==".encode("utf8"))
> ---> 57 self.m.update(self.hash(value).encode("utf-8"))
> 58
> 59 def hexdigest(self):
>
> /usr/local/lib/python3.9/dist-packages/datasets/fingerprint.py in hash(cls, value)
> 51 return cls.dispatch[type(value)](cls, value)
> 52 else:
> ---> 53 return cls.hash_default(value)
> 54
> 55 def update(self, value):
>
> /usr/local/lib/python3.9/dist-packages/datasets/fingerprint.py in hash_default(cls, value)
> 44 @classmethod
> 45 def hash_default(cls, value):
> ---> 46 return cls.hash_bytes(dumps(value))
> 47
> 48 @classmethod
>
> /usr/local/lib/python3.9/dist-packages/datasets/utils/py_utils.py in dumps(obj)
> 387 file = StringIO()
> 388 with _no_cache_fields(obj):
> --> 389 dump(obj, file)
> 390 return file.getvalue()
> 391
>
> /usr/local/lib/python3.9/dist-packages/datasets/utils/py_utils.py in dump(obj, file)
> 359 def dump(obj, file):
> 360 """pickle an object to a file"""
> --> 361 Pickler(file, recurse=True).dump(obj)
> 362 return
> 363
>
> /usr/local/lib/python3.9/dist-packages/dill/_dill.py in dump(self, obj)
> 392 return
> 393
> --> 394 def load_session(filename='/tmp/session.pkl', main=None):
> 395 """update the __main__ module with the state from the session file"""
> 396 if main is None: main = _main_module
>
> /usr/lib/python3.9/pickle.py in dump(self, obj)
> 485 if self.proto >= 4:
> 486 self.framer.start_framing()
> --> 487 self.save(obj)
> 488 self.write(STOP)
> 489 self.framer.end_framing()
>
> /usr/local/lib/python3.9/dist-packages/dill/_dill.py in save(self, obj, save_persistent_id)
> 386 pickler._byref = False # disable pickling by name reference
> 387 pickler._recurse = False # disable pickling recursion for globals
> --> 388 pickler._session = True # is best indicator of when pickling a session
> 389 pickler.dump(main)
> 390 finally:
>
> /usr/lib/python3.9/pickle.py in save(self, obj, save_persistent_id)
> 558 f = self.dispatch.get(t)
> 559 if f is not None:
> --> 560 f(self, obj) # Call unbound method with explicit self
> 561 return
> 562
>
> /usr/local/lib/python3.9/dist-packages/dill/_dill.py in save_singleton(pickler, obj)
>
> /usr/lib/python3.9/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj)
> 689 write(NEWOBJ)
> 690 else:
> --> 691 save(func)
> 692 save(args)
> 693 write(REDUCE)
>
> /usr/local/lib/python3.9/dist-packages/dill/_dill.py in save(self, obj, save_persistent_id)
> 386 pickler._byref = False # disable pickling by name reference
> 387 pickler._recurse = False # disable pickling recursion for globals
> --> 388 pickler._session = True # is best indicator of when pickling a session
> 389 pickler.dump(main)
> 390 finally:
>
> /usr/lib/python3.9/pickle.py in save(self, obj, save_persistent_id)
> 558 f = self.dispatch.get(t)
> 559 if f is not None:
> --> 560 f(self, obj) # Call unbound method with explicit self
> 561 return
> 562
>
> /usr/local/lib/python3.9/dist-packages/datasets/utils/py_utils.py in save_function(pickler, obj)
> 583 dill._dill.log.info("# F1")
> 584 else:
> --> 585 dill._dill.log.info("F2: %s" % obj)
> 586 name = getattr(obj, "__qualname__", getattr(obj, "__name__", None))
> 587 dill._dill.StockPickler.save_global(pickler, obj, name=name)
>
> AttributeError: module 'dill._dill' has no attribute 'log'
### Steps to reproduce the bug
After loading the dataset(eg: https://huggingface.co/datasets/scientific_papers) in google colab
do either
> data = train_dataset.select(range(10))
or
> train_datasets = train_dataset.map(
> process_data_to_model_inputs,
> batched=True,
> batch_size=batch_size,
> remove_columns=["article", "abstract"],
> )
### Expected behavior
The map and select function should work
### Environment info
dataset: https://huggingface.co/datasets/scientific_papers
dill = 0.3.6
python= 3.9.16
transformer = 4.2.0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5645/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5645/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5644 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5644/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5644/comments | https://api.github.com/repos/huggingface/datasets/issues/5644/events | https://github.com/huggingface/datasets/pull/5644 | 1,626,204,046 | PR_kwDODunzps5MJHUi | 5,644 | Allow direct cast from binary to Audio/Image | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008337 / 0.011353 (-0.003016) | 0.005588 / 0.011008 (-0.005421) | 0.110259 / 0.038508 (0.071751) | 0.038928 / 0.023109 (0.015819) | 0.350441 / 0.275898 (0.074543) | 0.378473 / 0.323480 (0.054993) | 0.006369 / 0.007986 (-0.001616) | 0.005730 / 0.004328 (0.001401) | 0.083042 / 0.004250 (0.078792) | 0.048686 / 0.037052 (0.011634) | 0.367561 / 0.258489 (0.109072) | 0.398073 / 0.293841 (0.104232) | 0.043247 / 0.128546 (-0.085299) | 0.013862 / 0.075646 (-0.061785) | 0.386745 / 0.419271 (-0.032527) | 0.060107 / 0.043533 (0.016574) | 0.345450 / 0.255139 (0.090311) | 0.371269 / 0.283200 (0.088069) | 0.117508 / 0.141683 (-0.024175) | 1.689345 / 1.452155 (0.237191) | 1.777119 / 1.492716 (0.284402) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248248 / 0.018006 (0.230242) | 0.505200 / 0.000490 (0.504710) | 0.015354 / 0.000200 (0.015155) | 0.000794 / 0.000054 (0.000740) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030179 / 0.037411 (-0.007232) | 0.118583 / 0.014526 (0.104057) | 0.131546 / 0.176557 (-0.045010) | 0.196173 / 0.737135 (-0.540962) | 0.140532 / 0.296338 (-0.155807) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.470733 / 0.215209 (0.255524) | 4.758868 / 2.077655 (2.681213) | 2.246731 / 1.504120 (0.742611) | 1.995232 / 1.541195 (0.454037) | 2.057596 / 1.468490 (0.589106) | 0.819227 / 4.584777 (-3.765550) | 4.472093 / 3.745712 (0.726381) | 2.428154 / 5.269862 (-2.841708) | 1.748023 / 4.565676 (-2.817654) | 0.101965 / 0.424275 (-0.322310) | 0.014706 / 0.007607 (0.007098) | 0.600593 / 0.226044 (0.374548) | 5.869565 / 2.268929 (3.600637) | 2.764890 / 55.444624 (-52.679735) | 2.332112 / 6.876477 (-4.544364) | 2.486190 / 2.142072 (0.344118) | 0.979123 / 4.805227 (-3.826104) | 0.199543 / 6.500664 (-6.301121) | 0.075906 / 0.075469 (0.000436) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.397694 / 1.841788 (-0.444094) | 16.910500 / 8.074308 (8.836192) | 16.174131 / 10.191392 (5.982739) | 0.173975 / 0.680424 (-0.506449) | 0.021403 / 0.534201 (-0.512798) | 0.496187 / 0.579283 (-0.083096) | 0.487369 / 0.434364 (0.053005) | 0.565924 / 0.540337 (0.025587) | 0.684965 / 1.386936 (-0.701971) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008253 / 0.011353 (-0.003100) | 0.005745 / 0.011008 (-0.005263) | 0.085848 / 0.038508 (0.047340) | 0.038753 / 0.023109 (0.015644) | 0.401278 / 0.275898 (0.125379) | 0.433132 / 0.323480 (0.109652) | 0.006112 / 0.007986 (-0.001874) | 0.005973 / 0.004328 (0.001644) | 0.085339 / 0.004250 (0.081088) | 0.053297 / 0.037052 (0.016244) | 0.400265 / 0.258489 (0.141776) | 0.455155 / 0.293841 (0.161314) | 0.043116 / 0.128546 (-0.085430) | 0.013957 / 0.075646 (-0.061689) | 0.099507 / 0.419271 (-0.319764) | 0.058858 / 0.043533 (0.015325) | 0.398030 / 0.255139 (0.142891) | 0.418171 / 0.283200 (0.134971) | 0.114392 / 0.141683 (-0.027291) | 1.683102 / 1.452155 (0.230947) | 1.801427 / 1.492716 (0.308711) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242271 / 0.018006 (0.224265) | 0.494920 / 0.000490 (0.494430) | 0.007328 / 0.000200 (0.007128) | 0.000144 / 0.000054 (0.000090) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034061 / 0.037411 (-0.003351) | 0.146417 / 0.014526 (0.131891) | 0.161079 / 0.176557 (-0.015477) | 0.213999 / 0.737135 (-0.523137) | 0.166704 / 0.296338 (-0.129634) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.491214 / 0.215209 (0.276005) | 4.846946 / 2.077655 (2.769291) | 2.352595 / 1.504120 (0.848475) | 2.114055 / 1.541195 (0.572860) | 2.213537 / 1.468490 (0.745047) | 0.799625 / 4.584777 (-3.785152) | 4.440519 / 3.745712 (0.694807) | 4.476103 / 5.269862 (-0.793758) | 2.249384 / 4.565676 (-2.316292) | 0.098807 / 0.424275 (-0.325468) | 0.014463 / 0.007607 (0.006856) | 0.611793 / 0.226044 (0.385748) | 6.045710 / 2.268929 (3.776782) | 2.865957 / 55.444624 (-52.578667) | 2.454052 / 6.876477 (-4.422425) | 2.606153 / 2.142072 (0.464080) | 0.969057 / 4.805227 (-3.836170) | 0.198499 / 6.500664 (-6.302166) | 0.077012 / 0.075469 (0.001543) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.497020 / 1.841788 (-0.344767) | 17.834277 / 8.074308 (9.759969) | 16.413792 / 10.191392 (6.222400) | 0.201979 / 0.680424 (-0.478445) | 0.020627 / 0.534201 (-0.513574) | 0.499767 / 0.579283 (-0.079516) | 0.496982 / 0.434364 (0.062618) | 0.579554 / 0.540337 (0.039216) | 0.693287 / 1.386936 (-0.693649) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a1a3fee942ae159ff6cfe6a23b343605e7e12f55 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007461 / 0.011353 (-0.003892) | 0.005341 / 0.011008 (-0.005668) | 0.099252 / 0.038508 (0.060744) | 0.034723 / 0.023109 (0.011614) | 0.300980 / 0.275898 (0.025082) | 0.353860 / 0.323480 (0.030380) | 0.006100 / 0.007986 (-0.001885) | 0.004149 / 0.004328 (-0.000180) | 0.074765 / 0.004250 (0.070514) | 0.052226 / 0.037052 (0.015174) | 0.305098 / 0.258489 (0.046609) | 0.357445 / 0.293841 (0.063604) | 0.036129 / 0.128546 (-0.092417) | 0.012482 / 0.075646 (-0.063165) | 0.333321 / 0.419271 (-0.085951) | 0.050489 / 0.043533 (0.006956) | 0.294728 / 0.255139 (0.039589) | 0.322722 / 0.283200 (0.039523) | 0.101226 / 0.141683 (-0.040456) | 1.436787 / 1.452155 (-0.015367) | 1.515784 / 1.492716 (0.023068) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.291836 / 0.018006 (0.273830) | 0.550735 / 0.000490 (0.550245) | 0.003828 / 0.000200 (0.003628) | 0.000113 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028490 / 0.037411 (-0.008922) | 0.109543 / 0.014526 (0.095017) | 0.119451 / 0.176557 (-0.057105) | 0.176721 / 0.737135 (-0.560415) | 0.126711 / 0.296338 (-0.169628) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418863 / 0.215209 (0.203654) | 4.179167 / 2.077655 (2.101512) | 1.965126 / 1.504120 (0.461006) | 1.775544 / 1.541195 (0.234349) | 1.882667 / 1.468490 (0.414177) | 0.709201 / 4.584777 (-3.875576) | 3.754780 / 3.745712 (0.009068) | 2.175324 / 5.269862 (-3.094538) | 1.477454 / 4.565676 (-3.088223) | 0.085527 / 0.424275 (-0.338748) | 0.012685 / 0.007607 (0.005078) | 0.514276 / 0.226044 (0.288231) | 5.140518 / 2.268929 (2.871589) | 2.436011 / 55.444624 (-53.008614) | 2.114355 / 6.876477 (-4.762122) | 2.278893 / 2.142072 (0.136821) | 0.847825 / 4.805227 (-3.957402) | 0.169579 / 6.500664 (-6.331086) | 0.065306 / 0.075469 (-0.010163) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.190376 / 1.841788 (-0.651411) | 14.756581 / 8.074308 (6.682272) | 14.622610 / 10.191392 (4.431218) | 0.168186 / 0.680424 (-0.512238) | 0.017527 / 0.534201 (-0.516674) | 0.427808 / 0.579283 (-0.151475) | 0.437278 / 0.434364 (0.002914) | 0.509242 / 0.540337 (-0.031095) | 0.602500 / 1.386936 (-0.784436) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007331 / 0.011353 (-0.004022) | 0.005703 / 0.011008 (-0.005305) | 0.074992 / 0.038508 (0.036484) | 0.034069 / 0.023109 (0.010960) | 0.343513 / 0.275898 (0.067615) | 0.369061 / 0.323480 (0.045582) | 0.006034 / 0.007986 (-0.001951) | 0.004344 / 0.004328 (0.000016) | 0.074678 / 0.004250 (0.070428) | 0.052262 / 0.037052 (0.015210) | 0.364758 / 0.258489 (0.106269) | 0.401130 / 0.293841 (0.107289) | 0.037635 / 0.128546 (-0.090912) | 0.012599 / 0.075646 (-0.063047) | 0.086935 / 0.419271 (-0.332337) | 0.058161 / 0.043533 (0.014628) | 0.338727 / 0.255139 (0.083589) | 0.355957 / 0.283200 (0.072757) | 0.111607 / 0.141683 (-0.030076) | 1.454357 / 1.452155 (0.002202) | 1.591529 / 1.492716 (0.098813) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284379 / 0.018006 (0.266373) | 0.550720 / 0.000490 (0.550230) | 0.002868 / 0.000200 (0.002668) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028876 / 0.037411 (-0.008535) | 0.110892 / 0.014526 (0.096366) | 0.122519 / 0.176557 (-0.054038) | 0.169774 / 0.737135 (-0.567361) | 0.129381 / 0.296338 (-0.166957) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429181 / 0.215209 (0.213972) | 4.251016 / 2.077655 (2.173361) | 2.056778 / 1.504120 (0.552658) | 1.860458 / 1.541195 (0.319264) | 1.958923 / 1.468490 (0.490432) | 0.712667 / 4.584777 (-3.872110) | 3.856910 / 3.745712 (0.111198) | 3.374535 / 5.269862 (-1.895327) | 1.846744 / 4.565676 (-2.718932) | 0.087238 / 0.424275 (-0.337037) | 0.012718 / 0.007607 (0.005111) | 0.524654 / 0.226044 (0.298609) | 5.209756 / 2.268929 (2.940827) | 2.494882 / 55.444624 (-52.949743) | 2.201150 / 6.876477 (-4.675327) | 2.274189 / 2.142072 (0.132117) | 0.844728 / 4.805227 (-3.960499) | 0.167467 / 6.500664 (-6.333197) | 0.064018 / 0.075469 (-0.011451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.273284 / 1.841788 (-0.568503) | 15.104413 / 8.074308 (7.030105) | 15.134025 / 10.191392 (4.942633) | 0.147568 / 0.680424 (-0.532856) | 0.017429 / 0.534201 (-0.516772) | 0.422052 / 0.579283 (-0.157231) | 0.425786 / 0.434364 (-0.008578) | 0.491753 / 0.540337 (-0.048584) | 0.585091 / 1.386936 (-0.801845) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f3d26e74898e0a9dc0d78490104e2e173269ef5b \"CML watermark\")\n"
] | 2023-03-15T20:02:54 | 2023-03-16T14:20:44 | 2023-03-16T14:12:55 | CONTRIBUTOR | null | To address https://github.com/huggingface/datasets/discussions/5593.
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5644/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5644/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5644",
"html_url": "https://github.com/huggingface/datasets/pull/5644",
"diff_url": "https://github.com/huggingface/datasets/pull/5644.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5644.patch",
"merged_at": "2023-03-16T14:12:55"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5643 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5643/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5643/comments | https://api.github.com/repos/huggingface/datasets/issues/5643/events | https://github.com/huggingface/datasets/pull/5643 | 1,626,160,220 | PR_kwDODunzps5MI9zO | 5,643 | Support PyArrow arrays as column values in `from_dict` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006665 / 0.011353 (-0.004688) | 0.004842 / 0.011008 (-0.006166) | 0.097802 / 0.038508 (0.059294) | 0.032292 / 0.023109 (0.009182) | 0.327522 / 0.275898 (0.051624) | 0.351851 / 0.323480 (0.028371) | 0.005197 / 0.007986 (-0.002789) | 0.003781 / 0.004328 (-0.000547) | 0.073213 / 0.004250 (0.068963) | 0.045819 / 0.037052 (0.008767) | 0.331323 / 0.258489 (0.072834) | 0.376978 / 0.293841 (0.083137) | 0.035014 / 0.128546 (-0.093532) | 0.011853 / 0.075646 (-0.063793) | 0.344031 / 0.419271 (-0.075240) | 0.049094 / 0.043533 (0.005561) | 0.327054 / 0.255139 (0.071915) | 0.349053 / 0.283200 (0.065853) | 0.095413 / 0.141683 (-0.046269) | 1.451593 / 1.452155 (-0.000562) | 1.505568 / 1.492716 (0.012851) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211624 / 0.018006 (0.193618) | 0.437569 / 0.000490 (0.437079) | 0.003775 / 0.000200 (0.003575) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025915 / 0.037411 (-0.011496) | 0.104085 / 0.014526 (0.089559) | 0.111064 / 0.176557 (-0.065493) | 0.167316 / 0.737135 (-0.569819) | 0.117255 / 0.296338 (-0.179084) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424241 / 0.215209 (0.209032) | 4.251365 / 2.077655 (2.173710) | 2.074036 / 1.504120 (0.569916) | 1.858022 / 1.541195 (0.316828) | 1.819929 / 1.468490 (0.351439) | 0.704153 / 4.584777 (-3.880624) | 3.750506 / 3.745712 (0.004794) | 3.149836 / 5.269862 (-2.120026) | 1.729540 / 4.565676 (-2.836137) | 0.087287 / 0.424275 (-0.336988) | 0.012304 / 0.007607 (0.004697) | 0.513811 / 0.226044 (0.287767) | 5.129427 / 2.268929 (2.860498) | 2.489253 / 55.444624 (-52.955371) | 2.122746 / 6.876477 (-4.753730) | 2.208528 / 2.142072 (0.066456) | 0.843386 / 4.805227 (-3.961841) | 0.169320 / 6.500664 (-6.331344) | 0.064085 / 0.075469 (-0.011384) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.184361 / 1.841788 (-0.657427) | 14.013478 / 8.074308 (5.939170) | 13.936774 / 10.191392 (3.745382) | 0.138009 / 0.680424 (-0.542415) | 0.017192 / 0.534201 (-0.517009) | 0.420938 / 0.579283 (-0.158345) | 0.413390 / 0.434364 (-0.020974) | 0.500244 / 0.540337 (-0.040094) | 0.582499 / 1.386936 (-0.804437) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006709 / 0.011353 (-0.004643) | 0.004847 / 0.011008 (-0.006161) | 0.074740 / 0.038508 (0.036232) | 0.032126 / 0.023109 (0.009017) | 0.343248 / 0.275898 (0.067350) | 0.376822 / 0.323480 (0.053342) | 0.005547 / 0.007986 (-0.002439) | 0.005080 / 0.004328 (0.000752) | 0.074634 / 0.004250 (0.070384) | 0.044735 / 0.037052 (0.007682) | 0.357895 / 0.258489 (0.099406) | 0.401150 / 0.293841 (0.107310) | 0.035485 / 0.128546 (-0.093061) | 0.011978 / 0.075646 (-0.063668) | 0.087567 / 0.419271 (-0.331704) | 0.050233 / 0.043533 (0.006701) | 0.337476 / 0.255139 (0.082337) | 0.385064 / 0.283200 (0.101865) | 0.102733 / 0.141683 (-0.038950) | 1.456238 / 1.452155 (0.004083) | 1.539468 / 1.492716 (0.046752) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203156 / 0.018006 (0.185149) | 0.448898 / 0.000490 (0.448408) | 0.002843 / 0.000200 (0.002644) | 0.000222 / 0.000054 (0.000168) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027836 / 0.037411 (-0.009576) | 0.109889 / 0.014526 (0.095364) | 0.119378 / 0.176557 (-0.057179) | 0.171208 / 0.737135 (-0.565927) | 0.124240 / 0.296338 (-0.172098) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425374 / 0.215209 (0.210165) | 4.252994 / 2.077655 (2.175339) | 2.006410 / 1.504120 (0.502290) | 1.812821 / 1.541195 (0.271626) | 1.857618 / 1.468490 (0.389128) | 0.714564 / 4.584777 (-3.870213) | 3.803040 / 3.745712 (0.057328) | 2.075452 / 5.269862 (-3.194410) | 1.344868 / 4.565676 (-3.220809) | 0.088705 / 0.424275 (-0.335570) | 0.012481 / 0.007607 (0.004874) | 0.528022 / 0.226044 (0.301977) | 5.268878 / 2.268929 (2.999949) | 2.467858 / 55.444624 (-52.976767) | 2.138681 / 6.876477 (-4.737796) | 2.134928 / 2.142072 (-0.007145) | 0.851518 / 4.805227 (-3.953709) | 0.175085 / 6.500664 (-6.325579) | 0.063555 / 0.075469 (-0.011914) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.265788 / 1.841788 (-0.576000) | 14.683444 / 8.074308 (6.609136) | 14.055848 / 10.191392 (3.864456) | 0.145260 / 0.680424 (-0.535164) | 0.017064 / 0.534201 (-0.517137) | 0.424836 / 0.579283 (-0.154447) | 0.418345 / 0.434364 (-0.016019) | 0.491408 / 0.540337 (-0.048930) | 0.594387 / 1.386936 (-0.792549) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#10c3f32c228cc7011ce456498942e6a2a5dc3086 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006870 / 0.011353 (-0.004483) | 0.004602 / 0.011008 (-0.006406) | 0.100075 / 0.038508 (0.061567) | 0.028720 / 0.023109 (0.005611) | 0.304212 / 0.275898 (0.028314) | 0.348423 / 0.323480 (0.024943) | 0.005266 / 0.007986 (-0.002720) | 0.003473 / 0.004328 (-0.000855) | 0.077563 / 0.004250 (0.073313) | 0.040066 / 0.037052 (0.003013) | 0.304039 / 0.258489 (0.045550) | 0.348721 / 0.293841 (0.054881) | 0.032127 / 0.128546 (-0.096419) | 0.011583 / 0.075646 (-0.064063) | 0.326853 / 0.419271 (-0.092418) | 0.043158 / 0.043533 (-0.000375) | 0.310111 / 0.255139 (0.054973) | 0.332869 / 0.283200 (0.049670) | 0.088384 / 0.141683 (-0.053299) | 1.509245 / 1.452155 (0.057091) | 1.575393 / 1.492716 (0.082677) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212839 / 0.018006 (0.194833) | 0.431407 / 0.000490 (0.430918) | 0.002639 / 0.000200 (0.002439) | 0.000076 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024945 / 0.037411 (-0.012466) | 0.101312 / 0.014526 (0.086787) | 0.107873 / 0.176557 (-0.068683) | 0.169579 / 0.737135 (-0.567556) | 0.109922 / 0.296338 (-0.186417) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422091 / 0.215209 (0.206882) | 4.227174 / 2.077655 (2.149519) | 1.957964 / 1.504120 (0.453844) | 1.812076 / 1.541195 (0.270882) | 1.966666 / 1.468490 (0.498176) | 0.698710 / 4.584777 (-3.886067) | 3.431824 / 3.745712 (-0.313888) | 1.898646 / 5.269862 (-3.371215) | 1.172096 / 4.565676 (-3.393581) | 0.083383 / 0.424275 (-0.340892) | 0.012793 / 0.007607 (0.005186) | 0.522501 / 0.226044 (0.296457) | 5.240049 / 2.268929 (2.971121) | 2.349286 / 55.444624 (-53.095338) | 2.051117 / 6.876477 (-4.825360) | 2.255652 / 2.142072 (0.113580) | 0.813668 / 4.805227 (-3.991560) | 0.153770 / 6.500664 (-6.346894) | 0.068323 / 0.075469 (-0.007146) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197204 / 1.841788 (-0.644584) | 14.146212 / 8.074308 (6.071904) | 14.469765 / 10.191392 (4.278373) | 0.130024 / 0.680424 (-0.550400) | 0.016858 / 0.534201 (-0.517343) | 0.382949 / 0.579283 (-0.196334) | 0.393414 / 0.434364 (-0.040950) | 0.447910 / 0.540337 (-0.092427) | 0.529842 / 1.386936 (-0.857094) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006903 / 0.011353 (-0.004450) | 0.004695 / 0.011008 (-0.006313) | 0.077457 / 0.038508 (0.038949) | 0.028624 / 0.023109 (0.005514) | 0.340767 / 0.275898 (0.064869) | 0.378811 / 0.323480 (0.055331) | 0.005996 / 0.007986 (-0.001990) | 0.003481 / 0.004328 (-0.000848) | 0.076284 / 0.004250 (0.072034) | 0.042564 / 0.037052 (0.005511) | 0.340908 / 0.258489 (0.082419) | 0.384952 / 0.293841 (0.091111) | 0.032057 / 0.128546 (-0.096489) | 0.011697 / 0.075646 (-0.063949) | 0.085941 / 0.419271 (-0.333331) | 0.042464 / 0.043533 (-0.001069) | 0.339309 / 0.255139 (0.084170) | 0.368105 / 0.283200 (0.084905) | 0.093382 / 0.141683 (-0.048301) | 1.467220 / 1.452155 (0.015065) | 1.563105 / 1.492716 (0.070389) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260631 / 0.018006 (0.242625) | 0.418155 / 0.000490 (0.417665) | 0.009539 / 0.000200 (0.009339) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025494 / 0.037411 (-0.011917) | 0.106034 / 0.014526 (0.091508) | 0.109878 / 0.176557 (-0.066678) | 0.160754 / 0.737135 (-0.576382) | 0.113226 / 0.296338 (-0.183112) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442989 / 0.215209 (0.227780) | 4.447040 / 2.077655 (2.369385) | 2.082529 / 1.504120 (0.578409) | 1.876952 / 1.541195 (0.335757) | 1.968341 / 1.468490 (0.499851) | 0.704317 / 4.584777 (-3.880460) | 3.466190 / 3.745712 (-0.279523) | 1.924954 / 5.269862 (-3.344908) | 1.199763 / 4.565676 (-3.365913) | 0.084320 / 0.424275 (-0.339955) | 0.012956 / 0.007607 (0.005349) | 0.538905 / 0.226044 (0.312861) | 5.426593 / 2.268929 (3.157665) | 2.509287 / 55.444624 (-52.935338) | 2.174829 / 6.876477 (-4.701648) | 2.239214 / 2.142072 (0.097141) | 0.810031 / 4.805227 (-3.995196) | 0.153534 / 6.500664 (-6.347130) | 0.069578 / 0.075469 (-0.005891) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.294068 / 1.841788 (-0.547720) | 14.601899 / 8.074308 (6.527591) | 14.469282 / 10.191392 (4.277890) | 0.130024 / 0.680424 (-0.550400) | 0.016895 / 0.534201 (-0.517306) | 0.382583 / 0.579283 (-0.196700) | 0.388938 / 0.434364 (-0.045426) | 0.448416 / 0.540337 (-0.091922) | 0.533261 / 1.386936 (-0.853675) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7b2af47647152d39a3acade256da898cb396e4d9 \"CML watermark\")\n"
] | 2023-03-15T19:32:40 | 2023-03-16T17:23:06 | 2023-03-16T17:15:40 | CONTRIBUTOR | null | For consistency with `pa.Table.from_pydict`, which supports both Python lists and PyArrow arrays as column values.
"Fixes" https://discuss.huggingface.co/t/pyarrow-lib-floatarray-did-not-recognize-python-value-type-when-inferring-an-arrow-data-type/33417 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5643/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5643/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5643",
"html_url": "https://github.com/huggingface/datasets/pull/5643",
"diff_url": "https://github.com/huggingface/datasets/pull/5643.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5643.patch",
"merged_at": "2023-03-16T17:15:39"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5642 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5642/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5642/comments | https://api.github.com/repos/huggingface/datasets/issues/5642/events | https://github.com/huggingface/datasets/pull/5642 | 1,626,043,177 | PR_kwDODunzps5MIjw9 | 5,642 | Bump hfh to 0.11.0 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006334 / 0.011353 (-0.005018) | 0.004447 / 0.011008 (-0.006561) | 0.099287 / 0.038508 (0.060779) | 0.027426 / 0.023109 (0.004317) | 0.322638 / 0.275898 (0.046740) | 0.370501 / 0.323480 (0.047021) | 0.004775 / 0.007986 (-0.003210) | 0.003289 / 0.004328 (-0.001040) | 0.076531 / 0.004250 (0.072280) | 0.037485 / 0.037052 (0.000432) | 0.335634 / 0.258489 (0.077145) | 0.384031 / 0.293841 (0.090190) | 0.031258 / 0.128546 (-0.097288) | 0.011619 / 0.075646 (-0.064027) | 0.326309 / 0.419271 (-0.092963) | 0.042513 / 0.043533 (-0.001020) | 0.340817 / 0.255139 (0.085678) | 0.369846 / 0.283200 (0.086646) | 0.084904 / 0.141683 (-0.056779) | 1.481739 / 1.452155 (0.029584) | 1.566593 / 1.492716 (0.073877) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.186424 / 0.018006 (0.168418) | 0.400879 / 0.000490 (0.400389) | 0.003520 / 0.000200 (0.003320) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023287 / 0.037411 (-0.014124) | 0.097767 / 0.014526 (0.083241) | 0.103271 / 0.176557 (-0.073286) | 0.165414 / 0.737135 (-0.571722) | 0.106437 / 0.296338 (-0.189901) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422711 / 0.215209 (0.207502) | 4.221382 / 2.077655 (2.143727) | 1.906807 / 1.504120 (0.402687) | 1.709595 / 1.541195 (0.168400) | 1.720452 / 1.468490 (0.251962) | 0.699477 / 4.584777 (-3.885300) | 3.415840 / 3.745712 (-0.329873) | 2.835669 / 5.269862 (-2.434192) | 1.501775 / 4.565676 (-3.063901) | 0.082896 / 0.424275 (-0.341379) | 0.012855 / 0.007607 (0.005248) | 0.514373 / 0.226044 (0.288329) | 5.190000 / 2.268929 (2.921071) | 2.302539 / 55.444624 (-53.142086) | 1.963410 / 6.876477 (-4.913067) | 2.020944 / 2.142072 (-0.121128) | 0.805919 / 4.805227 (-3.999308) | 0.150604 / 6.500664 (-6.350060) | 0.065977 / 0.075469 (-0.009492) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206487 / 1.841788 (-0.635300) | 13.631513 / 8.074308 (5.557205) | 13.800258 / 10.191392 (3.608866) | 0.146914 / 0.680424 (-0.533509) | 0.016454 / 0.534201 (-0.517747) | 0.377752 / 0.579283 (-0.201532) | 0.384312 / 0.434364 (-0.050052) | 0.434912 / 0.540337 (-0.105425) | 0.522507 / 1.386936 (-0.864429) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006328 / 0.011353 (-0.005025) | 0.004406 / 0.011008 (-0.006602) | 0.077951 / 0.038508 (0.039443) | 0.026716 / 0.023109 (0.003607) | 0.337303 / 0.275898 (0.061405) | 0.372036 / 0.323480 (0.048556) | 0.004800 / 0.007986 (-0.003185) | 0.003153 / 0.004328 (-0.001175) | 0.076823 / 0.004250 (0.072573) | 0.035873 / 0.037052 (-0.001179) | 0.340243 / 0.258489 (0.081754) | 0.380183 / 0.293841 (0.086342) | 0.032185 / 0.128546 (-0.096361) | 0.011545 / 0.075646 (-0.064101) | 0.086887 / 0.419271 (-0.332384) | 0.041560 / 0.043533 (-0.001973) | 0.338716 / 0.255139 (0.083577) | 0.363080 / 0.283200 (0.079881) | 0.088375 / 0.141683 (-0.053308) | 1.499004 / 1.452155 (0.046850) | 1.585904 / 1.492716 (0.093188) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211645 / 0.018006 (0.193639) | 0.403707 / 0.000490 (0.403218) | 0.000415 / 0.000200 (0.000215) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024972 / 0.037411 (-0.012440) | 0.097996 / 0.014526 (0.083470) | 0.105941 / 0.176557 (-0.070616) | 0.155521 / 0.737135 (-0.581615) | 0.108246 / 0.296338 (-0.188092) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442316 / 0.215209 (0.227107) | 4.417977 / 2.077655 (2.340322) | 2.078324 / 1.504120 (0.574205) | 1.863678 / 1.541195 (0.322483) | 1.917149 / 1.468490 (0.448659) | 0.697628 / 4.584777 (-3.887149) | 3.412810 / 3.745712 (-0.332902) | 1.866473 / 5.269862 (-3.403389) | 1.155923 / 4.565676 (-3.409754) | 0.082831 / 0.424275 (-0.341444) | 0.012367 / 0.007607 (0.004760) | 0.540018 / 0.226044 (0.313974) | 5.420472 / 2.268929 (3.151544) | 2.508540 / 55.444624 (-52.936084) | 2.166397 / 6.876477 (-4.710080) | 2.153486 / 2.142072 (0.011414) | 0.804860 / 4.805227 (-4.000367) | 0.151178 / 6.500664 (-6.349486) | 0.067870 / 0.075469 (-0.007599) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.310387 / 1.841788 (-0.531400) | 13.908916 / 8.074308 (5.834608) | 14.136895 / 10.191392 (3.945503) | 0.139389 / 0.680424 (-0.541035) | 0.016687 / 0.534201 (-0.517514) | 0.379624 / 0.579283 (-0.199659) | 0.382634 / 0.434364 (-0.051730) | 0.439632 / 0.540337 (-0.100706) | 0.524913 / 1.386936 (-0.862023) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f8f2143b4ed39b58ed415029e7838d767662da91 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006365 / 0.011353 (-0.004988) | 0.004457 / 0.011008 (-0.006551) | 0.097989 / 0.038508 (0.059481) | 0.027686 / 0.023109 (0.004577) | 0.357412 / 0.275898 (0.081514) | 0.368573 / 0.323480 (0.045093) | 0.004859 / 0.007986 (-0.003127) | 0.003262 / 0.004328 (-0.001066) | 0.076487 / 0.004250 (0.072237) | 0.035526 / 0.037052 (-0.001527) | 0.332862 / 0.258489 (0.074373) | 0.369334 / 0.293841 (0.075493) | 0.030750 / 0.128546 (-0.097796) | 0.011503 / 0.075646 (-0.064143) | 0.323289 / 0.419271 (-0.095982) | 0.042302 / 0.043533 (-0.001231) | 0.334009 / 0.255139 (0.078870) | 0.354150 / 0.283200 (0.070951) | 0.082895 / 0.141683 (-0.058788) | 1.499727 / 1.452155 (0.047572) | 1.574123 / 1.492716 (0.081407) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192583 / 0.018006 (0.174577) | 0.408136 / 0.000490 (0.407646) | 0.001272 / 0.000200 (0.001072) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022883 / 0.037411 (-0.014528) | 0.095710 / 0.014526 (0.081185) | 0.106545 / 0.176557 (-0.070011) | 0.165784 / 0.737135 (-0.571352) | 0.108594 / 0.296338 (-0.187744) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429483 / 0.215209 (0.214274) | 4.292338 / 2.077655 (2.214683) | 1.917759 / 1.504120 (0.413639) | 1.711489 / 1.541195 (0.170294) | 1.735668 / 1.468490 (0.267178) | 0.707602 / 4.584777 (-3.877175) | 3.369643 / 3.745712 (-0.376070) | 1.874517 / 5.269862 (-3.395344) | 1.248560 / 4.565676 (-3.317117) | 0.083247 / 0.424275 (-0.341028) | 0.012606 / 0.007607 (0.004999) | 0.519342 / 0.226044 (0.293297) | 5.225462 / 2.268929 (2.956533) | 2.433230 / 55.444624 (-53.011394) | 2.006005 / 6.876477 (-4.870471) | 2.093156 / 2.142072 (-0.048916) | 0.809372 / 4.805227 (-3.995855) | 0.151691 / 6.500664 (-6.348973) | 0.066680 / 0.075469 (-0.008789) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.226283 / 1.841788 (-0.615505) | 13.604338 / 8.074308 (5.530030) | 13.953245 / 10.191392 (3.761853) | 0.132904 / 0.680424 (-0.547520) | 0.016420 / 0.534201 (-0.517781) | 0.395316 / 0.579283 (-0.183967) | 0.385003 / 0.434364 (-0.049361) | 0.483303 / 0.540337 (-0.057034) | 0.578459 / 1.386936 (-0.808477) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006218 / 0.011353 (-0.005135) | 0.004451 / 0.011008 (-0.006557) | 0.076892 / 0.038508 (0.038384) | 0.027017 / 0.023109 (0.003908) | 0.356976 / 0.275898 (0.081078) | 0.396083 / 0.323480 (0.072603) | 0.005510 / 0.007986 (-0.002476) | 0.003265 / 0.004328 (-0.001063) | 0.075771 / 0.004250 (0.071521) | 0.037117 / 0.037052 (0.000064) | 0.362181 / 0.258489 (0.103692) | 0.401771 / 0.293841 (0.107931) | 0.032062 / 0.128546 (-0.096484) | 0.011453 / 0.075646 (-0.064194) | 0.085773 / 0.419271 (-0.333498) | 0.041679 / 0.043533 (-0.001854) | 0.355120 / 0.255139 (0.099981) | 0.390170 / 0.283200 (0.106970) | 0.088210 / 0.141683 (-0.053473) | 1.526434 / 1.452155 (0.074279) | 1.586019 / 1.492716 (0.093302) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196836 / 0.018006 (0.178830) | 0.401161 / 0.000490 (0.400671) | 0.002880 / 0.000200 (0.002680) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024445 / 0.037411 (-0.012966) | 0.100187 / 0.014526 (0.085661) | 0.106391 / 0.176557 (-0.070165) | 0.159764 / 0.737135 (-0.577372) | 0.109828 / 0.296338 (-0.186511) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444228 / 0.215209 (0.229018) | 4.420769 / 2.077655 (2.343114) | 2.069437 / 1.504120 (0.565318) | 1.862587 / 1.541195 (0.321392) | 1.934627 / 1.468490 (0.466137) | 0.699681 / 4.584777 (-3.885095) | 3.352540 / 3.745712 (-0.393172) | 2.613172 / 5.269862 (-2.656689) | 1.445116 / 4.565676 (-3.120561) | 0.083086 / 0.424275 (-0.341189) | 0.012715 / 0.007607 (0.005108) | 0.537450 / 0.226044 (0.311405) | 5.403052 / 2.268929 (3.134123) | 2.506703 / 55.444624 (-52.937921) | 2.170198 / 6.876477 (-4.706279) | 2.201909 / 2.142072 (0.059837) | 0.799555 / 4.805227 (-4.005672) | 0.150825 / 6.500664 (-6.349839) | 0.067234 / 0.075469 (-0.008235) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293097 / 1.841788 (-0.548691) | 13.817133 / 8.074308 (5.742825) | 14.247231 / 10.191392 (4.055839) | 0.128422 / 0.680424 (-0.552002) | 0.016541 / 0.534201 (-0.517660) | 0.382466 / 0.579283 (-0.196817) | 0.380560 / 0.434364 (-0.053804) | 0.439061 / 0.540337 (-0.101276) | 0.521865 / 1.386936 (-0.865071) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#69e60be438c334919f590512fd664436bd6b3667 \"CML watermark\")\n",
"I also took the liberty of removing `_hf_hub_fixes.py` completely :)\r\n\r\n> Do you think this is really necessary and convenient? I would naively say that 5% of the users is not a negligible number...\r\n\r\nI think it's ok. Most of them are using old versions of `datasets` anyway.\r\n\r\n",
"merging, but lmk if you have other concerns",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006810 / 0.011353 (-0.004543) | 0.004683 / 0.011008 (-0.006325) | 0.100889 / 0.038508 (0.062381) | 0.030135 / 0.023109 (0.007026) | 0.356407 / 0.275898 (0.080509) | 0.389175 / 0.323480 (0.065695) | 0.005358 / 0.007986 (-0.002627) | 0.004760 / 0.004328 (0.000432) | 0.075904 / 0.004250 (0.071654) | 0.040341 / 0.037052 (0.003288) | 0.357363 / 0.258489 (0.098874) | 0.394185 / 0.293841 (0.100344) | 0.031322 / 0.128546 (-0.097224) | 0.011636 / 0.075646 (-0.064010) | 0.327327 / 0.419271 (-0.091944) | 0.042494 / 0.043533 (-0.001039) | 0.338079 / 0.255139 (0.082940) | 0.363388 / 0.283200 (0.080189) | 0.087102 / 0.141683 (-0.054581) | 1.505686 / 1.452155 (0.053531) | 1.562112 / 1.492716 (0.069396) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203630 / 0.018006 (0.185624) | 0.425986 / 0.000490 (0.425496) | 0.003786 / 0.000200 (0.003586) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024138 / 0.037411 (-0.013274) | 0.101752 / 0.014526 (0.087226) | 0.105436 / 0.176557 (-0.071121) | 0.165385 / 0.737135 (-0.571750) | 0.114510 / 0.296338 (-0.181828) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.447561 / 0.215209 (0.232352) | 4.449212 / 2.077655 (2.371557) | 2.169472 / 1.504120 (0.665352) | 1.989025 / 1.541195 (0.447831) | 2.036267 / 1.468490 (0.567776) | 0.698647 / 4.584777 (-3.886130) | 3.483281 / 3.745712 (-0.262431) | 1.949306 / 5.269862 (-3.320555) | 1.290313 / 4.565676 (-3.275363) | 0.083079 / 0.424275 (-0.341196) | 0.012759 / 0.007607 (0.005152) | 0.540944 / 0.226044 (0.314899) | 5.473391 / 2.268929 (3.204463) | 2.632037 / 55.444624 (-52.812587) | 2.327396 / 6.876477 (-4.549081) | 2.428880 / 2.142072 (0.286808) | 0.808918 / 4.805227 (-3.996309) | 0.153283 / 6.500664 (-6.347381) | 0.068325 / 0.075469 (-0.007145) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212527 / 1.841788 (-0.629260) | 14.306444 / 8.074308 (6.232136) | 14.904980 / 10.191392 (4.713588) | 0.142796 / 0.680424 (-0.537628) | 0.016829 / 0.534201 (-0.517372) | 0.384806 / 0.579283 (-0.194477) | 0.390505 / 0.434364 (-0.043859) | 0.441734 / 0.540337 (-0.098603) | 0.526159 / 1.386936 (-0.860777) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006950 / 0.011353 (-0.004403) | 0.004647 / 0.011008 (-0.006362) | 0.078925 / 0.038508 (0.040417) | 0.028081 / 0.023109 (0.004971) | 0.343420 / 0.275898 (0.067522) | 0.380567 / 0.323480 (0.057087) | 0.005286 / 0.007986 (-0.002700) | 0.004816 / 0.004328 (0.000487) | 0.077332 / 0.004250 (0.073081) | 0.042131 / 0.037052 (0.005078) | 0.345371 / 0.258489 (0.086882) | 0.390232 / 0.293841 (0.096392) | 0.032395 / 0.128546 (-0.096152) | 0.011669 / 0.075646 (-0.063978) | 0.087649 / 0.419271 (-0.331622) | 0.042465 / 0.043533 (-0.001068) | 0.342863 / 0.255139 (0.087724) | 0.368947 / 0.283200 (0.085748) | 0.091725 / 0.141683 (-0.049958) | 1.477435 / 1.452155 (0.025280) | 1.563449 / 1.492716 (0.070733) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208016 / 0.018006 (0.190010) | 0.428387 / 0.000490 (0.427898) | 0.000443 / 0.000200 (0.000243) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026963 / 0.037411 (-0.010449) | 0.103854 / 0.014526 (0.089328) | 0.109068 / 0.176557 (-0.067488) | 0.160107 / 0.737135 (-0.577028) | 0.112843 / 0.296338 (-0.183496) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437161 / 0.215209 (0.221952) | 4.396178 / 2.077655 (2.318523) | 2.067597 / 1.504120 (0.563477) | 1.875247 / 1.541195 (0.334053) | 1.962451 / 1.468490 (0.493961) | 0.701427 / 4.584777 (-3.883350) | 3.459564 / 3.745712 (-0.286148) | 1.959482 / 5.269862 (-3.310380) | 1.191866 / 4.565676 (-3.373810) | 0.083243 / 0.424275 (-0.341032) | 0.012740 / 0.007607 (0.005133) | 0.535236 / 0.226044 (0.309191) | 5.351715 / 2.268929 (3.082786) | 2.490868 / 55.444624 (-52.953756) | 2.195680 / 6.876477 (-4.680797) | 2.233854 / 2.142072 (0.091781) | 0.809041 / 4.805227 (-3.996187) | 0.151498 / 6.500664 (-6.349166) | 0.068297 / 0.075469 (-0.007172) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.303596 / 1.841788 (-0.538192) | 14.712746 / 8.074308 (6.638438) | 14.778412 / 10.191392 (4.587020) | 0.147093 / 0.680424 (-0.533331) | 0.017105 / 0.534201 (-0.517096) | 0.381687 / 0.579283 (-0.197596) | 0.402435 / 0.434364 (-0.031929) | 0.453538 / 0.540337 (-0.086800) | 0.538866 / 1.386936 (-0.848070) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#10f637c3a598c8042865b31f779e315a3da5337e \"CML watermark\")\n"
] | 2023-03-15T18:26:07 | 2023-03-20T12:34:09 | 2023-03-20T12:26:58 | MEMBER | null | to fix errors like
```
requests.exceptions.HTTPError: 400 Client Error: Bad Request for url: https://hub-ci.huggingface.co/api/datasets/__DUMMY_TRANSFORMERS_USER__/...
```
(e.g. from this [failing CI](https://github.com/huggingface/datasets/actions/runs/4428956210/jobs/7769160997))
0.11.0 is the current minimum version in `transformers`
around 5% of users are currently using versions `<0.11.0` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5642/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5642/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5642",
"html_url": "https://github.com/huggingface/datasets/pull/5642",
"diff_url": "https://github.com/huggingface/datasets/pull/5642.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5642.patch",
"merged_at": "2023-03-20T12:26:58"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5641 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5641/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5641/comments | https://api.github.com/repos/huggingface/datasets/issues/5641/events | https://github.com/huggingface/datasets/issues/5641 | 1,625,942,730 | I_kwDODunzps5g6erK | 5,641 | Features cannot be named "self" | {
"login": "alialamiidrissi",
"id": 14365168,
"node_id": "MDQ6VXNlcjE0MzY1MTY4",
"avatar_url": "https://avatars.githubusercontent.com/u/14365168?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alialamiidrissi",
"html_url": "https://github.com/alialamiidrissi",
"followers_url": "https://api.github.com/users/alialamiidrissi/followers",
"following_url": "https://api.github.com/users/alialamiidrissi/following{/other_user}",
"gists_url": "https://api.github.com/users/alialamiidrissi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alialamiidrissi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alialamiidrissi/subscriptions",
"organizations_url": "https://api.github.com/users/alialamiidrissi/orgs",
"repos_url": "https://api.github.com/users/alialamiidrissi/repos",
"events_url": "https://api.github.com/users/alialamiidrissi/events{/privacy}",
"received_events_url": "https://api.github.com/users/alialamiidrissi/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2023-03-15T17:16:40 | 2023-03-16T17:14:51 | 2023-03-16T17:14:51 | NONE | null | ### Describe the bug
Hi,
I noticed that we cannot create a HuggingFace dataset from Pandas DataFrame with a column named `self`.
The error seems to be coming from arguments validation in the `Features.from_dict` function.
### Steps to reproduce the bug
```python
import datasets
dummy_pandas = pd.DataFrame([0,1,2,3], columns = ["self"])
datasets.arrow_dataset.Dataset.from_pandas(dummy_pandas)
```
### Expected behavior
No error thrown
### Environment info
- `datasets` version: 2.8.0
- Python version: 3.9.5
- PyArrow version: 6.0.1
- Pandas version: 1.4.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5641/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5641/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5640 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5640/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5640/comments | https://api.github.com/repos/huggingface/datasets/issues/5640/events | https://github.com/huggingface/datasets/pull/5640 | 1,625,896,057 | PR_kwDODunzps5MID3I | 5,640 | Less zip false positives | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006998 / 0.011353 (-0.004355) | 0.005093 / 0.011008 (-0.005916) | 0.100490 / 0.038508 (0.061982) | 0.032736 / 0.023109 (0.009627) | 0.297738 / 0.275898 (0.021840) | 0.322255 / 0.323480 (-0.001225) | 0.005583 / 0.007986 (-0.002402) | 0.004007 / 0.004328 (-0.000321) | 0.075863 / 0.004250 (0.071613) | 0.044212 / 0.037052 (0.007159) | 0.300033 / 0.258489 (0.041544) | 0.341997 / 0.293841 (0.048156) | 0.036172 / 0.128546 (-0.092374) | 0.012176 / 0.075646 (-0.063471) | 0.356052 / 0.419271 (-0.063220) | 0.050438 / 0.043533 (0.006905) | 0.294677 / 0.255139 (0.039538) | 0.318050 / 0.283200 (0.034850) | 0.104733 / 0.141683 (-0.036950) | 1.435681 / 1.452155 (-0.016474) | 1.534793 / 1.492716 (0.042076) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242815 / 0.018006 (0.224809) | 0.565983 / 0.000490 (0.565494) | 0.006800 / 0.000200 (0.006600) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026548 / 0.037411 (-0.010863) | 0.104816 / 0.014526 (0.090290) | 0.116222 / 0.176557 (-0.060335) | 0.172143 / 0.737135 (-0.564992) | 0.121631 / 0.296338 (-0.174707) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400126 / 0.215209 (0.184917) | 4.004538 / 2.077655 (1.926883) | 1.798822 / 1.504120 (0.294702) | 1.595191 / 1.541195 (0.053996) | 1.645777 / 1.468490 (0.177287) | 0.705643 / 4.584777 (-3.879134) | 3.750887 / 3.745712 (0.005175) | 2.136547 / 5.269862 (-3.133315) | 1.475881 / 4.565676 (-3.089795) | 0.086921 / 0.424275 (-0.337354) | 0.012379 / 0.007607 (0.004771) | 0.505824 / 0.226044 (0.279779) | 5.052364 / 2.268929 (2.783435) | 2.279983 / 55.444624 (-53.164641) | 1.932253 / 6.876477 (-4.944224) | 2.051359 / 2.142072 (-0.090714) | 0.851906 / 4.805227 (-3.953321) | 0.169566 / 6.500664 (-6.331098) | 0.064600 / 0.075469 (-0.010869) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.165859 / 1.841788 (-0.675929) | 15.049950 / 8.074308 (6.975642) | 14.095981 / 10.191392 (3.904589) | 0.151779 / 0.680424 (-0.528645) | 0.017537 / 0.534201 (-0.516664) | 0.420164 / 0.579283 (-0.159119) | 0.418932 / 0.434364 (-0.015432) | 0.488749 / 0.540337 (-0.051588) | 0.582359 / 1.386936 (-0.804577) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007426 / 0.011353 (-0.003927) | 0.005248 / 0.011008 (-0.005761) | 0.074118 / 0.038508 (0.035610) | 0.034223 / 0.023109 (0.011114) | 0.337780 / 0.275898 (0.061882) | 0.376300 / 0.323480 (0.052820) | 0.006142 / 0.007986 (-0.001843) | 0.004246 / 0.004328 (-0.000083) | 0.074177 / 0.004250 (0.069926) | 0.052698 / 0.037052 (0.015646) | 0.340229 / 0.258489 (0.081740) | 0.396172 / 0.293841 (0.102331) | 0.037293 / 0.128546 (-0.091253) | 0.012514 / 0.075646 (-0.063132) | 0.087144 / 0.419271 (-0.332128) | 0.051922 / 0.043533 (0.008390) | 0.333188 / 0.255139 (0.078049) | 0.355420 / 0.283200 (0.072220) | 0.110273 / 0.141683 (-0.031410) | 1.447826 / 1.452155 (-0.004329) | 1.561135 / 1.492716 (0.068419) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269203 / 0.018006 (0.251197) | 0.551997 / 0.000490 (0.551508) | 0.001558 / 0.000200 (0.001359) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029511 / 0.037411 (-0.007900) | 0.108614 / 0.014526 (0.094089) | 0.123438 / 0.176557 (-0.053118) | 0.171596 / 0.737135 (-0.565539) | 0.126828 / 0.296338 (-0.169511) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420520 / 0.215209 (0.205310) | 4.175672 / 2.077655 (2.098017) | 1.982220 / 1.504120 (0.478101) | 1.788575 / 1.541195 (0.247381) | 1.860840 / 1.468490 (0.392349) | 0.706730 / 4.584777 (-3.878047) | 3.858718 / 3.745712 (0.113005) | 3.069389 / 5.269862 (-2.200472) | 1.827603 / 4.565676 (-2.738073) | 0.087893 / 0.424275 (-0.336382) | 0.012613 / 0.007607 (0.005006) | 0.524177 / 0.226044 (0.298132) | 5.177077 / 2.268929 (2.908148) | 2.494397 / 55.444624 (-52.950227) | 2.189484 / 6.876477 (-4.686992) | 2.217626 / 2.142072 (0.075554) | 0.846326 / 4.805227 (-3.958901) | 0.176558 / 6.500664 (-6.324106) | 0.065018 / 0.075469 (-0.010451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268618 / 1.841788 (-0.573170) | 15.132711 / 8.074308 (7.058403) | 14.585530 / 10.191392 (4.394138) | 0.163454 / 0.680424 (-0.516970) | 0.017442 / 0.534201 (-0.516759) | 0.421746 / 0.579283 (-0.157537) | 0.425412 / 0.434364 (-0.008952) | 0.499178 / 0.540337 (-0.041159) | 0.595458 / 1.386936 (-0.791478) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ab77e58cd32413f4ef4828134a2470ebd53bb542 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007980 / 0.011353 (-0.003373) | 0.005414 / 0.011008 (-0.005594) | 0.099226 / 0.038508 (0.060718) | 0.035442 / 0.023109 (0.012332) | 0.304851 / 0.275898 (0.028952) | 0.337144 / 0.323480 (0.013664) | 0.006162 / 0.007986 (-0.001823) | 0.004151 / 0.004328 (-0.000177) | 0.074708 / 0.004250 (0.070458) | 0.049690 / 0.037052 (0.012638) | 0.307658 / 0.258489 (0.049168) | 0.358472 / 0.293841 (0.064631) | 0.037181 / 0.128546 (-0.091365) | 0.012259 / 0.075646 (-0.063387) | 0.335426 / 0.419271 (-0.083846) | 0.050790 / 0.043533 (0.007257) | 0.301715 / 0.255139 (0.046576) | 0.320834 / 0.283200 (0.037634) | 0.102357 / 0.141683 (-0.039326) | 1.454750 / 1.452155 (0.002596) | 1.571994 / 1.492716 (0.079278) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218708 / 0.018006 (0.200702) | 0.444391 / 0.000490 (0.443901) | 0.005717 / 0.000200 (0.005517) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028017 / 0.037411 (-0.009395) | 0.112753 / 0.014526 (0.098227) | 0.121003 / 0.176557 (-0.055554) | 0.181085 / 0.737135 (-0.556050) | 0.127211 / 0.296338 (-0.169127) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400803 / 0.215209 (0.185594) | 4.007315 / 2.077655 (1.929660) | 1.826911 / 1.504120 (0.322791) | 1.637799 / 1.541195 (0.096605) | 1.699754 / 1.468490 (0.231264) | 0.709413 / 4.584777 (-3.875364) | 4.008904 / 3.745712 (0.263192) | 3.916540 / 5.269862 (-1.353322) | 1.902102 / 4.565676 (-2.663575) | 0.089048 / 0.424275 (-0.335227) | 0.012763 / 0.007607 (0.005155) | 0.498957 / 0.226044 (0.272913) | 4.979865 / 2.268929 (2.710937) | 2.301987 / 55.444624 (-53.142637) | 1.929404 / 6.876477 (-4.947073) | 2.107839 / 2.142072 (-0.034233) | 0.857253 / 4.805227 (-3.947974) | 0.171935 / 6.500664 (-6.328729) | 0.066753 / 0.075469 (-0.008716) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.186811 / 1.841788 (-0.654977) | 15.866319 / 8.074308 (7.792011) | 14.738555 / 10.191392 (4.547163) | 0.142879 / 0.680424 (-0.537544) | 0.017679 / 0.534201 (-0.516522) | 0.422840 / 0.579283 (-0.156443) | 0.450307 / 0.434364 (0.015943) | 0.491802 / 0.540337 (-0.048536) | 0.588837 / 1.386936 (-0.798099) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007659 / 0.011353 (-0.003694) | 0.005331 / 0.011008 (-0.005678) | 0.075360 / 0.038508 (0.036852) | 0.034011 / 0.023109 (0.010902) | 0.354488 / 0.275898 (0.078590) | 0.401781 / 0.323480 (0.078301) | 0.005806 / 0.007986 (-0.002179) | 0.004029 / 0.004328 (-0.000300) | 0.073822 / 0.004250 (0.069572) | 0.049067 / 0.037052 (0.012015) | 0.364483 / 0.258489 (0.105994) | 0.405637 / 0.293841 (0.111796) | 0.037166 / 0.128546 (-0.091380) | 0.012397 / 0.075646 (-0.063249) | 0.087346 / 0.419271 (-0.331926) | 0.050888 / 0.043533 (0.007355) | 0.334796 / 0.255139 (0.079657) | 0.387681 / 0.283200 (0.104481) | 0.105056 / 0.141683 (-0.036627) | 1.471630 / 1.452155 (0.019475) | 1.554764 / 1.492716 (0.062047) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231825 / 0.018006 (0.213819) | 0.449746 / 0.000490 (0.449256) | 0.000888 / 0.000200 (0.000688) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030363 / 0.037411 (-0.007049) | 0.115234 / 0.014526 (0.100708) | 0.123005 / 0.176557 (-0.053551) | 0.172772 / 0.737135 (-0.564363) | 0.127818 / 0.296338 (-0.168520) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425761 / 0.215209 (0.210552) | 4.237950 / 2.077655 (2.160295) | 1.992045 / 1.504120 (0.487925) | 1.801622 / 1.541195 (0.260427) | 1.918477 / 1.468490 (0.449987) | 0.722730 / 4.584777 (-3.862047) | 4.015968 / 3.745712 (0.270256) | 3.720412 / 5.269862 (-1.549450) | 1.763111 / 4.565676 (-2.802566) | 0.089041 / 0.424275 (-0.335234) | 0.012608 / 0.007607 (0.005001) | 0.522645 / 0.226044 (0.296601) | 5.227108 / 2.268929 (2.958180) | 2.444714 / 55.444624 (-52.999910) | 2.109745 / 6.876477 (-4.766732) | 2.194042 / 2.142072 (0.051969) | 0.871781 / 4.805227 (-3.933447) | 0.173149 / 6.500664 (-6.327515) | 0.066192 / 0.075469 (-0.009277) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.312051 / 1.841788 (-0.529737) | 16.024315 / 8.074308 (7.950007) | 15.123823 / 10.191392 (4.932431) | 0.163997 / 0.680424 (-0.516427) | 0.017595 / 0.534201 (-0.516606) | 0.426379 / 0.579283 (-0.152904) | 0.467709 / 0.434364 (0.033345) | 0.498308 / 0.540337 (-0.042030) | 0.591426 / 1.386936 (-0.795510) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#13488cc110b67090289794f48d5c84a4fd0c063a \"CML watermark\")\n",
"CI is failing due to unrelated issues, hopefully https://github.com/huggingface/datasets/pull/5642 fixes it",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006478 / 0.011353 (-0.004875) | 0.004347 / 0.011008 (-0.006661) | 0.097103 / 0.038508 (0.058595) | 0.027650 / 0.023109 (0.004541) | 0.372355 / 0.275898 (0.096457) | 0.408794 / 0.323480 (0.085314) | 0.005034 / 0.007986 (-0.002952) | 0.003252 / 0.004328 (-0.001076) | 0.074068 / 0.004250 (0.069818) | 0.035542 / 0.037052 (-0.001510) | 0.367392 / 0.258489 (0.108903) | 0.409644 / 0.293841 (0.115803) | 0.031745 / 0.128546 (-0.096801) | 0.011501 / 0.075646 (-0.064145) | 0.323355 / 0.419271 (-0.095917) | 0.043065 / 0.043533 (-0.000467) | 0.377313 / 0.255139 (0.122174) | 0.395326 / 0.283200 (0.112127) | 0.087101 / 0.141683 (-0.054582) | 1.461228 / 1.452155 (0.009073) | 1.529413 / 1.492716 (0.036696) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.199245 / 0.018006 (0.181239) | 0.409978 / 0.000490 (0.409488) | 0.002655 / 0.000200 (0.002455) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023903 / 0.037411 (-0.013508) | 0.097855 / 0.014526 (0.083330) | 0.106405 / 0.176557 (-0.070152) | 0.166889 / 0.737135 (-0.570247) | 0.110256 / 0.296338 (-0.186082) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440351 / 0.215209 (0.225142) | 4.382848 / 2.077655 (2.305194) | 2.049602 / 1.504120 (0.545482) | 1.824638 / 1.541195 (0.283443) | 1.850519 / 1.468490 (0.382029) | 0.702652 / 4.584777 (-3.882125) | 3.394571 / 3.745712 (-0.351141) | 1.940608 / 5.269862 (-3.329254) | 1.263961 / 4.565676 (-3.301716) | 0.083985 / 0.424275 (-0.340290) | 0.013046 / 0.007607 (0.005439) | 0.538272 / 0.226044 (0.312228) | 5.407563 / 2.268929 (3.138634) | 2.519207 / 55.444624 (-52.925418) | 2.153379 / 6.876477 (-4.723098) | 2.394512 / 2.142072 (0.252439) | 0.812840 / 4.805227 (-3.992387) | 0.152868 / 6.500664 (-6.347796) | 0.067823 / 0.075469 (-0.007646) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.220031 / 1.841788 (-0.621757) | 13.781237 / 8.074308 (5.706929) | 14.203975 / 10.191392 (4.012583) | 0.141077 / 0.680424 (-0.539347) | 0.016518 / 0.534201 (-0.517682) | 0.379079 / 0.579283 (-0.200204) | 0.378916 / 0.434364 (-0.055448) | 0.434589 / 0.540337 (-0.105749) | 0.521129 / 1.386936 (-0.865807) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006997 / 0.011353 (-0.004356) | 0.004599 / 0.011008 (-0.006410) | 0.078700 / 0.038508 (0.040192) | 0.027902 / 0.023109 (0.004793) | 0.344406 / 0.275898 (0.068508) | 0.392918 / 0.323480 (0.069438) | 0.005175 / 0.007986 (-0.002811) | 0.004755 / 0.004328 (0.000427) | 0.077707 / 0.004250 (0.073457) | 0.039409 / 0.037052 (0.002357) | 0.343250 / 0.258489 (0.084761) | 0.405544 / 0.293841 (0.111703) | 0.032286 / 0.128546 (-0.096260) | 0.011674 / 0.075646 (-0.063972) | 0.087633 / 0.419271 (-0.331639) | 0.043346 / 0.043533 (-0.000186) | 0.355076 / 0.255139 (0.099937) | 0.382155 / 0.283200 (0.098955) | 0.090914 / 0.141683 (-0.050769) | 1.518369 / 1.452155 (0.066215) | 1.583530 / 1.492716 (0.090813) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.160369 / 0.018006 (0.142362) | 0.406844 / 0.000490 (0.406354) | 0.002651 / 0.000200 (0.002451) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025295 / 0.037411 (-0.012116) | 0.101490 / 0.014526 (0.086964) | 0.108825 / 0.176557 (-0.067732) | 0.161673 / 0.737135 (-0.575462) | 0.113610 / 0.296338 (-0.182729) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443514 / 0.215209 (0.228305) | 4.436722 / 2.077655 (2.359067) | 2.144008 / 1.504120 (0.639888) | 2.005324 / 1.541195 (0.464129) | 2.123356 / 1.468490 (0.654866) | 0.697217 / 4.584777 (-3.887560) | 3.401105 / 3.745712 (-0.344607) | 1.874621 / 5.269862 (-3.395240) | 1.165069 / 4.565676 (-3.400608) | 0.082799 / 0.424275 (-0.341476) | 0.012806 / 0.007607 (0.005199) | 0.542688 / 0.226044 (0.316644) | 5.420963 / 2.268929 (3.152034) | 2.579034 / 55.444624 (-52.865590) | 2.240201 / 6.876477 (-4.636276) | 2.261309 / 2.142072 (0.119237) | 0.800246 / 4.805227 (-4.004981) | 0.150380 / 6.500664 (-6.350285) | 0.066880 / 0.075469 (-0.008589) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281721 / 1.841788 (-0.560067) | 13.906361 / 8.074308 (5.832053) | 14.135336 / 10.191392 (3.943944) | 0.128865 / 0.680424 (-0.551559) | 0.016452 / 0.534201 (-0.517749) | 0.373563 / 0.579283 (-0.205720) | 0.385321 / 0.434364 (-0.049043) | 0.437198 / 0.540337 (-0.103139) | 0.530720 / 1.386936 (-0.856216) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e2f8e17f3c8f8d0cb77a4c566a78e31fab47108c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008099 / 0.011353 (-0.003254) | 0.005093 / 0.011008 (-0.005916) | 0.106258 / 0.038508 (0.067750) | 0.037051 / 0.023109 (0.013942) | 0.347960 / 0.275898 (0.072062) | 0.370849 / 0.323480 (0.047369) | 0.006122 / 0.007986 (-0.001863) | 0.004094 / 0.004328 (-0.000235) | 0.079549 / 0.004250 (0.075299) | 0.046563 / 0.037052 (0.009510) | 0.332735 / 0.258489 (0.074246) | 0.417061 / 0.293841 (0.123220) | 0.038105 / 0.128546 (-0.090441) | 0.011886 / 0.075646 (-0.063760) | 0.342103 / 0.419271 (-0.077169) | 0.053233 / 0.043533 (0.009700) | 0.344754 / 0.255139 (0.089615) | 0.355354 / 0.283200 (0.072155) | 0.101059 / 0.141683 (-0.040624) | 1.518561 / 1.452155 (0.066406) | 1.558652 / 1.492716 (0.065935) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225919 / 0.018006 (0.207913) | 0.518539 / 0.000490 (0.518049) | 0.006230 / 0.000200 (0.006030) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026782 / 0.037411 (-0.010629) | 0.108457 / 0.014526 (0.093931) | 0.125203 / 0.176557 (-0.051353) | 0.175726 / 0.737135 (-0.561409) | 0.127051 / 0.296338 (-0.169287) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416427 / 0.215209 (0.201217) | 4.168851 / 2.077655 (2.091196) | 1.962238 / 1.504120 (0.458118) | 1.825224 / 1.541195 (0.284029) | 1.831200 / 1.468490 (0.362710) | 0.765526 / 4.584777 (-3.819250) | 4.303957 / 3.745712 (0.558245) | 2.193467 / 5.269862 (-3.076395) | 1.654605 / 4.565676 (-2.911071) | 0.096709 / 0.424275 (-0.327566) | 0.013792 / 0.007607 (0.006185) | 0.537862 / 0.226044 (0.311818) | 5.152230 / 2.268929 (2.883302) | 2.520938 / 55.444624 (-52.923686) | 2.108422 / 6.876477 (-4.768054) | 2.214220 / 2.142072 (0.072147) | 0.834320 / 4.805227 (-3.970907) | 0.170635 / 6.500664 (-6.330029) | 0.063131 / 0.075469 (-0.012338) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.215767 / 1.841788 (-0.626020) | 15.254781 / 8.074308 (7.180473) | 14.360764 / 10.191392 (4.169372) | 0.172511 / 0.680424 (-0.507913) | 0.020161 / 0.534201 (-0.514040) | 0.426936 / 0.579283 (-0.152347) | 0.438771 / 0.434364 (0.004407) | 0.486973 / 0.540337 (-0.053364) | 0.584238 / 1.386936 (-0.802698) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006777 / 0.011353 (-0.004576) | 0.005304 / 0.011008 (-0.005704) | 0.073717 / 0.038508 (0.035209) | 0.033604 / 0.023109 (0.010494) | 0.340448 / 0.275898 (0.064550) | 0.351861 / 0.323480 (0.028381) | 0.005786 / 0.007986 (-0.002199) | 0.005013 / 0.004328 (0.000685) | 0.071263 / 0.004250 (0.067012) | 0.048189 / 0.037052 (0.011137) | 0.339457 / 0.258489 (0.080968) | 0.384383 / 0.293841 (0.090542) | 0.035563 / 0.128546 (-0.092983) | 0.011509 / 0.075646 (-0.064137) | 0.083722 / 0.419271 (-0.335550) | 0.048886 / 0.043533 (0.005353) | 0.350184 / 0.255139 (0.095045) | 0.361037 / 0.283200 (0.077837) | 0.105191 / 0.141683 (-0.036492) | 1.503247 / 1.452155 (0.051093) | 1.582298 / 1.492716 (0.089581) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221687 / 0.018006 (0.203681) | 0.466489 / 0.000490 (0.465999) | 0.000484 / 0.000200 (0.000284) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027978 / 0.037411 (-0.009434) | 0.119572 / 0.014526 (0.105047) | 0.133530 / 0.176557 (-0.043026) | 0.177892 / 0.737135 (-0.559243) | 0.127045 / 0.296338 (-0.169294) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430198 / 0.215209 (0.214989) | 4.435512 / 2.077655 (2.357858) | 2.007183 / 1.504120 (0.503063) | 1.799230 / 1.541195 (0.258036) | 1.884750 / 1.468490 (0.416260) | 0.745232 / 4.584777 (-3.839545) | 4.088069 / 3.745712 (0.342357) | 4.114669 / 5.269862 (-1.155193) | 2.374086 / 4.565676 (-2.191590) | 0.089154 / 0.424275 (-0.335121) | 0.012938 / 0.007607 (0.005331) | 0.505954 / 0.226044 (0.279909) | 5.194226 / 2.268929 (2.925298) | 2.487230 / 55.444624 (-52.957394) | 2.163353 / 6.876477 (-4.713124) | 2.177879 / 2.142072 (0.035807) | 0.828728 / 4.805227 (-3.976499) | 0.171157 / 6.500664 (-6.329507) | 0.062883 / 0.075469 (-0.012586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.275906 / 1.841788 (-0.565882) | 15.235484 / 8.074308 (7.161176) | 14.467396 / 10.191392 (4.276004) | 0.198994 / 0.680424 (-0.481430) | 0.020203 / 0.534201 (-0.513998) | 0.447904 / 0.579283 (-0.131380) | 0.454210 / 0.434364 (0.019846) | 0.528062 / 0.540337 (-0.012275) | 0.619311 / 1.386936 (-0.767625) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#11cd0f73acbce1d16174f2555e56fda511d5a08b \"CML watermark\")\n"
] | 2023-03-15T16:48:59 | 2023-03-16T13:47:37 | 2023-03-16T13:40:12 | MEMBER | null | `zipfile.is_zipfile` return false positives for some Parquet files. It causes errors when loading certain parquet datasets, where some files are considered ZIP files by `zipfile.is_zipfile`
This is a known issue: https://github.com/python/cpython/issues/72680
At first I wanted to rely only on magic numbers, but then I found that someone contributed a [fix to is_zipfile](https://github.com/python/cpython/pull/5053) - do you think we should use it @albertvillanova or not ?
IMO it's ok to rely on magic numbers only for now, since in streaming mode we've had no issue checking only the magic number so far.
Close https://github.com/huggingface/datasets/issues/5639 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5640/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5640/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5640",
"html_url": "https://github.com/huggingface/datasets/pull/5640",
"diff_url": "https://github.com/huggingface/datasets/pull/5640.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5640.patch",
"merged_at": "2023-03-16T13:40:12"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5639 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5639/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5639/comments | https://api.github.com/repos/huggingface/datasets/issues/5639/events | https://github.com/huggingface/datasets/issues/5639 | 1,625,737,098 | I_kwDODunzps5g5seK | 5,639 | Parquet file wrongly recognized as zip prevents loading a dataset | {
"login": "clefourrier",
"id": 22726840,
"node_id": "MDQ6VXNlcjIyNzI2ODQw",
"avatar_url": "https://avatars.githubusercontent.com/u/22726840?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/clefourrier",
"html_url": "https://github.com/clefourrier",
"followers_url": "https://api.github.com/users/clefourrier/followers",
"following_url": "https://api.github.com/users/clefourrier/following{/other_user}",
"gists_url": "https://api.github.com/users/clefourrier/gists{/gist_id}",
"starred_url": "https://api.github.com/users/clefourrier/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/clefourrier/subscriptions",
"organizations_url": "https://api.github.com/users/clefourrier/orgs",
"repos_url": "https://api.github.com/users/clefourrier/repos",
"events_url": "https://api.github.com/users/clefourrier/events{/privacy}",
"received_events_url": "https://api.github.com/users/clefourrier/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2023-03-15T15:20:45 | 2023-03-16T13:40:14 | 2023-03-16T13:40:14 | CONTRIBUTOR | null | ### Describe the bug
When trying to `load_dataset_builder` for `HuggingFaceGECLM/StackExchange_Mar2023`, extraction fails, because parquet file [devops-00000-of-00001-22fe902fd8702892.parquet](https://huggingface.co/datasets/HuggingFaceGECLM/StackExchange_Mar2023/resolve/1f8c9a2ab6f7d0f9ae904b8b922e4384592ae1a5/data/devops-00000-of-00001-22fe902fd8702892.parquet) is wrongly identified by python as being a zip not a parquet.
(Full thread on [Slack](https://huggingface.slack.com/archives/C02V51Q3800/p1678890880803599))
### Steps to reproduce the bug
```python
from datasets import load_dataset_builder
ds = load_dataset_builder("HuggingFaceGECLM/StackExchange_Mar2023")
```
### Expected behavior
Loading the file normally.
### Environment info
- `datasets` version: 2.3.2
- Platform: Linux-5.14.0-1058-oem-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 8.0.0
- Pandas version: 1.4.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5639/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5639/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5638 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5638/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5638/comments | https://api.github.com/repos/huggingface/datasets/issues/5638/events | https://github.com/huggingface/datasets/issues/5638 | 1,625,564,471 | I_kwDODunzps5g5CU3 | 5,638 | xPath to implement all operations for Path | {
"login": "thomasw21",
"id": 24695242,
"node_id": "MDQ6VXNlcjI0Njk1MjQy",
"avatar_url": "https://avatars.githubusercontent.com/u/24695242?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/thomasw21",
"html_url": "https://github.com/thomasw21",
"followers_url": "https://api.github.com/users/thomasw21/followers",
"following_url": "https://api.github.com/users/thomasw21/following{/other_user}",
"gists_url": "https://api.github.com/users/thomasw21/gists{/gist_id}",
"starred_url": "https://api.github.com/users/thomasw21/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/thomasw21/subscriptions",
"organizations_url": "https://api.github.com/users/thomasw21/orgs",
"repos_url": "https://api.github.com/users/thomasw21/repos",
"events_url": "https://api.github.com/users/thomasw21/events{/privacy}",
"received_events_url": "https://api.github.com/users/thomasw21/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | null | [] | null | [
" I think https://github.com/fsspec/universal_pathlib is the project you are looking for.\r\n\r\n`xPath` has the methods often used in dataset scripts, and `mkdir` is not one of them (`dl_manager`'s role is to \"interact\" with the file system, so using `mkdir` is discouraged).",
"Right is there a difference between UPath and xPath? Typically is xPath less well implemented compared to Upath, ie missing some implementations of some methods? Or are there methods in xPath that are not implemented with UPath?",
"`xPath` is an internal component (it doesn't have a leading underscore in the name, but it should) not meant to be used outside of `datasets`, and it's only tested on HTTP URLs, not S3.\r\n\r\n",
"Okay I understand that xPath won't support my usecase. What I was perhaps getting to is why not use UPath in `datasets` instead of `xPath` if UPath seems to have strictly more robust implementations.",
"It seems like `universal_pathlib` does not support `fsspec` URL chaining (`::` is the chaining symbol) and \"compression\" filesystems (e.g., `zip`), but this is what we need to access and stream files from within an archive (e.g., we want to stream URLs such as this one: `zip://data.parquet::https://www.dummyurl.com/archive.zip`)"
] | 2023-03-15T13:47:11 | 2023-03-17T13:21:12 | 2023-03-17T13:21:12 | CONTRIBUTOR | null | ### Feature request
Current xPath implementation is a great extension of Path in order to work with remote objects. However some methods such as `mkdir` are not implemented correctly. It should instead rely on `fsspec` methods, instead of defaulting do `Path` methods which only work locally.
### Motivation
I'm using xPath to interact with remote objects.
### Your contribution
I could try to make a PR. I'm a bit unfamiliar with chaining right now. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5638/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5638/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5637 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5637/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5637/comments | https://api.github.com/repos/huggingface/datasets/issues/5637/events | https://github.com/huggingface/datasets/issues/5637 | 1,625,295,691 | I_kwDODunzps5g4AtL | 5,637 | IterableDataset with_format does not support 'device' keyword for jax | {
"login": "Lime-Cakes",
"id": 91322985,
"node_id": "MDQ6VXNlcjkxMzIyOTg1",
"avatar_url": "https://avatars.githubusercontent.com/u/91322985?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Lime-Cakes",
"html_url": "https://github.com/Lime-Cakes",
"followers_url": "https://api.github.com/users/Lime-Cakes/followers",
"following_url": "https://api.github.com/users/Lime-Cakes/following{/other_user}",
"gists_url": "https://api.github.com/users/Lime-Cakes/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Lime-Cakes/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Lime-Cakes/subscriptions",
"organizations_url": "https://api.github.com/users/Lime-Cakes/orgs",
"repos_url": "https://api.github.com/users/Lime-Cakes/repos",
"events_url": "https://api.github.com/users/Lime-Cakes/events{/privacy}",
"received_events_url": "https://api.github.com/users/Lime-Cakes/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi! Yes, only `torch` is currently supported. Unlike `Dataset`, `IterableDataset` is not PyArrow-backed, so we cannot simply call `to_numpy` on the underlying subtables to format them numerically. Instead, we must manually convert examples to (numeric) arrays while preserving consistency with `Dataset`, which is not trivial, so this is still a to-do.",
"Any plans to support it in the future? Or would streaming dataset be left without support for jax and tensorflow?"
] | 2023-03-15T11:04:12 | 2023-03-16T18:30:59 | null | NONE | null | ### Describe the bug
As seen here: https://huggingface.co/docs/datasets/use_with_jax dataset.with_format() supports the keyword 'device', to put data on a specific device when loaded as jax. However, when called on an IterableDataset, I got the error `TypeError: with_format() got an unexpected keyword argument 'device'`
Looking over the code, it seems IterableDataset support only pytorch and no support for jax device keyword?
https://github.com/huggingface/datasets/blob/fc5c84f36684343bff3e424cb0fd1ac5ecdd66da/src/datasets/iterable_dataset.py#L1029
### Steps to reproduce the bug
1. Load an IterableDataset (tested in streaming mode)
2. Call with_format('jax',device=device)
### Expected behavior
I expect to call `with_format('jax', device=device)` as per [documentation](https://huggingface.co/docs/datasets/use_with_jax) without error
### Environment info
Tested with installing newest (dev) and also pip release (2.10.1).
- `datasets` version: 2.10.2.dev0
- Platform: Linux-5.15.89+-x86_64-with-debian-bullseye-sid
- Python version: 3.7.12
- Huggingface_hub version: 0.12.1
- PyArrow version: 11.0.0
- Pandas version: 1.3.5
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5637/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5637/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5636 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5636/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5636/comments | https://api.github.com/repos/huggingface/datasets/issues/5636/events | https://github.com/huggingface/datasets/pull/5636 | 1,623,721,577 | PR_kwDODunzps5MAunR | 5,636 | Fix CI: ignore C901 ("some_func" is to complex) in `ruff` | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006529 / 0.011353 (-0.004824) | 0.004527 / 0.011008 (-0.006481) | 0.098051 / 0.038508 (0.059543) | 0.028058 / 0.023109 (0.004949) | 0.368543 / 0.275898 (0.092645) | 0.397126 / 0.323480 (0.073646) | 0.005072 / 0.007986 (-0.002913) | 0.003377 / 0.004328 (-0.000952) | 0.076867 / 0.004250 (0.072617) | 0.040121 / 0.037052 (0.003069) | 0.373422 / 0.258489 (0.114933) | 0.403969 / 0.293841 (0.110128) | 0.031485 / 0.128546 (-0.097061) | 0.011673 / 0.075646 (-0.063973) | 0.321837 / 0.419271 (-0.097434) | 0.042828 / 0.043533 (-0.000704) | 0.370391 / 0.255139 (0.115252) | 0.391737 / 0.283200 (0.108538) | 0.084764 / 0.141683 (-0.056919) | 1.463114 / 1.452155 (0.010959) | 1.527042 / 1.492716 (0.034325) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200964 / 0.018006 (0.182958) | 0.403967 / 0.000490 (0.403477) | 0.002439 / 0.000200 (0.002239) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023531 / 0.037411 (-0.013880) | 0.097424 / 0.014526 (0.082899) | 0.104854 / 0.176557 (-0.071703) | 0.165682 / 0.737135 (-0.571453) | 0.109416 / 0.296338 (-0.186922) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431041 / 0.215209 (0.215832) | 4.326039 / 2.077655 (2.248384) | 2.085123 / 1.504120 (0.581003) | 1.922720 / 1.541195 (0.381525) | 2.006608 / 1.468490 (0.538118) | 0.703348 / 4.584777 (-3.881428) | 3.441516 / 3.745712 (-0.304196) | 1.875244 / 5.269862 (-3.394618) | 1.181341 / 4.565676 (-3.384336) | 0.083442 / 0.424275 (-0.340833) | 0.012966 / 0.007607 (0.005359) | 0.536047 / 0.226044 (0.310002) | 5.354856 / 2.268929 (3.085927) | 2.451064 / 55.444624 (-52.993560) | 2.076110 / 6.876477 (-4.800367) | 2.196507 / 2.142072 (0.054435) | 0.811196 / 4.805227 (-3.994032) | 0.152547 / 6.500664 (-6.348118) | 0.067978 / 0.075469 (-0.007491) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196169 / 1.841788 (-0.645618) | 13.697234 / 8.074308 (5.622926) | 13.966652 / 10.191392 (3.775260) | 0.143735 / 0.680424 (-0.536688) | 0.016484 / 0.534201 (-0.517717) | 0.382349 / 0.579283 (-0.196934) | 0.401507 / 0.434364 (-0.032857) | 0.447297 / 0.540337 (-0.093041) | 0.529779 / 1.386936 (-0.857157) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006698 / 0.011353 (-0.004655) | 0.004608 / 0.011008 (-0.006400) | 0.076220 / 0.038508 (0.037712) | 0.027340 / 0.023109 (0.004231) | 0.344095 / 0.275898 (0.068197) | 0.374715 / 0.323480 (0.051235) | 0.004883 / 0.007986 (-0.003102) | 0.004658 / 0.004328 (0.000330) | 0.075381 / 0.004250 (0.071130) | 0.036099 / 0.037052 (-0.000953) | 0.340382 / 0.258489 (0.081893) | 0.383488 / 0.293841 (0.089647) | 0.031534 / 0.128546 (-0.097012) | 0.011735 / 0.075646 (-0.063912) | 0.085895 / 0.419271 (-0.333377) | 0.042226 / 0.043533 (-0.001306) | 0.340301 / 0.255139 (0.085162) | 0.366079 / 0.283200 (0.082879) | 0.088828 / 0.141683 (-0.052854) | 1.487880 / 1.452155 (0.035725) | 1.561318 / 1.492716 (0.068601) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226366 / 0.018006 (0.208360) | 0.408934 / 0.000490 (0.408444) | 0.000396 / 0.000200 (0.000196) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024521 / 0.037411 (-0.012891) | 0.100167 / 0.014526 (0.085641) | 0.106480 / 0.176557 (-0.070077) | 0.156377 / 0.737135 (-0.580758) | 0.111709 / 0.296338 (-0.184630) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436138 / 0.215209 (0.220928) | 4.370919 / 2.077655 (2.293265) | 2.066402 / 1.504120 (0.562282) | 1.862157 / 1.541195 (0.320962) | 1.920701 / 1.468490 (0.452211) | 0.695517 / 4.584777 (-3.889260) | 3.435558 / 3.745712 (-0.310154) | 1.864000 / 5.269862 (-3.405861) | 1.164134 / 4.565676 (-3.401543) | 0.083006 / 0.424275 (-0.341269) | 0.012751 / 0.007607 (0.005144) | 0.535405 / 0.226044 (0.309360) | 5.368530 / 2.268929 (3.099602) | 2.494197 / 55.444624 (-52.950427) | 2.161370 / 6.876477 (-4.715107) | 2.180345 / 2.142072 (0.038272) | 0.808076 / 4.805227 (-3.997151) | 0.151891 / 6.500664 (-6.348773) | 0.067643 / 0.075469 (-0.007826) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.334245 / 1.841788 (-0.507543) | 14.112805 / 8.074308 (6.038497) | 14.152303 / 10.191392 (3.960911) | 0.153492 / 0.680424 (-0.526932) | 0.016542 / 0.534201 (-0.517659) | 0.376013 / 0.579283 (-0.203270) | 0.386528 / 0.434364 (-0.047836) | 0.436461 / 0.540337 (-0.103876) | 0.519278 / 1.386936 (-0.867658) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ce1d1076fc55ac49277398304e551f0b56c3c9e2 \"CML watermark\")\n"
] | 2023-03-14T15:29:11 | 2023-03-14T16:37:06 | 2023-03-14T16:29:52 | CONTRIBUTOR | null | idk if I should have added this ignore to `ruff` too, but I added :) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5636/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5636/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5636",
"html_url": "https://github.com/huggingface/datasets/pull/5636",
"diff_url": "https://github.com/huggingface/datasets/pull/5636.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5636.patch",
"merged_at": "2023-03-14T16:29:52"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5635 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5635/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5635/comments | https://api.github.com/repos/huggingface/datasets/issues/5635/events | https://github.com/huggingface/datasets/pull/5635 | 1,623,682,558 | PR_kwDODunzps5MAmLU | 5,635 | Pass custom metadata filename to Image/Audio folders | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5635). All of your documentation changes will be reflected on that endpoint.",
"I'm not a big fan of this new param - I find assigning metadata files to splits via the `data_files` param cleaner. Also, assuming that the metadata filename is `metadata.json`/`metadata.csv` (I don't think we should allow other names), a user can do `load_dataset(\"imagefolder\", data_dir=\"data\")` to load a dataset with that structure.",
"@mariosasko I don't really like this change in it's current state either but passing specific files with `data_files` also looks not quite user-friendly to me. The idea of providing specific parameter for metadata filename seems natural to me but I don't see a way for implementing it without some ugly changes in `load.py` (passing the param to factories and creating metadata patterns on the fly). Why don't you like this parameter?\r\n\r\nFor context: this PR emerged from the case where users wanted to use different metadata files with the same large set of images without copying directories on disk and it's not possible with `data_files` approach.\r\n\r\nedit: ah no, it's possible if one puts metadata files in different subdirs (so that the filenames can be left the same)",
">For context: this PR emerged from the case where users wanted to use different metadata files with the same large set of images without copying directories on disk and it's not possible with data_files approach.\r\n>\r\n>edit: ah no, it's possible if one puts metadata files in different subdirs (so that the filenames can be left the same)\r\n\r\nSeems low prio, but one way to address this would be by allowing to pass \"exclude patterns\" to `data_files`"
] | 2023-03-14T15:08:16 | 2023-03-22T17:50:31 | null | CONTRIBUTOR | null | This is a quick fix.
Now it requires to pass data via `data_files` parameters and include a required metadata file there and pass its filename as `metadata_filename` parameter.
For example, with the structure like:
```
data
images_dir/
im1.jpg
im2.jpg
...
metadata_dir/
meta_file1.jsonl
meta_file2.jsonl
...
```
to load data with `metadata_file1.jsonl` do:
```python
ds = load_dataset("imagefolder", data_files=["data/images_dir/**", "data/metadata_dir/meta_file1.jsonl"], metadata_filename="meta_file1.jsonl")
```
Note that if you have multiple splits, metadata file should be specified in each of them in `data_files`, smth like:
```python
data_files={
"train": ["data/train/**", "data/metadata_dir/meta_file1.jsonl"],
"test": ["data/train/**", "data/metadata_dir/meta_file1.jsonl"]
}
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5635/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 1,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5635/timeline | null | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5635",
"html_url": "https://github.com/huggingface/datasets/pull/5635",
"diff_url": "https://github.com/huggingface/datasets/pull/5635.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5635.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5634 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5634/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5634/comments | https://api.github.com/repos/huggingface/datasets/issues/5634/events | https://github.com/huggingface/datasets/issues/5634 | 1,622,424,174 | I_kwDODunzps5gtDpu | 5,634 | Not all progress bars are showing up when they should for downloading dataset | {
"login": "garlandz-db",
"id": 110427462,
"node_id": "U_kgDOBpT9Rg",
"avatar_url": "https://avatars.githubusercontent.com/u/110427462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/garlandz-db",
"html_url": "https://github.com/garlandz-db",
"followers_url": "https://api.github.com/users/garlandz-db/followers",
"following_url": "https://api.github.com/users/garlandz-db/following{/other_user}",
"gists_url": "https://api.github.com/users/garlandz-db/gists{/gist_id}",
"starred_url": "https://api.github.com/users/garlandz-db/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/garlandz-db/subscriptions",
"organizations_url": "https://api.github.com/users/garlandz-db/orgs",
"repos_url": "https://api.github.com/users/garlandz-db/repos",
"events_url": "https://api.github.com/users/garlandz-db/events{/privacy}",
"received_events_url": "https://api.github.com/users/garlandz-db/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi! \r\n\r\nBy default, tqdm has `leave=True` to \"keep all traces of the progress bar upon the termination of iteration\". However, we use `leave=False` in some places (as of recently), which removes the bar once the iteration is over.\r\n\r\nI feel like our TQDM bars are noisy, so I think we should always set `leave=False` and also use the `delay` parameter to display progress bars only for tasks that take time (e.g., more than 3s). What do you think about this? Do you find these bars useful (after the dataset generation is over)?\r\n",
"Hi sorry for the late update. I think the problem still exists despite the `leave` flag\r\n\r\n<img width=\"1105\" alt=\"image\" src=\"https://user-images.githubusercontent.com/110427462/226501615-5b02fb02-fd5f-4eda-b1f7-a7ed6570892d.png\">\r\n\r\n\r\n```\r\nPackage Version\r\n------------------------ ---------\r\naiofiles 22.1.0\r\naiohttp 3.8.4\r\naiosignal 1.3.1\r\naiosqlite 0.18.0\r\nanyio 3.6.2\r\nappnope 0.1.3\r\nargon2-cffi 21.3.0\r\nargon2-cffi-bindings 21.2.0\r\narrow 1.2.3\r\nasttokens 2.2.1\r\nasync-generator 1.10\r\nasync-timeout 4.0.2\r\nattrs 22.2.0\r\nBabel 2.12.1\r\nbackcall 0.2.0\r\nbeautifulsoup4 4.11.2\r\nbleach 6.0.0\r\nbrotlipy 0.7.0\r\ncertifi 2022.12.7\r\ncffi 1.15.1\r\ncfgv 3.3.1\r\ncharset-normalizer 2.1.1\r\ncomm 0.1.2\r\nconda 22.9.0\r\nconda-package-handling 2.0.2\r\nconda_package_streaming 0.7.0\r\ncoverage 7.2.1\r\ncryptography 38.0.4\r\ndatasets 2.8.0\r\ndebugpy 1.6.6\r\ndecorator 5.1.1\r\ndefusedxml 0.7.1\r\ndill 0.3.6\r\ndistlib 0.3.6\r\ndistro 1.4.0\r\nentrypoints 0.4\r\nexceptiongroup 1.1.0\r\nexecuting 1.2.0\r\nfastjsonschema 2.16.3\r\nfilelock 3.9.0\r\nflaky 3.7.0\r\nfqdn 1.5.1\r\nfrozenlist 1.3.3\r\nfsspec 2023.3.0\r\nhuggingface-hub 0.10.1\r\nidentify 2.5.18\r\nidna 3.4\r\niniconfig 2.0.0\r\nipykernel 6.12.1\r\nipyparallel 8.4.1\r\nipython 7.32.0\r\nipython-genutils 0.2.0\r\nipywidgets 8.0.4\r\nisoduration 20.11.0\r\njedi 0.18.2\r\nJinja2 3.1.2\r\njson5 0.9.11\r\njsonpointer 2.3\r\njsonschema 4.17.3\r\njupyter_client 8.0.3\r\njupyter_core 5.2.0\r\njupyter-events 0.6.3\r\njupyter_server 2.4.0\r\njupyter_server_fileid 0.8.0\r\njupyter_server_terminals 0.4.4\r\njupyter_server_ydoc 0.6.1\r\njupyter-ydoc 0.2.2\r\njupyterlab 3.6.1\r\njupyterlab-pygments 0.2.2\r\njupyterlab_server 2.20.0\r\njupyterlab-widgets 3.0.5\r\nlibmambapy 1.1.0\r\nmamba 1.1.0\r\nMarkupSafe 2.1.2\r\nmatplotlib-inline 0.1.6\r\nmistune 2.0.5\r\nmultidict 6.0.4\r\nmultiprocess 0.70.14\r\nnbclassic 0.5.3\r\nnbclient 0.7.2\r\nnbconvert 7.2.9\r\nnbformat 5.7.3\r\nnest-asyncio 1.5.6\r\nnodeenv 1.7.0\r\nnotebook 6.5.3\r\nnotebook_shim 0.2.2\r\nnumpy 1.24.2\r\noutcome 1.2.0\r\npackaging 23.0\r\npandas 1.5.3\r\npandocfilters 1.5.0\r\nparso 0.8.3\r\npexpect 4.8.0\r\npickleshare 0.7.5\r\npip 22.3.1\r\nplatformdirs 3.0.0\r\nplotly 5.13.1\r\npluggy 1.0.0\r\npre-commit 3.1.0\r\nprometheus-client 0.16.0\r\nprompt-toolkit 3.0.38\r\npsutil 5.9.4\r\nptyprocess 0.7.0\r\npure-eval 0.2.2\r\npyarrow 11.0.0\r\npycosat 0.6.4\r\npycparser 2.21\r\nPygments 2.14.0\r\npyOpenSSL 22.1.0\r\npyrsistent 0.19.3\r\nPySocks 1.7.1\r\npytest 7.2.1\r\npytest-asyncio 0.20.3\r\npytest-cov 4.0.0\r\npytest-timeout 2.1.0\r\npython-dateutil 2.8.2\r\npython-json-logger 2.0.7\r\npytz 2022.7.1\r\nPyYAML 6.0\r\npyzmq 25.0.0\r\nrequests 2.28.1\r\nresponses 0.18.0\r\nrfc3339-validator 0.1.4\r\nrfc3986-validator 0.1.1\r\nruamel-yaml-conda 0.15.80\r\nSend2Trash 1.8.0\r\nsetuptools 65.6.3\r\nsimplegeneric 0.8.1\r\nsix 1.16.0\r\nsniffio 1.3.0\r\nsortedcontainers 2.4.0\r\nsoupsieve 2.4\r\nstack-data 0.6.2\r\ntenacity 8.2.2\r\nterminado 0.17.1\r\ntinycss2 1.2.1\r\ntomli 2.0.1\r\ntoolz 0.12.0\r\ntornado 6.2\r\ntqdm 4.65.0\r\ntraitlets 5.8.1\r\ntrio 0.22.0\r\ntyping_extensions 4.5.0\r\nuri-template 1.2.0\r\nurllib3 1.26.13\r\nvirtualenv 20.19.0\r\nwcwidth 0.2.6\r\nwebcolors 1.12\r\nwebencodings 0.5.1\r\nwebsocket-client 1.5.1\r\nwheel 0.38.4\r\nwidgetsnbextension 4.0.5\r\nxxhash 3.2.0\r\ny-py 0.5.9\r\nyarl 1.8.2\r\nypy-websocket 0.8.2\r\nzstandard 0.19.0\r\n```\r\n\r\nAny idea why this is happening? I debugged this to know the tqdm.pbar value is not being updated properly and its not the kernel not sending the comm messages to the IProgress bar"
] | 2023-03-13T23:04:18 | 2023-03-21T01:59:59 | null | NONE | null | ### Describe the bug
During downloading the rotten tomatoes dataset, not all progress bars are displayed properly. This might be related to [this ticket](https://github.com/huggingface/datasets/issues/5117) as it raised the same concern but its not clear if the fix solves this issue too.
ipywidgets
<img width="1243" alt="image" src="https://user-images.githubusercontent.com/110427462/224851138-13fee5b7-ab51-4883-b96f-1b9808782e3b.png">
tqdm
<img width="1251" alt="Screen Shot 2023-03-13 at 3 58 59 PM" src="https://user-images.githubusercontent.com/110427462/224851180-5feb7825-9250-4b1e-ad0c-f3172ac1eb78.png">
### Steps to reproduce the bug
1. Run this line
```
from datasets import load_dataset
rotten_tomatoes = load_dataset("rotten_tomatoes", split="train")
```
### Expected behavior
all progress bars for builder script, metadata, readme, training, validation, and test set
### Environment info
requirements.txt
```
aiofiles==22.1.0
aiohttp==3.8.4
aiosignal==1.3.1
aiosqlite==0.18.0
anyio==3.6.2
appnope==0.1.3
argon2-cffi==21.3.0
argon2-cffi-bindings==21.2.0
arrow==1.2.3
asttokens==2.2.1
async-generator==1.10
async-timeout==4.0.2
attrs==22.2.0
Babel==2.12.1
backcall==0.2.0
beautifulsoup4==4.11.2
bleach==6.0.0
brotlipy @ file:///Users/runner/miniforge3/conda-bld/brotlipy_1666764961872/work
certifi==2022.12.7
cffi @ file:///Users/runner/miniforge3/conda-bld/cffi_1671179414629/work
cfgv==3.3.1
charset-normalizer @ file:///home/conda/feedstock_root/build_artifacts/charset-normalizer_1661170624537/work
comm==0.1.2
conda==22.9.0
conda-package-handling @ file:///home/conda/feedstock_root/build_artifacts/conda-package-handling_1669907009957/work
conda_package_streaming @ file:///home/conda/feedstock_root/build_artifacts/conda-package-streaming_1669733752472/work
coverage==7.2.1
cryptography @ file:///Users/runner/miniforge3/conda-bld/cryptography_1669592251328/work
datasets==2.1.0
debugpy==1.6.6
decorator==5.1.1
defusedxml==0.7.1
dill==0.3.6
distlib==0.3.6
distro==1.4.0
entrypoints==0.4
exceptiongroup==1.1.0
executing==1.2.0
fastjsonschema==2.16.3
filelock==3.9.0
flaky==3.7.0
fqdn==1.5.1
frozenlist==1.3.3
fsspec==2023.3.0
huggingface-hub==0.10.1
identify==2.5.18
idna @ file:///home/conda/feedstock_root/build_artifacts/idna_1663625384323/work
iniconfig==2.0.0
ipykernel==6.12.1
ipyparallel==8.4.1
ipython==7.32.0
ipython-genutils==0.2.0
ipywidgets==8.0.4
isoduration==20.11.0
jedi==0.18.2
Jinja2==3.1.2
json5==0.9.11
jsonpointer==2.3
jsonschema==4.17.3
jupyter-events==0.6.3
jupyter-ydoc==0.2.2
jupyter_client==8.0.3
jupyter_core==5.2.0
jupyter_server==2.4.0
jupyter_server_fileid==0.8.0
jupyter_server_terminals==0.4.4
jupyter_server_ydoc==0.6.1
jupyterlab==3.6.1
jupyterlab-pygments==0.2.2
jupyterlab-widgets==3.0.5
jupyterlab_server==2.20.0
libmambapy @ file:///Users/runner/miniforge3/conda-bld/mamba-split_1671598370072/work/libmambapy
mamba @ file:///Users/runner/miniforge3/conda-bld/mamba-split_1671598370072/work/mamba
MarkupSafe==2.1.2
matplotlib-inline==0.1.6
mistune==2.0.5
multidict==6.0.4
multiprocess==0.70.14
nbclassic==0.5.3
nbclient==0.7.2
nbconvert==7.2.9
nbformat==5.7.3
nest-asyncio==1.5.6
nodeenv==1.7.0
notebook==6.5.3
notebook_shim==0.2.2
numpy==1.24.2
outcome==1.2.0
packaging==23.0
pandas==1.5.3
pandocfilters==1.5.0
parso==0.8.3
pexpect==4.8.0
pickleshare==0.7.5
platformdirs==3.0.0
plotly==5.13.1
pluggy==1.0.0
pre-commit==3.1.0
prometheus-client==0.16.0
prompt-toolkit==3.0.38
psutil==5.9.4
ptyprocess==0.7.0
pure-eval==0.2.2
pyarrow==11.0.0
pycosat @ file:///Users/runner/miniforge3/conda-bld/pycosat_1666836580084/work
pycparser @ file:///home/conda/feedstock_root/build_artifacts/pycparser_1636257122734/work
Pygments==2.14.0
pyOpenSSL @ file:///home/conda/feedstock_root/build_artifacts/pyopenssl_1665350324128/work
pyrsistent==0.19.3
PySocks @ file:///home/conda/feedstock_root/build_artifacts/pysocks_1661604839144/work
pytest==7.2.1
pytest-asyncio==0.20.3
pytest-cov==4.0.0
pytest-timeout==2.1.0
python-dateutil==2.8.2
python-json-logger==2.0.7
pytz==2022.7.1
PyYAML==6.0
pyzmq==25.0.0
requests @ file:///home/conda/feedstock_root/build_artifacts/requests_1661872987712/work
responses==0.18.0
rfc3339-validator==0.1.4
rfc3986-validator==0.1.1
ruamel-yaml-conda @ file:///Users/runner/miniforge3/conda-bld/ruamel_yaml_1666819760545/work
Send2Trash==1.8.0
simplegeneric==0.8.1
six==1.16.0
sniffio==1.3.0
sortedcontainers==2.4.0
soupsieve==2.4
stack-data==0.6.2
tenacity==8.2.2
terminado==0.17.1
tinycss2==1.2.1
tomli==2.0.1
toolz @ file:///home/conda/feedstock_root/build_artifacts/toolz_1657485559105/work
tornado==6.2
tqdm==4.64.1
traitlets==5.8.1
trio==0.22.0
typing_extensions==4.5.0
uri-template==1.2.0
urllib3 @ file:///home/conda/feedstock_root/build_artifacts/urllib3_1669259737463/work
virtualenv==20.19.0
wcwidth==0.2.6
webcolors==1.12
webencodings==0.5.1
websocket-client==1.5.1
widgetsnbextension==4.0.5
xxhash==3.2.0
y-py==0.5.9
yarl==1.8.2
ypy-websocket==0.8.2
zstandard==0.19.0
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5634/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5634/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5633 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5633/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5633/comments | https://api.github.com/repos/huggingface/datasets/issues/5633/events | https://github.com/huggingface/datasets/issues/5633 | 1,621,469,970 | I_kwDODunzps5gpasS | 5,633 | Cannot import datasets | {
"login": "eerio",
"id": 11250555,
"node_id": "MDQ6VXNlcjExMjUwNTU1",
"avatar_url": "https://avatars.githubusercontent.com/u/11250555?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/eerio",
"html_url": "https://github.com/eerio",
"followers_url": "https://api.github.com/users/eerio/followers",
"following_url": "https://api.github.com/users/eerio/following{/other_user}",
"gists_url": "https://api.github.com/users/eerio/gists{/gist_id}",
"starred_url": "https://api.github.com/users/eerio/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/eerio/subscriptions",
"organizations_url": "https://api.github.com/users/eerio/orgs",
"repos_url": "https://api.github.com/users/eerio/repos",
"events_url": "https://api.github.com/users/eerio/events{/privacy}",
"received_events_url": "https://api.github.com/users/eerio/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Okay, the issue was likely caused by mixing `conda` and `pip` usage - I forgot that I have already used `pip` in this environment previously and that it was 'spoiled' because of it. Creating another environment and installing `datasets` by pip with other packages from the `requirements.txt` file solved the problem."
] | 2023-03-13T13:14:44 | 2023-03-13T17:54:19 | 2023-03-13T17:54:19 | NONE | null | ### Describe the bug
Hi,
I cannot even import the library :( I installed it by running:
```
$ conda install datasets
```
Then I realized I should maybe use the huggingface channel, because I encountered the error below, so I ran:
```
$ conda remove datasets
$ conda install -c huggingface datasets
```
Please see 'steps to reproduce the bug' for the specific error, as steps to reproduce is just importing the library
### Steps to reproduce the bug
```
$ python3
Python 3.8.15 (default, Nov 24 2022, 15:19:38)
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import datasets
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/jack/.conda/envs/jack_zpp/lib/python3.8/site-packages/datasets/__init__.py", line 33, in <module>
from .arrow_dataset import Dataset, concatenate_datasets
File "/home/jack/.conda/envs/jack_zpp/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 59, in <module>
from .arrow_reader import ArrowReader
File "/home/jack/.conda/envs/jack_zpp/lib/python3.8/site-packages/datasets/arrow_reader.py", line 27, in <module>
import pyarrow.parquet as pq
File "/home/jack/.conda/envs/jack_zpp/lib/python3.8/site-packages/pyarrow/parquet/__init__.py", line 20, in <module>
from .core import *
File "/home/jack/.conda/envs/jack_zpp/lib/python3.8/site-packages/pyarrow/parquet/core.py", line 37, in <module>
from pyarrow._parquet import (ParquetReader, Statistics, # noqa
ImportError: cannot import name 'FileEncryptionProperties' from 'pyarrow._parquet' (/home/jack/.conda/envs/jack_zpp/lib/python3.8/site-packages/pyarrow/_parquet.cpython-38-x86_64-linux-gnu.so)
```
### Expected behavior
I would expect for the statement `import datasets` to cause no error
### Environment info
Output of `conda list`:
```
# packages in environment at /home/jack/.conda/envs/pbalawender_zpp:
#
# Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 5.1 1_gnu
abseil-cpp 20210324.2 h2531618_0
advertools 0.13.2 pypi_0 pypi
aiofiles 0.8.0 pypi_0 pypi
aiohttp 3.8.3 py38h5eee18b_0
aiosignal 1.2.0 pyhd3eb1b0_0
aiosqlite 0.17.0 pypi_0 pypi
anyio 3.6.2 pypi_0 pypi
aquirdturtle-collapsible-headings 3.1.0 pypi_0 pypi
argon2-cffi 21.3.0 pypi_0 pypi
argon2-cffi-bindings 21.2.0 pypi_0 pypi
arrow 1.2.3 pypi_0 pypi
arrow-cpp 3.0.0 py38h6b21186_4
asttokens 2.2.0 pypi_0 pypi
async-timeout 4.0.2 py38h06a4308_0
attrs 22.1.0 py38h06a4308_0
automat 22.10.0 pypi_0 pypi
aws-c-common 0.4.57 he6710b0_1
aws-c-event-stream 0.1.6 h2531618_5
aws-checksums 0.1.9 he6710b0_0
aws-sdk-cpp 1.8.185 hce553d0_0
babel 2.11.0 pypi_0 pypi
backcall 0.2.0 pyhd3eb1b0_0
beautifulsoup4 4.11.1 pypi_0 pypi
blas 1.0 mkl
bleach 5.0.1 pypi_0 pypi
boost-cpp 1.73.0 h27cfd23_11
bottleneck 1.3.5 py38h7deecbd_0
brotli 1.0.9 h5eee18b_7
brotli-bin 1.0.9 h5eee18b_7
brotlipy 0.7.0 py38h27cfd23_1003
bzip2 1.0.8 h7b6447c_0
c-ares 1.18.1 h7f8727e_0
ca-certificates 2023.01.10 h06a4308_0
certifi 2022.9.24 pypi_0 pypi
cffi 1.15.1 py38h5eee18b_3
charset-normalizer 2.1.1 pypi_0 pypi
click 8.1.3 pypi_0 pypi
constantly 15.1.0 pypi_0 pypi
contourpy 1.0.6 pypi_0 pypi
cryptography 38.0.4 pypi_0 pypi
cssselect 1.2.0 pypi_0 pypi
cudatoolkit 10.1.243 h8cb64d8_10 conda-forge
cycler 0.11.0 pypi_0 pypi
dacite 1.6.0 pypi_0 pypi
dataclasses 0.8 pyh6d0b6a4_7
datasets 1.18.4 py_0 huggingface
datetime 4.7 pypi_0 pypi
debugpy 1.6.4 pypi_0 pypi
decorator 5.1.1 pyhd3eb1b0_0
defusedxml 0.7.1 pypi_0 pypi
dill 0.3.6 py38h06a4308_0
docker-pycreds 0.4.0 pypi_0 pypi
double-conversion 3.1.5 he6710b0_1
entrypoints 0.4 py38h06a4308_0
executing 0.8.3 pyhd3eb1b0_0
filelock 3.8.0 pypi_0 pypi
flake8 6.0.0 pypi_0 pypi
flask 2.1.3 py38h06a4308_0
flit-core 3.6.0 pyhd3eb1b0_0
fonttools 4.38.0 pypi_0 pypi
fqdn 1.5.1 pypi_0 pypi
freetype 2.12.1 h4a9f257_0
frozenlist 1.3.3 py38h5eee18b_0
fsspec 2022.11.0 py38h06a4308_0
gensim 4.2.0 pypi_0 pypi
gflags 2.2.2 he6710b0_0
giflib 5.2.1 h5eee18b_3
gitdb 4.0.10 pypi_0 pypi
gitpython 3.1.30 pypi_0 pypi
glog 0.5.0 h2531618_0
grpc-cpp 1.39.0 hae934f6_5
huggingface-hub 0.11.1 pypi_0 pypi
huggingface_hub 0.13.1 py_0 huggingface
hyperlink 21.0.0 pypi_0 pypi
icu 58.2 he6710b0_3
idna 3.4 py38h06a4308_0
importlib-metadata 5.1.0 pypi_0 pypi
importlib_metadata 4.11.3 hd3eb1b0_0
importlib_resources 5.2.0 pyhd3eb1b0_1
incremental 22.10.0 pypi_0 pypi
intel-openmp 2021.4.0 h06a4308_3561
ipykernel 6.17.1 pyh210e3f2_0 conda-forge
ipython 8.7.0 pypi_0 pypi
ipython-genutils 0.2.0 pypi_0 pypi
ipywidgets 8.0.2 pyhd8ed1ab_1 conda-forge
isoduration 20.11.0 pypi_0 pypi
itemadapter 0.7.0 pypi_0 pypi
itemloaders 1.0.6 pypi_0 pypi
itsdangerous 2.0.1 pyhd3eb1b0_0
jedi 0.18.2 pypi_0 pypi
jinja2 3.1.2 py38h06a4308_0
jmespath 1.0.1 pypi_0 pypi
joblib 1.2.0 pypi_0 pypi
jpeg 9b h024ee3a_2
json5 0.9.10 pypi_0 pypi
jsonpickle 3.0.0 pypi_0 pypi
jsonpointer 2.3 pypi_0 pypi
jsonschema 4.17.3 py38h06a4308_0
jupyter-core 5.1.0 pypi_0 pypi
jupyter-events 0.5.0 pypi_0 pypi
jupyter-server 1.23.3 pypi_0 pypi
jupyter-server-fileid 0.6.0 pypi_0 pypi
jupyter-server-ydoc 0.4.0 pypi_0 pypi
jupyter-ydoc 0.2.2 pypi_0 pypi
jupyter_client 7.4.9 py38h06a4308_0
jupyter_core 5.2.0 py38h06a4308_0
jupyterlab 3.6.0a4 pypi_0 pypi
jupyterlab-pygments 0.2.2 pypi_0 pypi
jupyterlab-server 2.16.3 pypi_0 pypi
jupyterlab_widgets 3.0.3 pyhd8ed1ab_0 conda-forge
kiwisolver 1.4.4 pypi_0 pypi
krb5 1.19.4 h568e23c_0
lcms2 2.12 h3be6417_0
ld_impl_linux-64 2.38 h1181459_1
libboost 1.73.0 h3ff78a5_11
libbrotlicommon 1.0.9 h5eee18b_7
libbrotlidec 1.0.9 h5eee18b_7
libbrotlienc 1.0.9 h5eee18b_7
libcurl 7.88.1 h91b91d3_0
libedit 3.1.20221030 h5eee18b_0
libev 4.33 h7f8727e_1
libevent 2.1.12 h8f2d780_0
libffi 3.4.2 h6a678d5_6
libgcc-ng 11.2.0 h1234567_1
libgomp 11.2.0 h1234567_1
libnghttp2 1.46.0 hce63b2e_0
libpng 1.6.39 h5eee18b_0
libprotobuf 3.17.2 h4ff587b_1
libsodium 1.0.18 h7b6447c_0
libssh2 1.10.0 h8f2d780_0
libstdcxx-ng 11.2.0 h1234567_1
libthrift 0.14.2 hcc01f38_0
libtiff 4.1.0 h2733197_1
libuv 1.44.2 h5eee18b_0
libwebp 1.2.0 h89dd481_0
lz4-c 1.9.4 h6a678d5_0
markupsafe 2.1.1 py38h7f8727e_0
matplotlib 3.6.2 pypi_0 pypi
matplotlib-inline 0.1.6 py38h06a4308_0
mccabe 0.7.0 pypi_0 pypi
mistune 2.0.4 pypi_0 pypi
mkl 2021.4.0 h06a4308_640
mkl-service 2.4.0 py38h7f8727e_0
mkl_fft 1.3.1 py38hd3c417c_0
mkl_random 1.2.2 py38h51133e4_0
morfeusz2 1.99.6 pypi_0 pypi
multidict 6.0.2 py38h5eee18b_0
multiprocess 0.70.14 py38h06a4308_0
nbclassic 0.4.8 pypi_0 pypi
nbclient 0.7.2 pypi_0 pypi
nbconvert 7.2.5 pypi_0 pypi
nbformat 5.7.0 py38h06a4308_0
ncurses 6.4 h6a678d5_0
nest-asyncio 1.5.6 py38h06a4308_0
ninja 1.10.2 h06a4308_5
ninja-base 1.10.2 hd09550d_5
notebook 6.5.2 pypi_0 pypi
notebook-shim 0.2.2 pypi_0 pypi
numexpr 2.8.4 py38he184ba9_0
numpy 1.23.5 py38h14f4228_0
numpy-base 1.23.5 py38h31eccc5_0
oauthlib 3.2.2 pypi_0 pypi
opencv-python 4.6.0.66 pypi_0 pypi
openssl 1.1.1t h7f8727e_0
orc 1.6.9 ha97a36c_3
packaging 22.0 py38h06a4308_0
pandas 1.5.2 pypi_0 pypi
pandocfilters 1.5.0 pypi_0 pypi
parsel 1.7.0 pypi_0 pypi
parso 0.8.3 pyhd3eb1b0_0
pathlib 1.0.1 pypi_0 pypi
pathtools 0.1.2 pypi_0 pypi
pexpect 4.8.0 pyhd3eb1b0_3
pickleshare 0.7.5 pyhd3eb1b0_1003
pillow 9.3.0 pypi_0 pypi
pip 22.2.2 py38h06a4308_0
pkgutil-resolve-name 1.3.10 py38h06a4308_0
platformdirs 2.5.4 pypi_0 pypi
prometheus-client 0.15.0 pypi_0 pypi
promise 2.3 pypi_0 pypi
prompt-toolkit 3.0.33 pypi_0 pypi
protego 0.2.1 pypi_0 pypi
protobuf 4.21.12 pypi_0 pypi
psutil 5.9.0 py38h5eee18b_0
ptyprocess 0.7.0 pyhd3eb1b0_2
pure_eval 0.2.2 pyhd3eb1b0_0
pyarrow 10.0.1 pypi_0 pypi
pyasn1 0.4.8 pypi_0 pypi
pyasn1-modules 0.2.8 pypi_0 pypi
pycodestyle 2.10.0 pypi_0 pypi
pycparser 2.21 pyhd3eb1b0_0
pydispatcher 2.0.6 pypi_0 pypi
pyflakes 3.0.1 pypi_0 pypi
pygments 2.11.2 pyhd3eb1b0_0
pyopenssl 22.1.0 pypi_0 pypi
pyrsistent 0.18.0 py38heee7806_0
pysocks 1.7.1 py38h06a4308_0
python 3.8.15 h7a1cb2a_2
python-dateutil 2.8.2 pyhd3eb1b0_0
python-dotenv 0.21.0 pypi_0 pypi
python-fastjsonschema 2.16.2 py38h06a4308_0
python-json-logger 2.0.4 pypi_0 pypi
python-xxhash 2.0.2 py38h5eee18b_1
pytorch 1.7.1 py3.8_cuda10.1.243_cudnn7.6.3_0 pytorch
pytz 2022.6 pypi_0 pypi
pyyaml 6.0 py38h5eee18b_1
pyzmq 23.2.0 py38h6a678d5_0
queuelib 1.6.2 pypi_0 pypi
re2 2022.04.01 h295c915_0
readline 8.2 h5eee18b_0
regex 2022.10.31 pypi_0 pypi
requests 2.28.1 py38h06a4308_0
requests-file 1.5.1 pypi_0 pypi
requests-oauthlib 1.3.1 pypi_0 pypi
rfc3339-validator 0.1.4 pypi_0 pypi
rfc3986-validator 0.1.1 pypi_0 pypi
scikit-learn 1.1.3 pypi_0 pypi
scipy 1.9.3 pypi_0 pypi
scrapy 2.7.1 pypi_0 pypi
seaborn 0.12.1 pypi_0 pypi
send2trash 1.8.0 pypi_0 pypi
sentry-sdk 1.12.1 pypi_0 pypi
service-identity 21.1.0 pypi_0 pypi
setproctitle 1.3.2 pypi_0 pypi
setuptools 65.6.3 pypi_0 pypi
shortuuid 1.0.11 pypi_0 pypi
six 1.16.0 pyhd3eb1b0_1
smart-open 6.2.0 pypi_0 pypi
smmap 5.0.0 pypi_0 pypi
snappy 1.1.9 h295c915_0
sniffio 1.3.0 pypi_0 pypi
soupsieve 2.3.2.post1 pypi_0 pypi
sqlite 3.40.1 h5082296_0
stack-data 0.6.2 pypi_0 pypi
stack_data 0.2.0 pyhd3eb1b0_0
terminado 0.17.0 pypi_0 pypi
threadpoolctl 3.1.0 pypi_0 pypi
tinycss2 1.2.1 pypi_0 pypi
tk 8.6.12 h1ccaba5_0
tldextract 3.4.0 pypi_0 pypi
tokenizers 0.13.2 pypi_0 pypi
tomli 2.0.1 pypi_0 pypi
torchvision 0.8.2 py38_cu101 pytorch
tornado 6.2 py38h5eee18b_0
tqdm 4.64.1 py38h06a4308_0
traitlets 5.6.0 pypi_0 pypi
transformers 4.25.1 pypi_0 pypi
tweepy 4.12.1 pypi_0 pypi
twisted 22.10.0 pypi_0 pypi
twython 3.9.1 pypi_0 pypi
typing-extensions 4.4.0 py38h06a4308_0
typing_extensions 4.4.0 py38h06a4308_0
uri-template 1.2.0 pypi_0 pypi
uriparser 0.9.3 he6710b0_1
urllib3 1.26.13 pypi_0 pypi
utf8proc 2.6.1 h27cfd23_0
w3lib 2.1.0 pypi_0 pypi
wandb 0.13.7 pypi_0 pypi
wcwidth 0.2.5 pyhd3eb1b0_0
webcolors 1.12 pypi_0 pypi
webencodings 0.5.1 pypi_0 pypi
websocket-client 1.4.2 pypi_0 pypi
werkzeug 2.2.2 py38h06a4308_0
wheel 0.38.4 py38h06a4308_0
widgetsnbextension 4.0.3 py38h06a4308_0
xxhash 0.8.0 h7f8727e_3
xz 5.2.10 h5eee18b_1
y-py 0.5.4 pypi_0 pypi
yaml 0.2.5 h7b6447c_0
yarl 1.8.1 py38h5eee18b_0
ypy-websocket 0.5.0 pypi_0 pypi
zeromq 4.3.4 h2531618_0
zipp 3.11.0 py38h06a4308_0
zlib 1.2.13 h5eee18b_0
zope-interface 5.5.2 pypi_0 pypi
zstd 1.4.9 haebb681_0
```
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5633/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5633/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5632 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5632/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5632/comments | https://api.github.com/repos/huggingface/datasets/issues/5632/events | https://github.com/huggingface/datasets/issues/5632 | 1,621,177,391 | I_kwDODunzps5goTQv | 5,632 | Dataset cannot convert too large dictionnary | {
"login": "MaraLac",
"id": 108518627,
"node_id": "U_kgDOBnfc4w",
"avatar_url": "https://avatars.githubusercontent.com/u/108518627?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/MaraLac",
"html_url": "https://github.com/MaraLac",
"followers_url": "https://api.github.com/users/MaraLac/followers",
"following_url": "https://api.github.com/users/MaraLac/following{/other_user}",
"gists_url": "https://api.github.com/users/MaraLac/gists{/gist_id}",
"starred_url": "https://api.github.com/users/MaraLac/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MaraLac/subscriptions",
"organizations_url": "https://api.github.com/users/MaraLac/orgs",
"repos_url": "https://api.github.com/users/MaraLac/repos",
"events_url": "https://api.github.com/users/MaraLac/events{/privacy}",
"received_events_url": "https://api.github.com/users/MaraLac/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Answered on the forum:\r\n\r\n> To fix the overflow error, we need to merge [support LargeListArray in pyarrow by xwwwwww ยท Pull Request #4800 ยท huggingface/datasets ยท GitHub](https://github.com/huggingface/datasets/pull/4800), which adds support for the large lists. However, before merging it, we need to come up with a cleaner API for large lists. I hope to find some time to address this before Datasets 3.0."
] | 2023-03-13T10:14:40 | 2023-03-16T15:28:57 | null | NONE | null | ### Describe the bug
Hello everyone!
I tried to build a new dataset with the command "dict_valid = datasets.Dataset.from_dict({'input_values': values_array})".
However, I have a very large dataset (~400Go) and it seems that dataset cannot handle this.
Indeed, I can create the dataset until a certain size of my dictionnary, and then I have the error "OverflowError: Python int too large to convert to C long".
Do you know how to solve this problem?
Unfortunately I cannot give a reproductible code because I cannot share a so large file, but you can find the code below (it's a test on only a part of the validation data ~10Go, but it's already the case).
Thank you!
### Steps to reproduce the bug
SAVE_DIR = './data/'
features = h5py.File(SAVE_DIR+'features.hdf5','r')
valid_data = features["validation"]["data/features"]
v_array_values = [np.float32(item[()]) for item in valid_data.values()]
for i in range(len(v_array_values)):
v_array_values[i] = v_array_values[i].round(decimals=5)
dict_valid = datasets.Dataset.from_dict({'input_values': v_array_values})
### Expected behavior
The code is expected to give me a Huggingface dataset.
### Environment info
python: 3.8.15
numpy: 1.22.3
datasets: 2.3.2
pyarrow: 8.0.0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5632/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5632/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5631 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5631/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5631/comments | https://api.github.com/repos/huggingface/datasets/issues/5631/events | https://github.com/huggingface/datasets/issues/5631 | 1,620,442,854 | I_kwDODunzps5glf7m | 5,631 | Custom split names | {
"login": "ErfanMoosaviMonazzah",
"id": 79091831,
"node_id": "MDQ6VXNlcjc5MDkxODMx",
"avatar_url": "https://avatars.githubusercontent.com/u/79091831?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ErfanMoosaviMonazzah",
"html_url": "https://github.com/ErfanMoosaviMonazzah",
"followers_url": "https://api.github.com/users/ErfanMoosaviMonazzah/followers",
"following_url": "https://api.github.com/users/ErfanMoosaviMonazzah/following{/other_user}",
"gists_url": "https://api.github.com/users/ErfanMoosaviMonazzah/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ErfanMoosaviMonazzah/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ErfanMoosaviMonazzah/subscriptions",
"organizations_url": "https://api.github.com/users/ErfanMoosaviMonazzah/orgs",
"repos_url": "https://api.github.com/users/ErfanMoosaviMonazzah/repos",
"events_url": "https://api.github.com/users/ErfanMoosaviMonazzah/events{/privacy}",
"received_events_url": "https://api.github.com/users/ErfanMoosaviMonazzah/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | null | [] | null | [
"Hi!\r\n\r\nYou can also use names other than \"train\", \"validation\" and \"test\". As an example, check the [script](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/blob/e095840f23f3dffc1056c078c2f9320dad9ca74d/common_voice_11_0.py#L139) of the Common Voice 11 dataset. "
] | 2023-03-12T17:21:43 | 2023-03-24T14:13:00 | 2023-03-24T14:13:00 | NONE | null | ### Feature request
Hi,
I participated in multiple NLP tasks where there are more than just train, test, validation splits, there could be multiple validation sets or test sets. But it seems currently only those mentioned three splits supported. It would be nice to have the support for more splits on the hub. (currently i can have more splits when I am loading datasets from urls, but not hub)
### Motivation
Easier access to more splits
### Your contribution
No | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5631/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5631/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5630 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5630/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5630/comments | https://api.github.com/repos/huggingface/datasets/issues/5630/events | https://github.com/huggingface/datasets/pull/5630 | 1,620,327,510 | PR_kwDODunzps5L1ahF | 5,630 | adds early exit if url is `PathLike` | {
"login": "vvvm23",
"id": 44398246,
"node_id": "MDQ6VXNlcjQ0Mzk4MjQ2",
"avatar_url": "https://avatars.githubusercontent.com/u/44398246?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/vvvm23",
"html_url": "https://github.com/vvvm23",
"followers_url": "https://api.github.com/users/vvvm23/followers",
"following_url": "https://api.github.com/users/vvvm23/following{/other_user}",
"gists_url": "https://api.github.com/users/vvvm23/gists{/gist_id}",
"starred_url": "https://api.github.com/users/vvvm23/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vvvm23/subscriptions",
"organizations_url": "https://api.github.com/users/vvvm23/orgs",
"repos_url": "https://api.github.com/users/vvvm23/repos",
"events_url": "https://api.github.com/users/vvvm23/events{/privacy}",
"received_events_url": "https://api.github.com/users/vvvm23/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5630). All of your documentation changes will be reflected on that endpoint."
] | 2023-03-12T11:23:28 | 2023-03-15T11:58:38 | null | NONE | null | Closes #4864
Should fix errors thrown when attempting to load `json` dataset using `pathlib.Path` in `data_files` argument. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5630/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5630/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5630",
"html_url": "https://github.com/huggingface/datasets/pull/5630",
"diff_url": "https://github.com/huggingface/datasets/pull/5630.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5630.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5629 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5629/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5629/comments | https://api.github.com/repos/huggingface/datasets/issues/5629/events | https://github.com/huggingface/datasets/issues/5629 | 1,619,921,247 | I_kwDODunzps5gjglf | 5,629 | load_dataset gives "403" error when using Financial phrasebank | {
"login": "Jimchoo91",
"id": 67709789,
"node_id": "MDQ6VXNlcjY3NzA5Nzg5",
"avatar_url": "https://avatars.githubusercontent.com/u/67709789?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Jimchoo91",
"html_url": "https://github.com/Jimchoo91",
"followers_url": "https://api.github.com/users/Jimchoo91/followers",
"following_url": "https://api.github.com/users/Jimchoo91/following{/other_user}",
"gists_url": "https://api.github.com/users/Jimchoo91/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Jimchoo91/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Jimchoo91/subscriptions",
"organizations_url": "https://api.github.com/users/Jimchoo91/orgs",
"repos_url": "https://api.github.com/users/Jimchoo91/repos",
"events_url": "https://api.github.com/users/Jimchoo91/events{/privacy}",
"received_events_url": "https://api.github.com/users/Jimchoo91/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi! You seem to be using an outdated version of `datasets` that downloads the older script version. To avoid the error, you can either pass `revision=\"main\"` to `load_dataset` (this can fail if a script uses newer features of the lib) or update your installation with `pip install -U datasets` (better solution)."
] | 2023-03-11T07:46:39 | 2023-03-13T18:27:26 | null | NONE | null | When I try to load this dataset, I receive the following error:
ConnectionError: Couldn't reach https://www.researchgate.net/profile/Pekka_Malo/publication/251231364_FinancialPhraseBank-v10/data/0c96051eee4fb1d56e000000/FinancialPhraseBank-v10.zip (error 403)
Has this been seen before? Thanks. The website loads when I try to access it manually. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5629/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5629/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5628 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5628/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5628/comments | https://api.github.com/repos/huggingface/datasets/issues/5628/events | https://github.com/huggingface/datasets/pull/5628 | 1,619,641,810 | PR_kwDODunzps5LzVKi | 5,628 | add kwargs to index search | {
"login": "SaulLu",
"id": 55560583,
"node_id": "MDQ6VXNlcjU1NTYwNTgz",
"avatar_url": "https://avatars.githubusercontent.com/u/55560583?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SaulLu",
"html_url": "https://github.com/SaulLu",
"followers_url": "https://api.github.com/users/SaulLu/followers",
"following_url": "https://api.github.com/users/SaulLu/following{/other_user}",
"gists_url": "https://api.github.com/users/SaulLu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SaulLu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SaulLu/subscriptions",
"organizations_url": "https://api.github.com/users/SaulLu/orgs",
"repos_url": "https://api.github.com/users/SaulLu/repos",
"events_url": "https://api.github.com/users/SaulLu/events{/privacy}",
"received_events_url": "https://api.github.com/users/SaulLu/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2023-03-10T21:24:58 | 2023-03-15T14:48:47 | 2023-03-15T14:46:04 | CONTRIBUTOR | null | This PR proposes to add kwargs to index search methods.
This is particularly useful for setting the timeout of a query on elasticsearch.
A typical use case would be:
```python
dset.add_elasticsearch_index("filename", es_client=es_client)
scores, examples = dset.get_nearest_examples("filename", "my_name-train_29", request_timeout=60)
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5628/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5628/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5628",
"html_url": "https://github.com/huggingface/datasets/pull/5628",
"diff_url": "https://github.com/huggingface/datasets/pull/5628.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5628.patch",
"merged_at": "2023-03-15T14:46:04"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5627 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5627/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5627/comments | https://api.github.com/repos/huggingface/datasets/issues/5627/events | https://github.com/huggingface/datasets/issues/5627 | 1,619,336,609 | I_kwDODunzps5ghR2h | 5,627 | Unable to load AutoTrain-generated dataset from the hub | {
"login": "ijmiller2",
"id": 8560151,
"node_id": "MDQ6VXNlcjg1NjAxNTE=",
"avatar_url": "https://avatars.githubusercontent.com/u/8560151?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ijmiller2",
"html_url": "https://github.com/ijmiller2",
"followers_url": "https://api.github.com/users/ijmiller2/followers",
"following_url": "https://api.github.com/users/ijmiller2/following{/other_user}",
"gists_url": "https://api.github.com/users/ijmiller2/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ijmiller2/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ijmiller2/subscriptions",
"organizations_url": "https://api.github.com/users/ijmiller2/orgs",
"repos_url": "https://api.github.com/users/ijmiller2/repos",
"events_url": "https://api.github.com/users/ijmiller2/events{/privacy}",
"received_events_url": "https://api.github.com/users/ijmiller2/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The AutoTrain format is not supported right now. I think it would require a dedicated dataset builder",
"Okay, good to know. Thanks for the reply. For now I will just have to\nmanage the split manually before training, because I canโt find any way of\npulling out file indices or file names from the autogenerated split. The\nfile names field of the image dataset (loaded directly from arrow file) is\nmissing, just fyi (for anyone else this might be relevant too).\n\nOn Fri, Mar 10, 2023 at 7:02 PM Quentin Lhoest ***@***.***>\nwrote:\n\n> The AutoTrain format is not supported right now. I think it would require\n> a dedicated dataset builder\n>\n> โ\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5627#issuecomment-1464734308>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ACBJ4F5A353MCZ76OGRJ6CTW3PFI7ANCNFSM6AAAAAAVWXNUTE>\n> .\n> You are receiving this because you authored the thread.Message ID:\n> ***@***.***>\n>\n"
] | 2023-03-10T17:25:58 | 2023-03-11T15:44:42 | null | NONE | null | ### Describe the bug
DatasetGenerationError: An error occurred while generating the dataset -> ValueError: Couldn't cast ... because column names don't match
```
ValueError: Couldn't cast
_data_files: list<item: struct<filename: string>>
child 0, item: struct<filename: string>
child 0, filename: string
_fingerprint: string
_format_columns: list<item: string>
child 0, item: string
_format_kwargs: struct<>
_format_type: null
_indexes: struct<>
_output_all_columns: bool
_split: null
to
{'citation': Value(dtype='string', id=None), 'description': Value(dtype='string', id=None), 'features': {'image': {'_type': Value(dtype='string', id=None)}, 'target': {'names': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), '_type': Value(dtype='string', id=None)}}, 'homepage': Value(dtype='string', id=None), 'license': Value(dtype='string', id=None), 'splits': {'train': {'name': Value(dtype='string', id=None), 'num_bytes': Value(dtype='int64', id=None), 'num_examples': Value(dtype='int64', id=None), 'dataset_name': Value(dtype='null', id=None)}}}
because column names don't match
```
### Steps to reproduce the bug
Steps to reproduce:
1. `pip install datasets==2.10.1`
2. Attempt to load (private dataset). Note that I'm authenticated via ` huggingface-cli login`
```
from datasets import load_dataset
# load dataset
dataset = "ijmiller2/autotrain-data-betterbin-vision-10000"
dataset = load_dataset(dataset)
```
Here's the full traceback:
```Downloading and preparing dataset json/ijmiller2--autotrain-data-betterbin-vision-10000 to /Users/ian/.cache/huggingface/datasets/ijmiller2___json/ijmiller2--autotrain-data-betterbin-vision-10000-2eae034a9ff8a1a9/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51...
Downloading data files: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 2/2 [00:00<00:00, 2383.80it/s]
Extracting data files: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 2/2 [00:00<00:00, 505.95it/s]
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/builder.py:1874, in ArrowBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)
1868 writer = writer_class(
1869 features=writer._features,
1870 path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
1871 storage_options=self._fs.storage_options,
1872 embed_local_files=embed_local_files,
1873 )
-> 1874 writer.write_table(table)
1875 num_examples_progress_update += len(table)
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/arrow_writer.py:568, in ArrowWriter.write_table(self, pa_table, writer_batch_size)
567 pa_table = pa_table.combine_chunks()
--> 568 pa_table = table_cast(pa_table, self._schema)
569 if self.embed_local_files:
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/table.py:2312, in table_cast(table, schema)
2311 if table.schema != schema:
-> 2312 return cast_table_to_schema(table, schema)
2313 elif table.schema.metadata != schema.metadata:
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/table.py:2270, in cast_table_to_schema(table, schema)
2269 if sorted(table.column_names) != sorted(features):
-> 2270 raise ValueError(f"Couldn't cast\n{table.schema}\nto\n{features}\nbecause column names don't match")
2271 arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
ValueError: Couldn't cast
_data_files: list<item: struct<filename: string>>
child 0, item: struct<filename: string>
child 0, filename: string
_fingerprint: string
_format_columns: list<item: string>
child 0, item: string
_format_kwargs: struct<>
_format_type: null
_indexes: struct<>
_output_all_columns: bool
_split: null
to
{'citation': Value(dtype='string', id=None), 'description': Value(dtype='string', id=None), 'features': {'image': {'_type': Value(dtype='string', id=None)}, 'target': {'names': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), '_type': Value(dtype='string', id=None)}}, 'homepage': Value(dtype='string', id=None), 'license': Value(dtype='string', id=None), 'splits': {'train': {'name': Value(dtype='string', id=None), 'num_bytes': Value(dtype='int64', id=None), 'num_examples': Value(dtype='int64', id=None), 'dataset_name': Value(dtype='null', id=None)}}}
because column names don't match
The above exception was the direct cause of the following exception:
DatasetGenerationError Traceback (most recent call last)
Input In [8], in <cell line: 6>()
4 # load dataset
5 dataset = "ijmiller2/autotrain-data-betterbin-vision-10000"
----> 6 dataset = load_dataset(dataset)
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/load.py:1782, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs)
1779 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES
1781 # Download and prepare data
-> 1782 builder_instance.download_and_prepare(
1783 download_config=download_config,
1784 download_mode=download_mode,
1785 verification_mode=verification_mode,
1786 try_from_hf_gcs=try_from_hf_gcs,
1787 num_proc=num_proc,
1788 )
1790 # Build dataset for splits
1791 keep_in_memory = (
1792 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
1793 )
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/builder.py:872, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)
870 if num_proc is not None:
871 prepare_split_kwargs["num_proc"] = num_proc
--> 872 self._download_and_prepare(
873 dl_manager=dl_manager,
874 verification_mode=verification_mode,
875 **prepare_split_kwargs,
876 **download_and_prepare_kwargs,
877 )
878 # Sync info
879 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/builder.py:967, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs)
963 split_dict.add(split_generator.split_info)
965 try:
966 # Prepare split will record examples associated to the split
--> 967 self._prepare_split(split_generator, **prepare_split_kwargs)
968 except OSError as e:
969 raise OSError(
970 "Cannot find data file. "
971 + (self.manual_download_instructions or "")
972 + "\nOriginal error:\n"
973 + str(e)
974 ) from None
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/builder.py:1749, in ArrowBasedBuilder._prepare_split(self, split_generator, file_format, num_proc, max_shard_size)
1747 job_id = 0
1748 with pbar:
-> 1749 for job_id, done, content in self._prepare_split_single(
1750 gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args
1751 ):
1752 if done:
1753 result = content
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/builder.py:1892, in ArrowBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)
1890 if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
1891 e = e.__context__
-> 1892 raise DatasetGenerationError("An error occurred while generating the dataset") from e
1894 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
DatasetGenerationError: An error occurred while generating the dataset
```
### Expected behavior
I'm ultimately trying to generate my own performance metrics on validation data (before putting an endpoint into production) and so was hoping to load all or at least the validation subset from the hub.
I'm expecting the `load_dataset()` function to work as shown in the documentation [here](https://huggingface.co/docs/datasets/loading#hugging-face-hub):
```python
dataset = load_dataset(
"lhoestq/custom_squad",
revision="main" # tag name, or branch name, or commit hash
)
```
### Environment info
- `datasets` version: 2.10.1
- Platform: macOS-13.2.1-arm64-arm-64bit
- Python version: 3.8.13
- PyArrow version: 9.0.0
- Pandas version: 1.4.4 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5627/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5627/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5626 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5626/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5626/comments | https://api.github.com/repos/huggingface/datasets/issues/5626/events | https://github.com/huggingface/datasets/pull/5626 | 1,619,252,984 | PR_kwDODunzps5LyBT4 | 5,626 | Support streaming datasets with numpy.load | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006607 / 0.011353 (-0.004746) | 0.004610 / 0.011008 (-0.006398) | 0.100673 / 0.038508 (0.062165) | 0.027739 / 0.023109 (0.004630) | 0.326290 / 0.275898 (0.050392) | 0.344296 / 0.323480 (0.020816) | 0.005021 / 0.007986 (-0.002964) | 0.003327 / 0.004328 (-0.001002) | 0.077779 / 0.004250 (0.073529) | 0.040237 / 0.037052 (0.003185) | 0.308992 / 0.258489 (0.050503) | 0.355017 / 0.293841 (0.061176) | 0.031203 / 0.128546 (-0.097343) | 0.011749 / 0.075646 (-0.063898) | 0.327431 / 0.419271 (-0.091840) | 0.043033 / 0.043533 (-0.000500) | 0.309713 / 0.255139 (0.054574) | 0.336550 / 0.283200 (0.053351) | 0.084891 / 0.141683 (-0.056792) | 1.555641 / 1.452155 (0.103487) | 1.613214 / 1.492716 (0.120497) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216269 / 0.018006 (0.198262) | 0.422066 / 0.000490 (0.421576) | 0.004055 / 0.000200 (0.003855) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023759 / 0.037411 (-0.013652) | 0.096937 / 0.014526 (0.082411) | 0.105312 / 0.176557 (-0.071244) | 0.167840 / 0.737135 (-0.569295) | 0.107998 / 0.296338 (-0.188340) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458315 / 0.215209 (0.243106) | 4.584803 / 2.077655 (2.507148) | 2.193641 / 1.504120 (0.689521) | 1.981494 / 1.541195 (0.440299) | 2.020358 / 1.468490 (0.551868) | 0.696763 / 4.584777 (-3.888014) | 3.388432 / 3.745712 (-0.357280) | 3.335038 / 5.269862 (-1.934823) | 1.648551 / 4.565676 (-2.917126) | 0.083753 / 0.424275 (-0.340522) | 0.012855 / 0.007607 (0.005248) | 0.562331 / 0.226044 (0.336286) | 5.649259 / 2.268929 (3.380330) | 2.680309 / 55.444624 (-52.764315) | 2.319297 / 6.876477 (-4.557180) | 2.444016 / 2.142072 (0.301943) | 0.809821 / 4.805227 (-3.995407) | 0.152855 / 6.500664 (-6.347809) | 0.067756 / 0.075469 (-0.007713) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.213318 / 1.841788 (-0.628470) | 13.887822 / 8.074308 (5.813514) | 14.276325 / 10.191392 (4.084933) | 0.156227 / 0.680424 (-0.524197) | 0.016377 / 0.534201 (-0.517824) | 0.377080 / 0.579283 (-0.202203) | 0.386561 / 0.434364 (-0.047803) | 0.435631 / 0.540337 (-0.104707) | 0.520863 / 1.386936 (-0.866073) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006740 / 0.011353 (-0.004613) | 0.004704 / 0.011008 (-0.006304) | 0.076840 / 0.038508 (0.038331) | 0.027519 / 0.023109 (0.004409) | 0.343219 / 0.275898 (0.067321) | 0.376810 / 0.323480 (0.053330) | 0.005048 / 0.007986 (-0.002938) | 0.003356 / 0.004328 (-0.000972) | 0.077098 / 0.004250 (0.072848) | 0.038601 / 0.037052 (0.001548) | 0.345723 / 0.258489 (0.087233) | 0.388635 / 0.293841 (0.094794) | 0.033612 / 0.128546 (-0.094934) | 0.011689 / 0.075646 (-0.063957) | 0.086446 / 0.419271 (-0.332825) | 0.044390 / 0.043533 (0.000857) | 0.343763 / 0.255139 (0.088624) | 0.368591 / 0.283200 (0.085392) | 0.091605 / 0.141683 (-0.050078) | 1.478615 / 1.452155 (0.026461) | 1.580858 / 1.492716 (0.088142) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223547 / 0.018006 (0.205541) | 0.411243 / 0.000490 (0.410753) | 0.000916 / 0.000200 (0.000716) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025223 / 0.037411 (-0.012189) | 0.100970 / 0.014526 (0.086445) | 0.108178 / 0.176557 (-0.068378) | 0.156827 / 0.737135 (-0.580308) | 0.111431 / 0.296338 (-0.184907) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434168 / 0.215209 (0.218959) | 4.361874 / 2.077655 (2.284219) | 2.060735 / 1.504120 (0.556615) | 1.861100 / 1.541195 (0.319906) | 1.920692 / 1.468490 (0.452202) | 0.697909 / 4.584777 (-3.886868) | 3.477036 / 3.745712 (-0.268676) | 3.002469 / 5.269862 (-2.267392) | 1.449325 / 4.565676 (-3.116351) | 0.083034 / 0.424275 (-0.341241) | 0.012805 / 0.007607 (0.005198) | 0.531391 / 0.226044 (0.305347) | 5.323015 / 2.268929 (3.054086) | 2.488605 / 55.444624 (-52.956020) | 2.158254 / 6.876477 (-4.718222) | 2.189633 / 2.142072 (0.047560) | 0.805972 / 4.805227 (-3.999256) | 0.153105 / 6.500664 (-6.347559) | 0.068909 / 0.075469 (-0.006561) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.276851 / 1.841788 (-0.564937) | 14.431510 / 8.074308 (6.357202) | 14.544788 / 10.191392 (4.353396) | 0.146589 / 0.680424 (-0.533835) | 0.016890 / 0.534201 (-0.517311) | 0.379897 / 0.579283 (-0.199387) | 0.389153 / 0.434364 (-0.045211) | 0.440097 / 0.540337 (-0.100241) | 0.524191 / 1.386936 (-0.862745) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e1af108015e43f9df8734a1faeeaeb9eafce3971 \"CML watermark\")\n"
] | 2023-03-10T16:33:39 | 2023-03-21T06:36:05 | 2023-03-21T06:28:54 | MEMBER | null | Support streaming datasets with `numpy.load`.
See: https://huggingface.co/datasets/qgallouedec/gia_dataset/discussions/1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5626/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5626/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5626",
"html_url": "https://github.com/huggingface/datasets/pull/5626",
"diff_url": "https://github.com/huggingface/datasets/pull/5626.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5626.patch",
"merged_at": "2023-03-21T06:28:54"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5625 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5625/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5625/comments | https://api.github.com/repos/huggingface/datasets/issues/5625/events | https://github.com/huggingface/datasets/issues/5625 | 1,618,971,855 | I_kwDODunzps5gf4zP | 5,625 | Allow "jsonl" data type signifier | {
"login": "BramVanroy",
"id": 2779410,
"node_id": "MDQ6VXNlcjI3Nzk0MTA=",
"avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/BramVanroy",
"html_url": "https://github.com/BramVanroy",
"followers_url": "https://api.github.com/users/BramVanroy/followers",
"following_url": "https://api.github.com/users/BramVanroy/following{/other_user}",
"gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}",
"starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions",
"organizations_url": "https://api.github.com/users/BramVanroy/orgs",
"repos_url": "https://api.github.com/users/BramVanroy/repos",
"events_url": "https://api.github.com/users/BramVanroy/events{/privacy}",
"received_events_url": "https://api.github.com/users/BramVanroy/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"You can use \"json\" instead. It doesn't work by extension names, but rather by dataset builder names, e.g. \"text\", \"imagefolder\", etc. I don't think the example in `transformers` is correct because of that",
"Yes, I understand the reasoning but this issue is to propose that the example in transformers (while incorrect) \"makes sense\" in terms of user expectation. So the question is whether it would be possible to add \"aliases\" for common types (like \"json\" and \"text\") based on common extensions (like jsonl and txt)?"
] | 2023-03-10T13:21:48 | 2023-03-11T10:35:39 | null | CONTRIBUTOR | null | ### Feature request
`load_dataset` currently does not accept `jsonl` as type but only `json`.
### Motivation
I was working with one of the `run_translation` scripts and used my own datasets (`.jsonl`) as train_dataset. But the default code did not work because
```
FileNotFoundError: Couldn't find a dataset script at jsonl\jsonl.py or any data file in the same directory. Couldn't find 'jsonl' on the Hugging Face Hub either: FileNotFoundError: Dataset 'jsonl' doesn't exist on the Hub. If the repo is private or gated, make sure to log in with `huggingface-cli login`.
```
The reason is because the script has these lines to extract the data type by its extension. Therefore, the derived type is `jsonl` which is not recognized by datasets as the error above shows.
https://github.com/huggingface/transformers/blob/ade26bf9912f69e2110137443e4406d7dbe253e7/examples/pytorch/translation/run_translation.py#L342-L356
I suppose you could argue that this is the script's fault (in which case I'll do a PR over at `transformers`) but it makes sense to me to add `jsonl` as an alias to `json` in `datasets`.
### Your contribution
At the moment I cannot work on this. I think it can be as "easy" as having an alias for json, namely jsonl. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5625/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5625/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5624 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5624/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5624/comments | https://api.github.com/repos/huggingface/datasets/issues/5624/events | https://github.com/huggingface/datasets/issues/5624 | 1,617,400,192 | I_kwDODunzps5gZ5GA | 5,624 | glue datasets returning -1 for test split | {
"login": "lithafnium",
"id": 8939967,
"node_id": "MDQ6VXNlcjg5Mzk5Njc=",
"avatar_url": "https://avatars.githubusercontent.com/u/8939967?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lithafnium",
"html_url": "https://github.com/lithafnium",
"followers_url": "https://api.github.com/users/lithafnium/followers",
"following_url": "https://api.github.com/users/lithafnium/following{/other_user}",
"gists_url": "https://api.github.com/users/lithafnium/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lithafnium/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lithafnium/subscriptions",
"organizations_url": "https://api.github.com/users/lithafnium/orgs",
"repos_url": "https://api.github.com/users/lithafnium/repos",
"events_url": "https://api.github.com/users/lithafnium/events{/privacy}",
"received_events_url": "https://api.github.com/users/lithafnium/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi @lithafnium, thanks for reporting.\r\n\r\nPlease note that you can use the \"Community\" tab in the corresponding dataset page to start any discussion: https://huggingface.co/datasets/glue/discussions\r\n\r\nIndeed this issue was already raised there (https://huggingface.co/datasets/glue/discussions/5) and answered: https://huggingface.co/datasets/glue/discussions/5#63907885937867f0cb3cde31\r\n> The test labels are not public.\r\n>\r\n> Note this dataset belongs to a benchmark: people send their predictions for the test split to GLUE (https://gluebenchmark.com/) and then they get a score in their leaderboard...\r\n"
] | 2023-03-09T14:47:18 | 2023-03-09T16:49:29 | 2023-03-09T16:49:29 | NONE | null | ### Describe the bug
Downloading any dataset from GLUE has -1 as class labels for test split. Train and validation have regular 0/1 class labels. This is also present in the dataset card online.
### Steps to reproduce the bug
```
dataset = load_dataset("glue", "sst2")
for d in dataset:
# prints out -1
print(d["label"]
```
### Expected behavior
Expected behavior should be 0/1 instead of -1.
### Environment info
- `datasets` version: 2.4.0
- Platform: Linux-5.15.0-46-generic-x86_64-with-glibc2.17
- Python version: 3.8.16
- PyArrow version: 8.0.0
- Pandas version: 1.5.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5624/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5624/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5623 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5623/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5623/comments | https://api.github.com/repos/huggingface/datasets/issues/5623/events | https://github.com/huggingface/datasets/pull/5623 | 1,616,712,665 | PR_kwDODunzps5Lpb4q | 5,623 | Remove set_access_token usage + fail tests if FutureWarning | {
"login": "Wauplin",
"id": 11801849,
"node_id": "MDQ6VXNlcjExODAxODQ5",
"avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Wauplin",
"html_url": "https://github.com/Wauplin",
"followers_url": "https://api.github.com/users/Wauplin/followers",
"following_url": "https://api.github.com/users/Wauplin/following{/other_user}",
"gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions",
"organizations_url": "https://api.github.com/users/Wauplin/orgs",
"repos_url": "https://api.github.com/users/Wauplin/repos",
"events_url": "https://api.github.com/users/Wauplin/events{/privacy}",
"received_events_url": "https://api.github.com/users/Wauplin/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008505 / 0.011353 (-0.002848) | 0.004445 / 0.011008 (-0.006563) | 0.102197 / 0.038508 (0.063689) | 0.029886 / 0.023109 (0.006776) | 0.305387 / 0.275898 (0.029489) | 0.355986 / 0.323480 (0.032507) | 0.006814 / 0.007986 (-0.001172) | 0.003298 / 0.004328 (-0.001030) | 0.079204 / 0.004250 (0.074954) | 0.035618 / 0.037052 (-0.001434) | 0.320430 / 0.258489 (0.061941) | 0.353330 / 0.293841 (0.059490) | 0.033280 / 0.128546 (-0.095266) | 0.011300 / 0.075646 (-0.064347) | 0.324627 / 0.419271 (-0.094644) | 0.040405 / 0.043533 (-0.003128) | 0.308760 / 0.255139 (0.053621) | 0.331885 / 0.283200 (0.048685) | 0.084605 / 0.141683 (-0.057077) | 1.576598 / 1.452155 (0.124443) | 1.530694 / 1.492716 (0.037977) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191142 / 0.018006 (0.173136) | 0.404042 / 0.000490 (0.403552) | 0.001185 / 0.000200 (0.000985) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022889 / 0.037411 (-0.014523) | 0.095862 / 0.014526 (0.081336) | 0.104382 / 0.176557 (-0.072175) | 0.139407 / 0.737135 (-0.597728) | 0.106813 / 0.296338 (-0.189525) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419083 / 0.215209 (0.203874) | 4.188702 / 2.077655 (2.111047) | 1.897854 / 1.504120 (0.393734) | 1.689544 / 1.541195 (0.148350) | 1.714032 / 1.468490 (0.245542) | 0.695541 / 4.584777 (-3.889236) | 3.370584 / 3.745712 (-0.375128) | 3.205549 / 5.269862 (-2.064313) | 1.641202 / 4.565676 (-2.924474) | 0.081849 / 0.424275 (-0.342426) | 0.012043 / 0.007607 (0.004436) | 0.529618 / 0.226044 (0.303574) | 5.314167 / 2.268929 (3.045238) | 2.357271 / 55.444624 (-53.087353) | 1.979684 / 6.876477 (-4.896793) | 2.030057 / 2.142072 (-0.112015) | 0.813013 / 4.805227 (-3.992214) | 0.150165 / 6.500664 (-6.350499) | 0.064595 / 0.075469 (-0.010874) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.237824 / 1.841788 (-0.603964) | 13.552178 / 8.074308 (5.477870) | 14.089433 / 10.191392 (3.898041) | 0.149325 / 0.680424 (-0.531099) | 0.028543 / 0.534201 (-0.505658) | 0.396848 / 0.579283 (-0.182435) | 0.396230 / 0.434364 (-0.038134) | 0.466317 / 0.540337 (-0.074021) | 0.539579 / 1.386936 (-0.847357) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006224 / 0.011353 (-0.005128) | 0.004429 / 0.011008 (-0.006579) | 0.075740 / 0.038508 (0.037232) | 0.026717 / 0.023109 (0.003608) | 0.341685 / 0.275898 (0.065787) | 0.383671 / 0.323480 (0.060191) | 0.004682 / 0.007986 (-0.003304) | 0.004681 / 0.004328 (0.000352) | 0.076638 / 0.004250 (0.072387) | 0.034577 / 0.037052 (-0.002476) | 0.341160 / 0.258489 (0.082671) | 0.407590 / 0.293841 (0.113749) | 0.031121 / 0.128546 (-0.097425) | 0.011479 / 0.075646 (-0.064167) | 0.085299 / 0.419271 (-0.333973) | 0.042005 / 0.043533 (-0.001528) | 0.339682 / 0.255139 (0.084543) | 0.377669 / 0.283200 (0.094469) | 0.087751 / 0.141683 (-0.053932) | 1.523910 / 1.452155 (0.071756) | 1.607487 / 1.492716 (0.114771) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225605 / 0.018006 (0.207599) | 0.395851 / 0.000490 (0.395361) | 0.004404 / 0.000200 (0.004204) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024489 / 0.037411 (-0.012922) | 0.099813 / 0.014526 (0.085287) | 0.107392 / 0.176557 (-0.069165) | 0.139567 / 0.737135 (-0.597568) | 0.110080 / 0.296338 (-0.186258) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.449051 / 0.215209 (0.233841) | 4.463098 / 2.077655 (2.385443) | 2.122548 / 1.504120 (0.618428) | 1.913863 / 1.541195 (0.372669) | 1.963988 / 1.468490 (0.495498) | 0.698442 / 4.584777 (-3.886335) | 3.330425 / 3.745712 (-0.415287) | 1.867843 / 5.269862 (-3.402019) | 1.163740 / 4.565676 (-3.401937) | 0.083209 / 0.424275 (-0.341066) | 0.012594 / 0.007607 (0.004987) | 0.547074 / 0.226044 (0.321030) | 5.474779 / 2.268929 (3.205851) | 2.548025 / 55.444624 (-52.896599) | 2.202435 / 6.876477 (-4.674041) | 2.220330 / 2.142072 (0.078257) | 0.810104 / 4.805227 (-3.995124) | 0.151141 / 6.500664 (-6.349523) | 0.066204 / 0.075469 (-0.009265) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272075 / 1.841788 (-0.569712) | 13.749523 / 8.074308 (5.675215) | 14.270974 / 10.191392 (4.079582) | 0.141285 / 0.680424 (-0.539139) | 0.016526 / 0.534201 (-0.517675) | 0.393175 / 0.579283 (-0.186109) | 0.391577 / 0.434364 (-0.042787) | 0.492824 / 0.540337 (-0.047513) | 0.580069 / 1.386936 (-0.806867) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1cda14136c9f79c763c17d49b77eabfb233fbb35 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008901 / 0.011353 (-0.002452) | 0.005017 / 0.011008 (-0.005991) | 0.099340 / 0.038508 (0.060832) | 0.034218 / 0.023109 (0.011109) | 0.295927 / 0.275898 (0.020029) | 0.330087 / 0.323480 (0.006607) | 0.008041 / 0.007986 (0.000056) | 0.005013 / 0.004328 (0.000685) | 0.074255 / 0.004250 (0.070004) | 0.049634 / 0.037052 (0.012582) | 0.299972 / 0.258489 (0.041483) | 0.349879 / 0.293841 (0.056038) | 0.038500 / 0.128546 (-0.090047) | 0.011980 / 0.075646 (-0.063666) | 0.332408 / 0.419271 (-0.086863) | 0.048385 / 0.043533 (0.004852) | 0.300393 / 0.255139 (0.045254) | 0.316972 / 0.283200 (0.033772) | 0.101674 / 0.141683 (-0.040009) | 1.424300 / 1.452155 (-0.027854) | 1.520658 / 1.492716 (0.027942) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.270084 / 0.018006 (0.252078) | 0.538612 / 0.000490 (0.538123) | 0.004439 / 0.000200 (0.004240) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026841 / 0.037411 (-0.010570) | 0.106454 / 0.014526 (0.091928) | 0.118371 / 0.176557 (-0.058186) | 0.155545 / 0.737135 (-0.581590) | 0.125119 / 0.296338 (-0.171220) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395794 / 0.215209 (0.180585) | 3.958195 / 2.077655 (1.880540) | 1.789010 / 1.504120 (0.284890) | 1.601380 / 1.541195 (0.060186) | 1.641062 / 1.468490 (0.172572) | 0.679547 / 4.584777 (-3.905230) | 3.778018 / 3.745712 (0.032306) | 2.101232 / 5.269862 (-3.168630) | 1.463932 / 4.565676 (-3.101745) | 0.083639 / 0.424275 (-0.340636) | 0.012339 / 0.007607 (0.004732) | 0.498708 / 0.226044 (0.272663) | 4.995178 / 2.268929 (2.726249) | 2.272650 / 55.444624 (-53.171975) | 1.907879 / 6.876477 (-4.968598) | 2.012666 / 2.142072 (-0.129407) | 0.829564 / 4.805227 (-3.975663) | 0.165049 / 6.500664 (-6.335615) | 0.062291 / 0.075469 (-0.013178) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.193977 / 1.841788 (-0.647811) | 14.816939 / 8.074308 (6.742631) | 14.369729 / 10.191392 (4.178337) | 0.156339 / 0.680424 (-0.524084) | 0.029151 / 0.534201 (-0.505050) | 0.449362 / 0.579283 (-0.129921) | 0.451895 / 0.434364 (0.017531) | 0.520324 / 0.540337 (-0.020013) | 0.610716 / 1.386936 (-0.776220) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007145 / 0.011353 (-0.004207) | 0.005299 / 0.011008 (-0.005710) | 0.074216 / 0.038508 (0.035708) | 0.033015 / 0.023109 (0.009906) | 0.337117 / 0.275898 (0.061219) | 0.367161 / 0.323480 (0.043682) | 0.005898 / 0.007986 (-0.002088) | 0.005283 / 0.004328 (0.000955) | 0.073795 / 0.004250 (0.069544) | 0.049253 / 0.037052 (0.012201) | 0.343327 / 0.258489 (0.084838) | 0.396417 / 0.293841 (0.102576) | 0.037162 / 0.128546 (-0.091384) | 0.012456 / 0.075646 (-0.063191) | 0.086668 / 0.419271 (-0.332604) | 0.049937 / 0.043533 (0.006404) | 0.335138 / 0.255139 (0.079999) | 0.358111 / 0.283200 (0.074912) | 0.107328 / 0.141683 (-0.034355) | 1.482290 / 1.452155 (0.030135) | 1.557872 / 1.492716 (0.065156) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.343759 / 0.018006 (0.325752) | 0.542697 / 0.000490 (0.542207) | 0.025943 / 0.000200 (0.025743) | 0.000264 / 0.000054 (0.000209) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028469 / 0.037411 (-0.008943) | 0.108620 / 0.014526 (0.094094) | 0.123667 / 0.176557 (-0.052890) | 0.168829 / 0.737135 (-0.568306) | 0.125875 / 0.296338 (-0.170464) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424640 / 0.215209 (0.209431) | 4.227611 / 2.077655 (2.149956) | 2.003605 / 1.504120 (0.499486) | 1.810696 / 1.541195 (0.269501) | 1.882700 / 1.468490 (0.414210) | 0.701361 / 4.584777 (-3.883416) | 3.808054 / 3.745712 (0.062342) | 3.234896 / 5.269862 (-2.034966) | 1.872195 / 4.565676 (-2.693482) | 0.088102 / 0.424275 (-0.336173) | 0.012810 / 0.007607 (0.005203) | 0.551855 / 0.226044 (0.325810) | 5.245654 / 2.268929 (2.976725) | 2.557123 / 55.444624 (-52.887502) | 2.238897 / 6.876477 (-4.637580) | 2.256260 / 2.142072 (0.114187) | 0.849804 / 4.805227 (-3.955424) | 0.170557 / 6.500664 (-6.330107) | 0.064718 / 0.075469 (-0.010751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.271701 / 1.841788 (-0.570087) | 14.925010 / 8.074308 (6.850702) | 14.966948 / 10.191392 (4.775556) | 0.162966 / 0.680424 (-0.517458) | 0.017618 / 0.534201 (-0.516583) | 0.433484 / 0.579283 (-0.145799) | 0.430047 / 0.434364 (-0.004316) | 0.537356 / 0.540337 (-0.002981) | 0.639237 / 1.386936 (-0.747699) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aba888cb4d225b1a05596f52258a079bda98df70 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012054 / 0.011353 (0.000702) | 0.005923 / 0.011008 (-0.005085) | 0.129531 / 0.038508 (0.091023) | 0.036283 / 0.023109 (0.013173) | 0.374406 / 0.275898 (0.098508) | 0.452538 / 0.323480 (0.129058) | 0.009419 / 0.007986 (0.001434) | 0.004783 / 0.004328 (0.000454) | 0.095292 / 0.004250 (0.091042) | 0.041290 / 0.037052 (0.004238) | 0.403940 / 0.258489 (0.145451) | 0.443091 / 0.293841 (0.149250) | 0.054635 / 0.128546 (-0.073911) | 0.019062 / 0.075646 (-0.056584) | 0.417053 / 0.419271 (-0.002218) | 0.060865 / 0.043533 (0.017332) | 0.378535 / 0.255139 (0.123396) | 0.401036 / 0.283200 (0.117836) | 0.122959 / 0.141683 (-0.018724) | 1.768517 / 1.452155 (0.316362) | 1.794700 / 1.492716 (0.301984) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246529 / 0.018006 (0.228523) | 0.576887 / 0.000490 (0.576397) | 0.005031 / 0.000200 (0.004831) | 0.000125 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027363 / 0.037411 (-0.010049) | 0.119037 / 0.014526 (0.104511) | 0.148109 / 0.176557 (-0.028447) | 0.179370 / 0.737135 (-0.557765) | 0.145105 / 0.296338 (-0.151234) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.588748 / 0.215209 (0.373539) | 5.934433 / 2.077655 (3.856778) | 2.549811 / 1.504120 (1.045691) | 2.234616 / 1.541195 (0.693421) | 2.268002 / 1.468490 (0.799512) | 1.154643 / 4.584777 (-3.430134) | 5.333935 / 3.745712 (1.588223) | 2.971065 / 5.269862 (-2.298796) | 2.131427 / 4.565676 (-2.434250) | 0.127737 / 0.424275 (-0.296538) | 0.014699 / 0.007607 (0.007091) | 0.735160 / 0.226044 (0.509115) | 7.403838 / 2.268929 (5.134909) | 3.298169 / 55.444624 (-52.146455) | 2.661285 / 6.876477 (-4.215192) | 2.688877 / 2.142072 (0.546805) | 1.344110 / 4.805227 (-3.461118) | 0.242016 / 6.500664 (-6.258648) | 0.077418 / 0.075469 (0.001948) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.566426 / 1.841788 (-0.275362) | 17.144308 / 8.074308 (9.070000) | 19.360598 / 10.191392 (9.169206) | 0.238554 / 0.680424 (-0.441870) | 0.044946 / 0.534201 (-0.489255) | 0.554183 / 0.579283 (-0.025100) | 0.630175 / 0.434364 (0.195811) | 0.630319 / 0.540337 (0.089982) | 0.745060 / 1.386936 (-0.641876) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009255 / 0.011353 (-0.002098) | 0.006951 / 0.011008 (-0.004057) | 0.092021 / 0.038508 (0.053513) | 0.035588 / 0.023109 (0.012479) | 0.415564 / 0.275898 (0.139666) | 0.446393 / 0.323480 (0.122913) | 0.006532 / 0.007986 (-0.001453) | 0.005099 / 0.004328 (0.000771) | 0.094801 / 0.004250 (0.090550) | 0.044926 / 0.037052 (0.007874) | 0.439125 / 0.258489 (0.180636) | 0.473004 / 0.293841 (0.179163) | 0.057025 / 0.128546 (-0.071522) | 0.018711 / 0.075646 (-0.056935) | 0.110844 / 0.419271 (-0.308427) | 0.058347 / 0.043533 (0.014814) | 0.435721 / 0.255139 (0.180583) | 0.434624 / 0.283200 (0.151424) | 0.114505 / 0.141683 (-0.027178) | 1.722379 / 1.452155 (0.270225) | 1.775836 / 1.492716 (0.283120) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275893 / 0.018006 (0.257887) | 0.552590 / 0.000490 (0.552100) | 0.007919 / 0.000200 (0.007719) | 0.000122 / 0.000054 (0.000068) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030003 / 0.037411 (-0.007408) | 0.130145 / 0.014526 (0.115619) | 0.131878 / 0.176557 (-0.044678) | 0.194693 / 0.737135 (-0.542442) | 0.137689 / 0.296338 (-0.158650) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.619591 / 0.215209 (0.404382) | 6.324095 / 2.077655 (4.246441) | 2.756563 / 1.504120 (1.252444) | 2.384744 / 1.541195 (0.843549) | 2.450407 / 1.468490 (0.981917) | 1.235391 / 4.584777 (-3.349386) | 5.535383 / 3.745712 (1.789671) | 4.831927 / 5.269862 (-0.437934) | 2.757158 / 4.565676 (-1.808519) | 0.133980 / 0.424275 (-0.290295) | 0.014965 / 0.007607 (0.007358) | 0.731423 / 0.226044 (0.505379) | 7.401850 / 2.268929 (5.132921) | 3.346585 / 55.444624 (-52.098039) | 2.705523 / 6.876477 (-4.170953) | 2.637397 / 2.142072 (0.495324) | 1.347745 / 4.805227 (-3.457482) | 0.248658 / 6.500664 (-6.252006) | 0.077427 / 0.075469 (0.001958) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.520860 / 1.841788 (-0.320928) | 17.153000 / 8.074308 (9.078692) | 19.051393 / 10.191392 (8.860001) | 0.236840 / 0.680424 (-0.443584) | 0.026638 / 0.534201 (-0.507563) | 0.518417 / 0.579283 (-0.060866) | 0.607555 / 0.434364 (0.173191) | 0.637381 / 0.540337 (0.097044) | 0.767109 / 1.386936 (-0.619827) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5ee291f2c5e68a782c82f916e250d470a7e285e7 \"CML watermark\")\n",
"Great, I merged it. Thanks for the review :)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006711 / 0.011353 (-0.004641) | 0.004472 / 0.011008 (-0.006536) | 0.099581 / 0.038508 (0.061073) | 0.028036 / 0.023109 (0.004927) | 0.301197 / 0.275898 (0.025298) | 0.339341 / 0.323480 (0.015861) | 0.005107 / 0.007986 (-0.002879) | 0.003312 / 0.004328 (-0.001017) | 0.075823 / 0.004250 (0.071573) | 0.040861 / 0.037052 (0.003809) | 0.303407 / 0.258489 (0.044918) | 0.350717 / 0.293841 (0.056876) | 0.031657 / 0.128546 (-0.096889) | 0.011627 / 0.075646 (-0.064020) | 0.325465 / 0.419271 (-0.093806) | 0.052671 / 0.043533 (0.009138) | 0.301953 / 0.255139 (0.046814) | 0.327164 / 0.283200 (0.043964) | 0.091264 / 0.141683 (-0.050419) | 1.508947 / 1.452155 (0.056792) | 1.605685 / 1.492716 (0.112968) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202977 / 0.018006 (0.184971) | 0.400602 / 0.000490 (0.400112) | 0.003253 / 0.000200 (0.003053) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022453 / 0.037411 (-0.014958) | 0.098633 / 0.014526 (0.084107) | 0.105996 / 0.176557 (-0.070561) | 0.162428 / 0.737135 (-0.574707) | 0.107139 / 0.296338 (-0.189199) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453061 / 0.215209 (0.237852) | 4.530844 / 2.077655 (2.453190) | 2.286394 / 1.504120 (0.782274) | 2.076479 / 1.541195 (0.535284) | 2.143730 / 1.468490 (0.675240) | 0.702540 / 4.584777 (-3.882237) | 3.442688 / 3.745712 (-0.303024) | 1.874429 / 5.269862 (-3.395433) | 1.172331 / 4.565676 (-3.393346) | 0.083643 / 0.424275 (-0.340632) | 0.012519 / 0.007607 (0.004911) | 0.556859 / 0.226044 (0.330814) | 5.582843 / 2.268929 (3.313915) | 2.753734 / 55.444624 (-52.690890) | 2.415771 / 6.876477 (-4.460705) | 2.531428 / 2.142072 (0.389356) | 0.813005 / 4.805227 (-3.992222) | 0.153322 / 6.500664 (-6.347343) | 0.068061 / 0.075469 (-0.007408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180481 / 1.841788 (-0.661306) | 13.623933 / 8.074308 (5.549625) | 14.431288 / 10.191392 (4.239896) | 0.127580 / 0.680424 (-0.552844) | 0.016714 / 0.534201 (-0.517487) | 0.394236 / 0.579283 (-0.185047) | 0.381718 / 0.434364 (-0.052646) | 0.486749 / 0.540337 (-0.053589) | 0.565939 / 1.386936 (-0.820997) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006720 / 0.011353 (-0.004633) | 0.004518 / 0.011008 (-0.006491) | 0.076819 / 0.038508 (0.038311) | 0.027272 / 0.023109 (0.004163) | 0.340890 / 0.275898 (0.064992) | 0.381435 / 0.323480 (0.057955) | 0.004980 / 0.007986 (-0.003005) | 0.003382 / 0.004328 (-0.000947) | 0.076368 / 0.004250 (0.072117) | 0.037365 / 0.037052 (0.000313) | 0.341484 / 0.258489 (0.082995) | 0.388917 / 0.293841 (0.095076) | 0.032004 / 0.128546 (-0.096543) | 0.011612 / 0.075646 (-0.064034) | 0.084929 / 0.419271 (-0.334342) | 0.041861 / 0.043533 (-0.001671) | 0.350392 / 0.255139 (0.095253) | 0.369745 / 0.283200 (0.086546) | 0.088301 / 0.141683 (-0.053382) | 1.587296 / 1.452155 (0.135141) | 1.629761 / 1.492716 (0.137045) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.174825 / 0.018006 (0.156818) | 0.414371 / 0.000490 (0.413881) | 0.001595 / 0.000200 (0.001395) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025403 / 0.037411 (-0.012009) | 0.099593 / 0.014526 (0.085067) | 0.108819 / 0.176557 (-0.067738) | 0.161613 / 0.737135 (-0.575523) | 0.112302 / 0.296338 (-0.184037) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439234 / 0.215209 (0.224024) | 4.389073 / 2.077655 (2.311418) | 2.063215 / 1.504120 (0.559095) | 1.852550 / 1.541195 (0.311356) | 1.920014 / 1.468490 (0.451524) | 0.710255 / 4.584777 (-3.874522) | 3.430549 / 3.745712 (-0.315164) | 1.886072 / 5.269862 (-3.383790) | 1.177490 / 4.565676 (-3.388186) | 0.084877 / 0.424275 (-0.339398) | 0.012894 / 0.007607 (0.005287) | 0.544950 / 0.226044 (0.318906) | 5.467347 / 2.268929 (3.198419) | 2.508169 / 55.444624 (-52.936455) | 2.167756 / 6.876477 (-4.708721) | 2.212817 / 2.142072 (0.070744) | 0.824762 / 4.805227 (-3.980465) | 0.154387 / 6.500664 (-6.346277) | 0.068535 / 0.075469 (-0.006934) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.284165 / 1.841788 (-0.557623) | 14.153006 / 8.074308 (6.078697) | 14.152569 / 10.191392 (3.961177) | 0.130083 / 0.680424 (-0.550341) | 0.016556 / 0.534201 (-0.517645) | 0.383828 / 0.579283 (-0.195455) | 0.388241 / 0.434364 (-0.046123) | 0.477982 / 0.540337 (-0.062355) | 0.565583 / 1.386936 (-0.821353) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f1e7442d34a059ff377437381542cc762feab057 \"CML watermark\")\n"
] | 2023-03-09T08:46:01 | 2023-03-09T15:39:00 | 2023-03-09T15:31:59 | CONTRIBUTOR | null | `set_access_token` is deprecated and will be removed in `huggingface_hub>=0.14`.
This PR removes it from the tests (it was not used in `datasets` source code itself). FYI, it was not needed since `set_access_token` was just setting git credentials and `datasets` doesn't seem to use git anywhere.
In the future, use `set_git_credential` if needed. It is a git-credential-agnostic helper, i.e. you can store your git token in `git-credential-cache`, `git-credential-store`, `osxkeychain`, etc. The legacy `set_access_token` could only set in `git-credential-store` no matter the user preference.
(for context, I found out about this while working on https://github.com/huggingface/huggingface_hub/pull/1381)
---
In addition to this, I have added
```
filterwarnings =
error::FutureWarning:huggingface_hub*
```
to the `setup.cfg` config file to fail on future warnings from `huggingface_hub`. In `hfh`'s CI we trigger on FutureWarning from any package but it's less robust (any package update leads can lead to a failure). No obligation to keep it like that (I can remove it if you prefer) but I think it's a good idea in order to track future FutureWarnings.
FYI, in `huggingface_hub` tests we use `-Werror::FutureWarning --log-cli-level=INFO -sv --durations=0`
- FutureWarning are processed as error
- verbose mode / INFO logs (and above) are captured for easier debugging in github report
- track each test duration, just to see where we can improve. We have a quite long CI (~10min) so it helped improve that. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5623/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5623/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5623",
"html_url": "https://github.com/huggingface/datasets/pull/5623",
"diff_url": "https://github.com/huggingface/datasets/pull/5623.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5623.patch",
"merged_at": "2023-03-09T15:31:58"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5622 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5622/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5622/comments | https://api.github.com/repos/huggingface/datasets/issues/5622/events | https://github.com/huggingface/datasets/pull/5622 | 1,615,190,942 | PR_kwDODunzps5LkSj8 | 5,622 | Update README template to better template | {
"login": "emiltj",
"id": 54767532,
"node_id": "MDQ6VXNlcjU0NzY3NTMy",
"avatar_url": "https://avatars.githubusercontent.com/u/54767532?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/emiltj",
"html_url": "https://github.com/emiltj",
"followers_url": "https://api.github.com/users/emiltj/followers",
"following_url": "https://api.github.com/users/emiltj/following{/other_user}",
"gists_url": "https://api.github.com/users/emiltj/gists{/gist_id}",
"starred_url": "https://api.github.com/users/emiltj/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/emiltj/subscriptions",
"organizations_url": "https://api.github.com/users/emiltj/orgs",
"repos_url": "https://api.github.com/users/emiltj/repos",
"events_url": "https://api.github.com/users/emiltj/events{/privacy}",
"received_events_url": "https://api.github.com/users/emiltj/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"IMO this template should stay generic.\r\n\r\nAlso, we now use [the card template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md) from `hugginface_hub` as the source of truth on the Hub (you now have the option to import it into the dataset card/README.md), so I think the next step would be deleting this template rather than updating it.",
"Agreed, the PR was a mistake and meant for my own repo. My bad",
"Feel free to close the PR then."
] | 2023-03-08T12:30:23 | 2023-03-11T05:07:38 | 2023-03-11T05:07:38 | NONE | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5622/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5622/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5622",
"html_url": "https://github.com/huggingface/datasets/pull/5622",
"diff_url": "https://github.com/huggingface/datasets/pull/5622.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5622.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5621 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5621/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5621/comments | https://api.github.com/repos/huggingface/datasets/issues/5621/events | https://github.com/huggingface/datasets/pull/5621 | 1,615,029,615 | PR_kwDODunzps5LjwD8 | 5,621 | Adding Oracle Cloud to docs | {
"login": "ahosler",
"id": 29129502,
"node_id": "MDQ6VXNlcjI5MTI5NTAy",
"avatar_url": "https://avatars.githubusercontent.com/u/29129502?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ahosler",
"html_url": "https://github.com/ahosler",
"followers_url": "https://api.github.com/users/ahosler/followers",
"following_url": "https://api.github.com/users/ahosler/following{/other_user}",
"gists_url": "https://api.github.com/users/ahosler/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ahosler/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ahosler/subscriptions",
"organizations_url": "https://api.github.com/users/ahosler/orgs",
"repos_url": "https://api.github.com/users/ahosler/repos",
"events_url": "https://api.github.com/users/ahosler/events{/privacy}",
"received_events_url": "https://api.github.com/users/ahosler/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006183 / 0.011353 (-0.005170) | 0.004377 / 0.011008 (-0.006631) | 0.096898 / 0.038508 (0.058390) | 0.027729 / 0.023109 (0.004620) | 0.336582 / 0.275898 (0.060684) | 0.353792 / 0.323480 (0.030312) | 0.004541 / 0.007986 (-0.003445) | 0.004349 / 0.004328 (0.000020) | 0.074403 / 0.004250 (0.070153) | 0.033918 / 0.037052 (-0.003134) | 0.341505 / 0.258489 (0.083016) | 0.380192 / 0.293841 (0.086351) | 0.031703 / 0.128546 (-0.096843) | 0.011561 / 0.075646 (-0.064086) | 0.321848 / 0.419271 (-0.097423) | 0.043407 / 0.043533 (-0.000126) | 0.330365 / 0.255139 (0.075226) | 0.364630 / 0.283200 (0.081430) | 0.084798 / 0.141683 (-0.056885) | 1.450908 / 1.452155 (-0.001246) | 1.522235 / 1.492716 (0.029519) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198267 / 0.018006 (0.180261) | 0.409554 / 0.000490 (0.409065) | 0.002501 / 0.000200 (0.002301) | 0.000270 / 0.000054 (0.000215) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021801 / 0.037411 (-0.015610) | 0.097429 / 0.014526 (0.082904) | 0.103259 / 0.176557 (-0.073298) | 0.161483 / 0.737135 (-0.575652) | 0.107843 / 0.296338 (-0.188496) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427057 / 0.215209 (0.211848) | 4.259477 / 2.077655 (2.181823) | 1.945819 / 1.504120 (0.441699) | 1.733013 / 1.541195 (0.191819) | 1.748486 / 1.468490 (0.279996) | 0.702231 / 4.584777 (-3.882546) | 3.387608 / 3.745712 (-0.358104) | 1.890187 / 5.269862 (-3.379675) | 1.300465 / 4.565676 (-3.265211) | 0.083702 / 0.424275 (-0.340573) | 0.012674 / 0.007607 (0.005067) | 0.527978 / 0.226044 (0.301934) | 5.259610 / 2.268929 (2.990681) | 2.366512 / 55.444624 (-53.078113) | 2.013811 / 6.876477 (-4.862666) | 2.058175 / 2.142072 (-0.083898) | 0.815042 / 4.805227 (-3.990185) | 0.153496 / 6.500664 (-6.347168) | 0.065442 / 0.075469 (-0.010027) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.227494 / 1.841788 (-0.614294) | 13.812921 / 8.074308 (5.738613) | 14.430149 / 10.191392 (4.238757) | 0.145422 / 0.680424 (-0.535002) | 0.016672 / 0.534201 (-0.517529) | 0.382126 / 0.579283 (-0.197157) | 0.388369 / 0.434364 (-0.045995) | 0.446133 / 0.540337 (-0.094204) | 0.531044 / 1.386936 (-0.855892) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006273 / 0.011353 (-0.005080) | 0.004557 / 0.011008 (-0.006452) | 0.077398 / 0.038508 (0.038890) | 0.027295 / 0.023109 (0.004185) | 0.340866 / 0.275898 (0.064968) | 0.373918 / 0.323480 (0.050438) | 0.004967 / 0.007986 (-0.003018) | 0.003337 / 0.004328 (-0.000991) | 0.076041 / 0.004250 (0.071791) | 0.036708 / 0.037052 (-0.000344) | 0.346126 / 0.258489 (0.087637) | 0.385177 / 0.293841 (0.091336) | 0.032272 / 0.128546 (-0.096275) | 0.011756 / 0.075646 (-0.063890) | 0.086512 / 0.419271 (-0.332759) | 0.049310 / 0.043533 (0.005777) | 0.339352 / 0.255139 (0.084213) | 0.372058 / 0.283200 (0.088859) | 0.089712 / 0.141683 (-0.051971) | 1.501964 / 1.452155 (0.049809) | 1.573753 / 1.492716 (0.081037) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.162075 / 0.018006 (0.144069) | 0.391462 / 0.000490 (0.390973) | 0.002868 / 0.000200 (0.002668) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024176 / 0.037411 (-0.013235) | 0.099631 / 0.014526 (0.085105) | 0.107544 / 0.176557 (-0.069013) | 0.157659 / 0.737135 (-0.579477) | 0.111130 / 0.296338 (-0.185209) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442086 / 0.215209 (0.226877) | 4.426311 / 2.077655 (2.348657) | 2.086133 / 1.504120 (0.582013) | 1.860415 / 1.541195 (0.319220) | 1.892306 / 1.468490 (0.423816) | 0.702752 / 4.584777 (-3.882025) | 3.394358 / 3.745712 (-0.351354) | 1.857396 / 5.269862 (-3.412466) | 1.167168 / 4.565676 (-3.398509) | 0.083549 / 0.424275 (-0.340726) | 0.012780 / 0.007607 (0.005173) | 0.547075 / 0.226044 (0.321031) | 5.466619 / 2.268929 (3.197691) | 2.548893 / 55.444624 (-52.895731) | 2.185574 / 6.876477 (-4.690903) | 2.188000 / 2.142072 (0.045928) | 0.810370 / 4.805227 (-3.994857) | 0.153320 / 6.500664 (-6.347344) | 0.068409 / 0.075469 (-0.007060) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.330431 / 1.841788 (-0.511356) | 14.178916 / 8.074308 (6.104608) | 14.409594 / 10.191392 (4.218202) | 0.156270 / 0.680424 (-0.524154) | 0.016452 / 0.534201 (-0.517749) | 0.379837 / 0.579283 (-0.199447) | 0.389896 / 0.434364 (-0.044468) | 0.443892 / 0.540337 (-0.096446) | 0.531392 / 1.386936 (-0.855544) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e502117cafd92fd9c25d1d6dd047cc650c691629 \"CML watermark\")\n"
] | 2023-03-08T10:22:50 | 2023-03-11T00:57:18 | 2023-03-11T00:49:56 | CONTRIBUTOR | null | Adding Oracle Cloud's fsspec implementation to the list of supported cloud storage providers. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5621/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5621/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5621",
"html_url": "https://github.com/huggingface/datasets/pull/5621",
"diff_url": "https://github.com/huggingface/datasets/pull/5621.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5621.patch",
"merged_at": "2023-03-11T00:49:56"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5620 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5620/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5620/comments | https://api.github.com/repos/huggingface/datasets/issues/5620/events | https://github.com/huggingface/datasets/pull/5620 | 1,613,460,520 | PR_kwDODunzps5LefAf | 5,620 | Bump pyarrow to 8.0.0 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009873 / 0.011353 (-0.001480) | 0.005180 / 0.011008 (-0.005828) | 0.099587 / 0.038508 (0.061079) | 0.035674 / 0.023109 (0.012565) | 0.299156 / 0.275898 (0.023258) | 0.361253 / 0.323480 (0.037773) | 0.008159 / 0.007986 (0.000173) | 0.004245 / 0.004328 (-0.000084) | 0.076809 / 0.004250 (0.072559) | 0.045251 / 0.037052 (0.008199) | 0.306002 / 0.258489 (0.047513) | 0.345758 / 0.293841 (0.051917) | 0.037826 / 0.128546 (-0.090721) | 0.011887 / 0.075646 (-0.063759) | 0.333804 / 0.419271 (-0.085467) | 0.047859 / 0.043533 (0.004326) | 0.291866 / 0.255139 (0.036727) | 0.319356 / 0.283200 (0.036157) | 0.104241 / 0.141683 (-0.037442) | 1.443816 / 1.452155 (-0.008338) | 1.514654 / 1.492716 (0.021938) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.009846 / 0.018006 (-0.008160) | 0.439488 / 0.000490 (0.438999) | 0.003227 / 0.000200 (0.003028) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027553 / 0.037411 (-0.009858) | 0.105337 / 0.014526 (0.090811) | 0.116203 / 0.176557 (-0.060354) | 0.161140 / 0.737135 (-0.575995) | 0.123002 / 0.296338 (-0.173336) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400102 / 0.215209 (0.184893) | 3.976748 / 2.077655 (1.899094) | 1.794763 / 1.504120 (0.290643) | 1.602477 / 1.541195 (0.061282) | 1.703689 / 1.468490 (0.235199) | 0.696751 / 4.584777 (-3.888026) | 3.713832 / 3.745712 (-0.031880) | 2.124536 / 5.269862 (-3.145326) | 1.313005 / 4.565676 (-3.252671) | 0.086130 / 0.424275 (-0.338146) | 0.012085 / 0.007607 (0.004477) | 0.512976 / 0.226044 (0.286932) | 5.135313 / 2.268929 (2.866384) | 2.318173 / 55.444624 (-53.126451) | 1.996360 / 6.876477 (-4.880117) | 2.060150 / 2.142072 (-0.081922) | 0.853534 / 4.805227 (-3.951693) | 0.165586 / 6.500664 (-6.335078) | 0.062365 / 0.075469 (-0.013104) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.178843 / 1.841788 (-0.662945) | 14.541639 / 8.074308 (6.467331) | 14.090782 / 10.191392 (3.899390) | 0.158717 / 0.680424 (-0.521707) | 0.028825 / 0.534201 (-0.505376) | 0.441427 / 0.579283 (-0.137856) | 0.439856 / 0.434364 (0.005492) | 0.530610 / 0.540337 (-0.009727) | 0.634044 / 1.386936 (-0.752892) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007502 / 0.011353 (-0.003851) | 0.005208 / 0.011008 (-0.005801) | 0.075020 / 0.038508 (0.036512) | 0.033297 / 0.023109 (0.010188) | 0.342218 / 0.275898 (0.066320) | 0.376716 / 0.323480 (0.053236) | 0.005906 / 0.007986 (-0.002080) | 0.005320 / 0.004328 (0.000992) | 0.073531 / 0.004250 (0.069281) | 0.049091 / 0.037052 (0.012039) | 0.344202 / 0.258489 (0.085713) | 0.380556 / 0.293841 (0.086715) | 0.037500 / 0.128546 (-0.091047) | 0.012404 / 0.075646 (-0.063242) | 0.087254 / 0.419271 (-0.332017) | 0.055145 / 0.043533 (0.011612) | 0.344112 / 0.255139 (0.088973) | 0.359052 / 0.283200 (0.075852) | 0.108337 / 0.141683 (-0.033345) | 1.450332 / 1.452155 (-0.001822) | 1.553607 / 1.492716 (0.060891) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216335 / 0.018006 (0.198329) | 0.436813 / 0.000490 (0.436323) | 0.005055 / 0.000200 (0.004855) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030037 / 0.037411 (-0.007374) | 0.110854 / 0.014526 (0.096329) | 0.121967 / 0.176557 (-0.054589) | 0.174029 / 0.737135 (-0.563107) | 0.128340 / 0.296338 (-0.167998) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424463 / 0.215209 (0.209254) | 4.201822 / 2.077655 (2.124167) | 2.043075 / 1.504120 (0.538956) | 1.851841 / 1.541195 (0.310647) | 1.947790 / 1.468490 (0.479300) | 0.684110 / 4.584777 (-3.900667) | 3.763536 / 3.745712 (0.017824) | 3.106988 / 5.269862 (-2.162873) | 1.498305 / 4.565676 (-3.067372) | 0.085079 / 0.424275 (-0.339196) | 0.012241 / 0.007607 (0.004634) | 0.520877 / 0.226044 (0.294832) | 5.181455 / 2.268929 (2.912527) | 2.443038 / 55.444624 (-53.001586) | 2.130823 / 6.876477 (-4.745654) | 2.217901 / 2.142072 (0.075829) | 0.837116 / 4.805227 (-3.968111) | 0.166581 / 6.500664 (-6.334083) | 0.065510 / 0.075469 (-0.009959) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.289317 / 1.841788 (-0.552471) | 15.122019 / 8.074308 (7.047710) | 13.919670 / 10.191392 (3.728278) | 0.150047 / 0.680424 (-0.530377) | 0.017612 / 0.534201 (-0.516589) | 0.426239 / 0.579283 (-0.153044) | 0.425686 / 0.434364 (-0.008678) | 0.521436 / 0.540337 (-0.018901) | 0.618217 / 1.386936 (-0.768719) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#879fc6d5186ce593fe819f1e9e67897a1873766b \"CML watermark\")\n",
"We haven't updated the minimal version requirement for PyArrow in a while, so it's ok to make a bigger leap IMO, e.g., PyArrow 8.0 (Colab installs 9.0). With this change, we should also remove the PyArrow version check in `folder_based_builder.py`, and the ones in `table.py`/`arrow_dataset.py` regarding the `to_reader` API if we decide to bump PyArrow to version 8.0.",
"I think it's a good opportunity to bump the version to 8.0 which offers higher performance anyway, I wouldn't bother trying to support 6.0.1 anymore. Only 1% of users based on 6.0.1 use the latest `datasets` version 2.10.1\r\n\r\nBumping to 8.0 if it sounds good to you",
"Sure, it is OK for those other reasons. I would just not stress that the increase of the minimum version is to support pandas 2.0 though...",
"If requiring min 8.0, do you know the percentage of people using 7.0 and latest datasets version?",
"Around 10% of users have 7.0.0, and 25% among them use the latest datasets version",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006744 / 0.011353 (-0.004609) | 0.004585 / 0.011008 (-0.006423) | 0.097828 / 0.038508 (0.059320) | 0.028230 / 0.023109 (0.005121) | 0.302190 / 0.275898 (0.026292) | 0.335022 / 0.323480 (0.011542) | 0.005107 / 0.007986 (-0.002878) | 0.004648 / 0.004328 (0.000320) | 0.076842 / 0.004250 (0.072592) | 0.038291 / 0.037052 (0.001239) | 0.313286 / 0.258489 (0.054797) | 0.342534 / 0.293841 (0.048693) | 0.031325 / 0.128546 (-0.097221) | 0.011632 / 0.075646 (-0.064014) | 0.321879 / 0.419271 (-0.097392) | 0.042204 / 0.043533 (-0.001329) | 0.304442 / 0.255139 (0.049303) | 0.330912 / 0.283200 (0.047712) | 0.085446 / 0.141683 (-0.056237) | 1.469990 / 1.452155 (0.017835) | 1.551147 / 1.492716 (0.058431) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185961 / 0.018006 (0.167955) | 0.404675 / 0.000490 (0.404186) | 0.003212 / 0.000200 (0.003012) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023876 / 0.037411 (-0.013535) | 0.097820 / 0.014526 (0.083295) | 0.107382 / 0.176557 (-0.069174) | 0.167598 / 0.737135 (-0.569537) | 0.108789 / 0.296338 (-0.187550) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.455004 / 0.215209 (0.239795) | 4.529104 / 2.077655 (2.451449) | 2.180068 / 1.504120 (0.675948) | 1.982109 / 1.541195 (0.440914) | 2.041856 / 1.468490 (0.573366) | 0.702029 / 4.584777 (-3.882747) | 3.368613 / 3.745712 (-0.377099) | 1.932303 / 5.269862 (-3.337559) | 1.278340 / 4.565676 (-3.287336) | 0.082836 / 0.424275 (-0.341439) | 0.012349 / 0.007607 (0.004742) | 0.548197 / 0.226044 (0.322153) | 5.509982 / 2.268929 (3.241053) | 2.612889 / 55.444624 (-52.831736) | 2.278157 / 6.876477 (-4.598320) | 2.386923 / 2.142072 (0.244851) | 0.803332 / 4.805227 (-4.001896) | 0.151222 / 6.500664 (-6.349442) | 0.066673 / 0.075469 (-0.008796) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.209453 / 1.841788 (-0.632335) | 13.649733 / 8.074308 (5.575424) | 14.065917 / 10.191392 (3.874525) | 0.128872 / 0.680424 (-0.551551) | 0.016773 / 0.534201 (-0.517428) | 0.385475 / 0.579283 (-0.193809) | 0.386208 / 0.434364 (-0.048156) | 0.475144 / 0.540337 (-0.065194) | 0.564183 / 1.386936 (-0.822753) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006629 / 0.011353 (-0.004724) | 0.004433 / 0.011008 (-0.006575) | 0.076008 / 0.038508 (0.037500) | 0.027471 / 0.023109 (0.004362) | 0.339837 / 0.275898 (0.063939) | 0.376857 / 0.323480 (0.053377) | 0.004930 / 0.007986 (-0.003055) | 0.003312 / 0.004328 (-0.001016) | 0.075070 / 0.004250 (0.070820) | 0.035897 / 0.037052 (-0.001156) | 0.342398 / 0.258489 (0.083909) | 0.380202 / 0.293841 (0.086361) | 0.031781 / 0.128546 (-0.096766) | 0.011697 / 0.075646 (-0.063950) | 0.085926 / 0.419271 (-0.333345) | 0.041599 / 0.043533 (-0.001934) | 0.343098 / 0.255139 (0.087959) | 0.371275 / 0.283200 (0.088076) | 0.090489 / 0.141683 (-0.051194) | 1.483738 / 1.452155 (0.031584) | 1.554973 / 1.492716 (0.062256) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183703 / 0.018006 (0.165697) | 0.395105 / 0.000490 (0.394616) | 0.002162 / 0.000200 (0.001963) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025432 / 0.037411 (-0.011979) | 0.101322 / 0.014526 (0.086796) | 0.107839 / 0.176557 (-0.068718) | 0.160328 / 0.737135 (-0.576807) | 0.109899 / 0.296338 (-0.186440) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448001 / 0.215209 (0.232792) | 4.485321 / 2.077655 (2.407666) | 2.157064 / 1.504120 (0.652944) | 1.966141 / 1.541195 (0.424947) | 2.032808 / 1.468490 (0.564318) | 0.705684 / 4.584777 (-3.879093) | 3.359802 / 3.745712 (-0.385910) | 2.694952 / 5.269862 (-2.574910) | 1.471309 / 4.565676 (-3.094368) | 0.084185 / 0.424275 (-0.340090) | 0.012330 / 0.007607 (0.004723) | 0.554083 / 0.226044 (0.328038) | 5.569137 / 2.268929 (3.300208) | 2.586009 / 55.444624 (-52.858615) | 2.234920 / 6.876477 (-4.641557) | 2.285128 / 2.142072 (0.143056) | 0.818825 / 4.805227 (-3.986402) | 0.152604 / 6.500664 (-6.348060) | 0.067722 / 0.075469 (-0.007747) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.305571 / 1.841788 (-0.536217) | 13.687471 / 8.074308 (5.613163) | 13.305401 / 10.191392 (3.114009) | 0.140477 / 0.680424 (-0.539947) | 0.018138 / 0.534201 (-0.516063) | 0.377255 / 0.579283 (-0.202028) | 0.379522 / 0.434364 (-0.054842) | 0.458489 / 0.540337 (-0.081849) | 0.543767 / 1.386936 (-0.843169) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#02570894db6ecc46bf25b7fa1cb1bcdc1dede853 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009606 / 0.011353 (-0.001747) | 0.006795 / 0.011008 (-0.004213) | 0.133738 / 0.038508 (0.095230) | 0.043379 / 0.023109 (0.020270) | 0.412917 / 0.275898 (0.137019) | 0.418790 / 0.323480 (0.095310) | 0.007290 / 0.007986 (-0.000696) | 0.004960 / 0.004328 (0.000632) | 0.095496 / 0.004250 (0.091246) | 0.057607 / 0.037052 (0.020555) | 0.402638 / 0.258489 (0.144149) | 0.436206 / 0.293841 (0.142365) | 0.056023 / 0.128546 (-0.072523) | 0.019909 / 0.075646 (-0.055737) | 0.463958 / 0.419271 (0.044687) | 0.064073 / 0.043533 (0.020541) | 0.398337 / 0.255139 (0.143198) | 0.421786 / 0.283200 (0.138586) | 0.131563 / 0.141683 (-0.010120) | 1.840217 / 1.452155 (0.388063) | 1.912013 / 1.492716 (0.419296) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230519 / 0.018006 (0.212513) | 0.550506 / 0.000490 (0.550017) | 0.003649 / 0.000200 (0.003449) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029713 / 0.037411 (-0.007698) | 0.129913 / 0.014526 (0.115387) | 0.131543 / 0.176557 (-0.045013) | 0.203571 / 0.737135 (-0.533565) | 0.141483 / 0.296338 (-0.154856) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.626383 / 0.215209 (0.411174) | 6.193043 / 2.077655 (4.115388) | 2.442728 / 1.504120 (0.938608) | 2.079049 / 1.541195 (0.537855) | 2.117761 / 1.468490 (0.649271) | 1.315296 / 4.584777 (-3.269481) | 5.643709 / 3.745712 (1.897997) | 5.245789 / 5.269862 (-0.024073) | 2.757442 / 4.565676 (-1.808235) | 0.151655 / 0.424275 (-0.272620) | 0.014686 / 0.007607 (0.007079) | 0.779937 / 0.226044 (0.553893) | 7.796685 / 2.268929 (5.527756) | 3.349580 / 55.444624 (-52.095045) | 2.493750 / 6.876477 (-4.382727) | 2.506200 / 2.142072 (0.364128) | 1.534964 / 4.805227 (-3.270263) | 0.260001 / 6.500664 (-6.240663) | 0.080543 / 0.075469 (0.005074) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.541940 / 1.841788 (-0.299848) | 17.851935 / 8.074308 (9.777627) | 22.418859 / 10.191392 (12.227467) | 0.258602 / 0.680424 (-0.421822) | 0.027679 / 0.534201 (-0.506522) | 0.548379 / 0.579283 (-0.030904) | 0.625505 / 0.434364 (0.191141) | 0.664074 / 0.540337 (0.123737) | 0.797418 / 1.386936 (-0.589518) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009800 / 0.011353 (-0.001553) | 0.006178 / 0.011008 (-0.004830) | 0.105667 / 0.038508 (0.067159) | 0.039380 / 0.023109 (0.016271) | 0.419528 / 0.275898 (0.143630) | 0.469857 / 0.323480 (0.146377) | 0.006672 / 0.007986 (-0.001314) | 0.004745 / 0.004328 (0.000417) | 0.101647 / 0.004250 (0.097397) | 0.048531 / 0.037052 (0.011478) | 0.433364 / 0.258489 (0.174875) | 0.459719 / 0.293841 (0.165878) | 0.054291 / 0.128546 (-0.074256) | 0.020406 / 0.075646 (-0.055240) | 0.122321 / 0.419271 (-0.296951) | 0.059719 / 0.043533 (0.016186) | 0.416083 / 0.255139 (0.160944) | 0.455277 / 0.283200 (0.172077) | 0.119342 / 0.141683 (-0.022341) | 1.862544 / 1.452155 (0.410390) | 2.001428 / 1.492716 (0.508712) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240951 / 0.018006 (0.222945) | 0.516958 / 0.000490 (0.516468) | 0.000449 / 0.000200 (0.000249) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032725 / 0.037411 (-0.004686) | 0.130291 / 0.014526 (0.115765) | 0.139834 / 0.176557 (-0.036723) | 0.214995 / 0.737135 (-0.522140) | 0.150925 / 0.296338 (-0.145414) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.652062 / 0.215209 (0.436853) | 6.584447 / 2.077655 (4.506793) | 2.654838 / 1.504120 (1.150718) | 2.297209 / 1.541195 (0.756015) | 2.420394 / 1.468490 (0.951904) | 1.299285 / 4.584777 (-3.285492) | 5.605849 / 3.745712 (1.860137) | 3.166103 / 5.269862 (-2.103759) | 2.138123 / 4.565676 (-2.427554) | 0.152562 / 0.424275 (-0.271713) | 0.015499 / 0.007607 (0.007892) | 0.816300 / 0.226044 (0.590256) | 8.308746 / 2.268929 (6.039817) | 3.482982 / 55.444624 (-51.961642) | 2.689247 / 6.876477 (-4.187229) | 2.792728 / 2.142072 (0.650656) | 1.566320 / 4.805227 (-3.238907) | 0.264110 / 6.500664 (-6.236554) | 0.083652 / 0.075469 (0.008183) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.643027 / 1.841788 (-0.198760) | 18.612349 / 8.074308 (10.538041) | 19.460644 / 10.191392 (9.269252) | 0.260795 / 0.680424 (-0.419629) | 0.026050 / 0.534201 (-0.508151) | 0.539750 / 0.579283 (-0.039533) | 0.620791 / 0.434364 (0.186428) | 0.645023 / 0.540337 (0.104686) | 0.765604 / 1.386936 (-0.621332) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e6dcf4c50e14ee6dbc6d763ed1b7ce3501460863 \"CML watermark\")\n",
"ready for re-review :)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006388 / 0.011353 (-0.004965) | 0.004469 / 0.011008 (-0.006540) | 0.097082 / 0.038508 (0.058573) | 0.028005 / 0.023109 (0.004895) | 0.364797 / 0.275898 (0.088899) | 0.399671 / 0.323480 (0.076191) | 0.005062 / 0.007986 (-0.002923) | 0.004580 / 0.004328 (0.000252) | 0.075670 / 0.004250 (0.071420) | 0.038328 / 0.037052 (0.001276) | 0.365948 / 0.258489 (0.107459) | 0.402631 / 0.293841 (0.108790) | 0.031378 / 0.128546 (-0.097168) | 0.011443 / 0.075646 (-0.064203) | 0.321590 / 0.419271 (-0.097682) | 0.042263 / 0.043533 (-0.001270) | 0.368238 / 0.255139 (0.113099) | 0.389928 / 0.283200 (0.106728) | 0.085203 / 0.141683 (-0.056480) | 1.462820 / 1.452155 (0.010665) | 1.529207 / 1.492716 (0.036490) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.197194 / 0.018006 (0.179188) | 0.410897 / 0.000490 (0.410407) | 0.003394 / 0.000200 (0.003194) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022911 / 0.037411 (-0.014500) | 0.097012 / 0.014526 (0.082486) | 0.102247 / 0.176557 (-0.074309) | 0.163363 / 0.737135 (-0.573772) | 0.106897 / 0.296338 (-0.189441) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416303 / 0.215209 (0.201094) | 4.159325 / 2.077655 (2.081671) | 1.844893 / 1.504120 (0.340773) | 1.646131 / 1.541195 (0.104936) | 1.706763 / 1.468490 (0.238273) | 0.699607 / 4.584777 (-3.885170) | 3.462048 / 3.745712 (-0.283664) | 1.939076 / 5.269862 (-3.330786) | 1.324744 / 4.565676 (-3.240932) | 0.082949 / 0.424275 (-0.341326) | 0.012327 / 0.007607 (0.004720) | 0.513812 / 0.226044 (0.287768) | 5.171021 / 2.268929 (2.902093) | 2.288039 / 55.444624 (-53.156585) | 1.957403 / 6.876477 (-4.919074) | 1.990060 / 2.142072 (-0.152013) | 0.805571 / 4.805227 (-3.999656) | 0.152641 / 6.500664 (-6.348023) | 0.068169 / 0.075469 (-0.007300) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.200624 / 1.841788 (-0.641164) | 13.836334 / 8.074308 (5.762026) | 14.065340 / 10.191392 (3.873948) | 0.143406 / 0.680424 (-0.537018) | 0.016709 / 0.534201 (-0.517492) | 0.380080 / 0.579283 (-0.199204) | 0.398414 / 0.434364 (-0.035950) | 0.479192 / 0.540337 (-0.061145) | 0.572508 / 1.386936 (-0.814428) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006622 / 0.011353 (-0.004731) | 0.004511 / 0.011008 (-0.006497) | 0.076454 / 0.038508 (0.037946) | 0.027431 / 0.023109 (0.004322) | 0.339041 / 0.275898 (0.063143) | 0.375691 / 0.323480 (0.052211) | 0.004854 / 0.007986 (-0.003131) | 0.004654 / 0.004328 (0.000325) | 0.075300 / 0.004250 (0.071049) | 0.036469 / 0.037052 (-0.000583) | 0.341357 / 0.258489 (0.082868) | 0.381561 / 0.293841 (0.087720) | 0.031754 / 0.128546 (-0.096792) | 0.011544 / 0.075646 (-0.064102) | 0.085956 / 0.419271 (-0.333315) | 0.041704 / 0.043533 (-0.001828) | 0.340088 / 0.255139 (0.084950) | 0.364037 / 0.283200 (0.080838) | 0.091016 / 0.141683 (-0.050667) | 1.483515 / 1.452155 (0.031360) | 1.562878 / 1.492716 (0.070162) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228019 / 0.018006 (0.210013) | 0.404809 / 0.000490 (0.404320) | 0.000384 / 0.000200 (0.000184) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025230 / 0.037411 (-0.012181) | 0.099790 / 0.014526 (0.085264) | 0.107923 / 0.176557 (-0.068634) | 0.157651 / 0.737135 (-0.579484) | 0.112525 / 0.296338 (-0.183813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440360 / 0.215209 (0.225151) | 4.387749 / 2.077655 (2.310094) | 2.077592 / 1.504120 (0.573472) | 1.872532 / 1.541195 (0.331337) | 1.941607 / 1.468490 (0.473117) | 0.699394 / 4.584777 (-3.885383) | 3.411210 / 3.745712 (-0.334502) | 1.901816 / 5.269862 (-3.368046) | 1.177042 / 4.565676 (-3.388634) | 0.083536 / 0.424275 (-0.340739) | 0.012418 / 0.007607 (0.004811) | 0.548463 / 0.226044 (0.322419) | 5.487107 / 2.268929 (3.218178) | 2.548076 / 55.444624 (-52.896548) | 2.215012 / 6.876477 (-4.661465) | 2.253472 / 2.142072 (0.111400) | 0.812925 / 4.805227 (-3.992302) | 0.152935 / 6.500664 (-6.347729) | 0.068144 / 0.075469 (-0.007325) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267914 / 1.841788 (-0.573873) | 14.015185 / 8.074308 (5.940877) | 13.153967 / 10.191392 (2.962575) | 0.140666 / 0.680424 (-0.539758) | 0.016718 / 0.534201 (-0.517483) | 0.383411 / 0.579283 (-0.195872) | 0.395424 / 0.434364 (-0.038940) | 0.466069 / 0.540337 (-0.074269) | 0.553825 / 1.386936 (-0.833111) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#14568bf072b38e3b295f29774c874c8e78b9fe37 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007463 / 0.011353 (-0.003890) | 0.005017 / 0.011008 (-0.005991) | 0.098777 / 0.038508 (0.060269) | 0.033859 / 0.023109 (0.010750) | 0.298569 / 0.275898 (0.022670) | 0.343717 / 0.323480 (0.020237) | 0.005806 / 0.007986 (-0.002180) | 0.005403 / 0.004328 (0.001074) | 0.075840 / 0.004250 (0.071590) | 0.046539 / 0.037052 (0.009487) | 0.300058 / 0.258489 (0.041569) | 0.345036 / 0.293841 (0.051195) | 0.036258 / 0.128546 (-0.092288) | 0.011992 / 0.075646 (-0.063654) | 0.334986 / 0.419271 (-0.084286) | 0.050427 / 0.043533 (0.006894) | 0.295319 / 0.255139 (0.040180) | 0.318980 / 0.283200 (0.035780) | 0.098407 / 0.141683 (-0.043276) | 1.437626 / 1.452155 (-0.014529) | 1.562548 / 1.492716 (0.069832) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231502 / 0.018006 (0.213496) | 0.441550 / 0.000490 (0.441060) | 0.005863 / 0.000200 (0.005663) | 0.000724 / 0.000054 (0.000670) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027501 / 0.037411 (-0.009911) | 0.111490 / 0.014526 (0.096964) | 0.117503 / 0.176557 (-0.059054) | 0.173849 / 0.737135 (-0.563286) | 0.124521 / 0.296338 (-0.171818) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419266 / 0.215209 (0.204057) | 4.170337 / 2.077655 (2.092683) | 2.015883 / 1.504120 (0.511763) | 1.832683 / 1.541195 (0.291488) | 1.950195 / 1.468490 (0.481705) | 0.698150 / 4.584777 (-3.886627) | 3.775601 / 3.745712 (0.029889) | 2.094581 / 5.269862 (-3.175281) | 1.325437 / 4.565676 (-3.240240) | 0.085382 / 0.424275 (-0.338894) | 0.012151 / 0.007607 (0.004544) | 0.526441 / 0.226044 (0.300397) | 5.256124 / 2.268929 (2.987196) | 2.488408 / 55.444624 (-52.956216) | 2.157228 / 6.876477 (-4.719249) | 2.228991 / 2.142072 (0.086919) | 0.837002 / 4.805227 (-3.968225) | 0.167520 / 6.500664 (-6.333144) | 0.066435 / 0.075469 (-0.009035) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.174544 / 1.841788 (-0.667243) | 14.684207 / 8.074308 (6.609899) | 14.494676 / 10.191392 (4.303284) | 0.143423 / 0.680424 (-0.537001) | 0.017289 / 0.534201 (-0.516912) | 0.424727 / 0.579283 (-0.154556) | 0.417077 / 0.434364 (-0.017287) | 0.498955 / 0.540337 (-0.041383) | 0.584838 / 1.386936 (-0.802098) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007666 / 0.011353 (-0.003687) | 0.005269 / 0.011008 (-0.005739) | 0.073548 / 0.038508 (0.035040) | 0.033683 / 0.023109 (0.010573) | 0.342646 / 0.275898 (0.066747) | 0.380948 / 0.323480 (0.057468) | 0.005737 / 0.007986 (-0.002248) | 0.005366 / 0.004328 (0.001038) | 0.073228 / 0.004250 (0.068978) | 0.050065 / 0.037052 (0.013013) | 0.348593 / 0.258489 (0.090104) | 0.393930 / 0.293841 (0.100089) | 0.037411 / 0.128546 (-0.091135) | 0.012476 / 0.075646 (-0.063170) | 0.084884 / 0.419271 (-0.334387) | 0.049368 / 0.043533 (0.005835) | 0.343142 / 0.255139 (0.088003) | 0.362828 / 0.283200 (0.079628) | 0.102962 / 0.141683 (-0.038721) | 1.505703 / 1.452155 (0.053549) | 1.580695 / 1.492716 (0.087979) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207621 / 0.018006 (0.189615) | 0.437678 / 0.000490 (0.437188) | 0.003931 / 0.000200 (0.003731) | 0.000093 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029079 / 0.037411 (-0.008332) | 0.108600 / 0.014526 (0.094074) | 0.124787 / 0.176557 (-0.051770) | 0.173354 / 0.737135 (-0.563781) | 0.126124 / 0.296338 (-0.170214) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427911 / 0.215209 (0.212702) | 4.254227 / 2.077655 (2.176572) | 2.052142 / 1.504120 (0.548022) | 1.857042 / 1.541195 (0.315848) | 1.965244 / 1.468490 (0.496754) | 0.707994 / 4.584777 (-3.876783) | 3.807593 / 3.745712 (0.061880) | 3.387588 / 5.269862 (-1.882274) | 1.844853 / 4.565676 (-2.720824) | 0.088548 / 0.424275 (-0.335727) | 0.012398 / 0.007607 (0.004791) | 0.565896 / 0.226044 (0.339851) | 5.228024 / 2.268929 (2.959095) | 2.467220 / 55.444624 (-52.977405) | 2.144413 / 6.876477 (-4.732064) | 2.214049 / 2.142072 (0.071977) | 0.869381 / 4.805227 (-3.935846) | 0.170991 / 6.500664 (-6.329673) | 0.064932 / 0.075469 (-0.010537) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.246661 / 1.841788 (-0.595127) | 14.902743 / 8.074308 (6.828435) | 13.264294 / 10.191392 (3.072902) | 0.165328 / 0.680424 (-0.515095) | 0.017567 / 0.534201 (-0.516634) | 0.425491 / 0.579283 (-0.153792) | 0.427327 / 0.434364 (-0.007037) | 0.526475 / 0.540337 (-0.013862) | 0.627309 / 1.386936 (-0.759627) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dd31bce76b554447bccb2b1447440e1f8ddba035 \"CML watermark\")\n"
] | 2023-03-07T13:31:53 | 2023-03-08T14:01:27 | 2023-03-08T13:54:22 | MEMBER | null | Fix those for Pandas 2.0 (tested [here](https://github.com/huggingface/datasets/actions/runs/4346221280/jobs/7592010397) with pandas==2.0.0.rc0):
```python
=========================== short test summary info ============================
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_to_parquet_in_memory - ImportError: Unable to find a usable engine; tried using: 'pyarrow', 'fastparquet'.
A suitable version of pyarrow or fastparquet is required for parquet support.
Trying to import the above resulted in these errors:
- Pandas requires version '7.0.0' or newer of 'pyarrow' (version '6.0.1' currently installed).
- Missing optional dependency 'fastparquet'. fastparquet is required for parquet support. Use pip or conda to install fastparquet.
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_to_parquet_on_disk - ImportError: Unable to find a usable engine; tried using: 'pyarrow', 'fastparquet'.
A suitable version of pyarrow or fastparquet is required for parquet support.
Trying to import the above resulted in these errors:
- Pandas requires version '7.0.0' or newer of 'pyarrow' (version '6.0.1' currently installed).
- Missing optional dependency 'fastparquet'. fastparquet is required for parquet support. Use pip or conda to install fastparquet.
===== 2 failed, 2137 passed, 18 skipped, 32 warnings in 212.76s (0:03:32) ======
```
EDIT: also for performance - with 8.0 we can use `.to_reader()` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5620/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5620/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5620",
"html_url": "https://github.com/huggingface/datasets/pull/5620",
"diff_url": "https://github.com/huggingface/datasets/pull/5620.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5620.patch",
"merged_at": "2023-03-08T13:54:21"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5619 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5619/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5619/comments | https://api.github.com/repos/huggingface/datasets/issues/5619/events | https://github.com/huggingface/datasets/pull/5619 | 1,613,439,709 | PR_kwDODunzps5LeaYP | 5,619 | unpin fsspec | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009954 / 0.011353 (-0.001398) | 0.005468 / 0.011008 (-0.005541) | 0.101228 / 0.038508 (0.062720) | 0.037878 / 0.023109 (0.014769) | 0.305635 / 0.275898 (0.029737) | 0.391672 / 0.323480 (0.068192) | 0.008893 / 0.007986 (0.000908) | 0.005861 / 0.004328 (0.001533) | 0.076940 / 0.004250 (0.072689) | 0.046242 / 0.037052 (0.009190) | 0.324033 / 0.258489 (0.065544) | 0.383306 / 0.293841 (0.089465) | 0.039298 / 0.128546 (-0.089249) | 0.012187 / 0.075646 (-0.063459) | 0.336774 / 0.419271 (-0.082498) | 0.053493 / 0.043533 (0.009960) | 0.303381 / 0.255139 (0.048242) | 0.323494 / 0.283200 (0.040295) | 0.118613 / 0.141683 (-0.023070) | 1.463430 / 1.452155 (0.011275) | 1.549856 / 1.492716 (0.057139) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289264 / 0.018006 (0.271258) | 0.520348 / 0.000490 (0.519858) | 0.004543 / 0.000200 (0.004343) | 0.000090 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028183 / 0.037411 (-0.009229) | 0.107869 / 0.014526 (0.093343) | 0.124019 / 0.176557 (-0.052537) | 0.167769 / 0.737135 (-0.569367) | 0.130304 / 0.296338 (-0.166034) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402296 / 0.215209 (0.187087) | 4.018884 / 2.077655 (1.941229) | 1.834050 / 1.504120 (0.329930) | 1.649974 / 1.541195 (0.108779) | 1.741697 / 1.468490 (0.273207) | 0.684354 / 4.584777 (-3.900423) | 3.778213 / 3.745712 (0.032501) | 2.158086 / 5.269862 (-3.111775) | 1.472671 / 4.565676 (-3.093006) | 0.083912 / 0.424275 (-0.340363) | 0.012285 / 0.007607 (0.004678) | 0.501689 / 0.226044 (0.275645) | 5.014722 / 2.268929 (2.745794) | 2.310722 / 55.444624 (-53.133902) | 1.983214 / 6.876477 (-4.893262) | 2.154518 / 2.142072 (0.012446) | 0.821277 / 4.805227 (-3.983950) | 0.164434 / 6.500664 (-6.336231) | 0.062568 / 0.075469 (-0.012901) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224338 / 1.841788 (-0.617450) | 14.981623 / 8.074308 (6.907315) | 14.296356 / 10.191392 (4.104964) | 0.193554 / 0.680424 (-0.486870) | 0.028511 / 0.534201 (-0.505690) | 0.437649 / 0.579283 (-0.141634) | 0.448934 / 0.434364 (0.014570) | 0.552624 / 0.540337 (0.012287) | 0.654268 / 1.386936 (-0.732668) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007772 / 0.011353 (-0.003581) | 0.005534 / 0.011008 (-0.005474) | 0.074347 / 0.038508 (0.035839) | 0.034486 / 0.023109 (0.011376) | 0.343430 / 0.275898 (0.067532) | 0.385778 / 0.323480 (0.062298) | 0.006424 / 0.007986 (-0.001562) | 0.004241 / 0.004328 (-0.000087) | 0.072839 / 0.004250 (0.068589) | 0.055523 / 0.037052 (0.018471) | 0.342778 / 0.258489 (0.084289) | 0.389961 / 0.293841 (0.096120) | 0.037238 / 0.128546 (-0.091308) | 0.012450 / 0.075646 (-0.063197) | 0.085282 / 0.419271 (-0.333990) | 0.049678 / 0.043533 (0.006146) | 0.345300 / 0.255139 (0.090161) | 0.365220 / 0.283200 (0.082020) | 0.109257 / 0.141683 (-0.032426) | 1.480284 / 1.452155 (0.028129) | 1.627881 / 1.492716 (0.135165) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.323330 / 0.018006 (0.305324) | 0.530824 / 0.000490 (0.530334) | 0.000463 / 0.000200 (0.000263) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032398 / 0.037411 (-0.005013) | 0.115889 / 0.014526 (0.101363) | 0.131093 / 0.176557 (-0.045464) | 0.180757 / 0.737135 (-0.556379) | 0.134395 / 0.296338 (-0.161943) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423931 / 0.215209 (0.208722) | 4.238207 / 2.077655 (2.160553) | 2.075721 / 1.504120 (0.571602) | 1.887752 / 1.541195 (0.346557) | 2.055054 / 1.468490 (0.586564) | 0.703145 / 4.584777 (-3.881632) | 3.937120 / 3.745712 (0.191408) | 3.748550 / 5.269862 (-1.521311) | 1.562849 / 4.565676 (-3.002827) | 0.087695 / 0.424275 (-0.336580) | 0.012614 / 0.007607 (0.005007) | 0.523901 / 0.226044 (0.297856) | 5.230210 / 2.268929 (2.961282) | 2.592667 / 55.444624 (-52.851958) | 2.345662 / 6.876477 (-4.530815) | 2.475388 / 2.142072 (0.333316) | 0.836443 / 4.805227 (-3.968784) | 0.170304 / 6.500664 (-6.330360) | 0.067741 / 0.075469 (-0.007729) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255171 / 1.841788 (-0.586617) | 16.312856 / 8.074308 (8.238548) | 13.184770 / 10.191392 (2.993378) | 0.145557 / 0.680424 (-0.534867) | 0.017723 / 0.534201 (-0.516478) | 0.423447 / 0.579283 (-0.155836) | 0.423063 / 0.434364 (-0.011301) | 0.494159 / 0.540337 (-0.046179) | 0.589590 / 1.386936 (-0.797346) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4ea6f1db3f80eb3bb7ac6f252c2cd5bd97537c01 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012068 / 0.011353 (0.000715) | 0.006127 / 0.011008 (-0.004881) | 0.112550 / 0.038508 (0.074042) | 0.043201 / 0.023109 (0.020092) | 0.346666 / 0.275898 (0.070768) | 0.413852 / 0.323480 (0.090372) | 0.009342 / 0.007986 (0.001356) | 0.006302 / 0.004328 (0.001974) | 0.086901 / 0.004250 (0.082650) | 0.053992 / 0.037052 (0.016940) | 0.362192 / 0.258489 (0.103703) | 0.409867 / 0.293841 (0.116026) | 0.046124 / 0.128546 (-0.082422) | 0.014139 / 0.075646 (-0.061507) | 0.386386 / 0.419271 (-0.032886) | 0.058465 / 0.043533 (0.014932) | 0.344832 / 0.255139 (0.089693) | 0.370684 / 0.283200 (0.087485) | 0.122886 / 0.141683 (-0.018796) | 1.724013 / 1.452155 (0.271858) | 1.775756 / 1.492716 (0.283039) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220289 / 0.018006 (0.202283) | 0.493585 / 0.000490 (0.493096) | 0.001970 / 0.000200 (0.001770) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030763 / 0.037411 (-0.006649) | 0.128237 / 0.014526 (0.113711) | 0.138364 / 0.176557 (-0.038192) | 0.188115 / 0.737135 (-0.549021) | 0.145367 / 0.296338 (-0.150972) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.452487 / 0.215209 (0.237277) | 4.592728 / 2.077655 (2.515074) | 2.075712 / 1.504120 (0.571592) | 1.845424 / 1.541195 (0.304229) | 1.956400 / 1.468490 (0.487910) | 0.808387 / 4.584777 (-3.776390) | 4.483678 / 3.745712 (0.737966) | 3.870287 / 5.269862 (-1.399574) | 2.151205 / 4.565676 (-2.414471) | 0.098123 / 0.424275 (-0.326152) | 0.014139 / 0.007607 (0.006531) | 0.577775 / 0.226044 (0.351730) | 5.785545 / 2.268929 (3.516616) | 2.614418 / 55.444624 (-52.830206) | 2.312136 / 6.876477 (-4.564341) | 2.364189 / 2.142072 (0.222117) | 0.970028 / 4.805227 (-3.835199) | 0.189592 / 6.500664 (-6.311072) | 0.072883 / 0.075469 (-0.002586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.414252 / 1.841788 (-0.427535) | 17.518307 / 8.074308 (9.443999) | 16.053748 / 10.191392 (5.862356) | 0.215297 / 0.680424 (-0.465127) | 0.033947 / 0.534201 (-0.500253) | 0.525794 / 0.579283 (-0.053489) | 0.514676 / 0.434364 (0.080312) | 0.595066 / 0.540337 (0.054728) | 0.689404 / 1.386936 (-0.697532) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008185 / 0.011353 (-0.003168) | 0.005776 / 0.011008 (-0.005232) | 0.084919 / 0.038508 (0.046411) | 0.037575 / 0.023109 (0.014466) | 0.401192 / 0.275898 (0.125294) | 0.443920 / 0.323480 (0.120440) | 0.006446 / 0.007986 (-0.001540) | 0.004428 / 0.004328 (0.000099) | 0.084013 / 0.004250 (0.079763) | 0.052013 / 0.037052 (0.014961) | 0.398429 / 0.258489 (0.139940) | 0.455676 / 0.293841 (0.161836) | 0.041568 / 0.128546 (-0.086978) | 0.013631 / 0.075646 (-0.062015) | 0.098709 / 0.419271 (-0.320563) | 0.055889 / 0.043533 (0.012356) | 0.402002 / 0.255139 (0.146863) | 0.424248 / 0.283200 (0.141049) | 0.113288 / 0.141683 (-0.028395) | 1.672214 / 1.452155 (0.220059) | 1.792940 / 1.492716 (0.300223) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211847 / 0.018006 (0.193841) | 0.486711 / 0.000490 (0.486221) | 0.002907 / 0.000200 (0.002707) | 0.000118 / 0.000054 (0.000063) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032931 / 0.037411 (-0.004480) | 0.142073 / 0.014526 (0.127547) | 0.142872 / 0.176557 (-0.033685) | 0.202612 / 0.737135 (-0.534523) | 0.154390 / 0.296338 (-0.141949) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488682 / 0.215209 (0.273473) | 4.755805 / 2.077655 (2.678150) | 2.348778 / 1.504120 (0.844658) | 2.144992 / 1.541195 (0.603797) | 2.245654 / 1.468490 (0.777164) | 0.792690 / 4.584777 (-3.792087) | 4.569190 / 3.745712 (0.823478) | 3.919317 / 5.269862 (-1.350545) | 2.140302 / 4.565676 (-2.425374) | 0.096430 / 0.424275 (-0.327845) | 0.014551 / 0.007607 (0.006944) | 0.605138 / 0.226044 (0.379094) | 5.989470 / 2.268929 (3.720542) | 2.915525 / 55.444624 (-52.529099) | 2.516243 / 6.876477 (-4.360234) | 2.673114 / 2.142072 (0.531041) | 0.932330 / 4.805227 (-3.872897) | 0.191456 / 6.500664 (-6.309209) | 0.073887 / 0.075469 (-0.001582) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.455552 / 1.841788 (-0.386236) | 17.824864 / 8.074308 (9.750556) | 15.764150 / 10.191392 (5.572758) | 0.184935 / 0.680424 (-0.495489) | 0.020552 / 0.534201 (-0.513649) | 0.486816 / 0.579283 (-0.092467) | 0.489006 / 0.434364 (0.054642) | 0.609826 / 0.540337 (0.069488) | 0.721313 / 1.386936 (-0.665623) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a0a35c5fa84a8a7df656c1f5b0a7266126fa9b75 \"CML watermark\")\n"
] | 2023-03-07T13:22:41 | 2023-03-07T13:47:01 | 2023-03-07T13:39:02 | MEMBER | null | close https://github.com/huggingface/datasets/issues/5618 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5619/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5619/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5619",
"html_url": "https://github.com/huggingface/datasets/pull/5619",
"diff_url": "https://github.com/huggingface/datasets/pull/5619.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5619.patch",
"merged_at": "2023-03-07T13:39:02"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5618 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5618/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5618/comments | https://api.github.com/repos/huggingface/datasets/issues/5618/events | https://github.com/huggingface/datasets/issues/5618 | 1,612,977,934 | I_kwDODunzps5gJBcO | 5,618 | Unpin fsspec < 2023.3.0 once issue fixed | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2023-03-07T08:41:51 | 2023-03-07T13:39:03 | 2023-03-07T13:39:03 | MEMBER | null | Unpin `fsspec` upper version once root cause of our CI break is fixed.
See:
- #5614 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5618/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5618/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5617 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5617/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5617/comments | https://api.github.com/repos/huggingface/datasets/issues/5617/events | https://github.com/huggingface/datasets/pull/5617 | 1,612,947,422 | PR_kwDODunzps5LcvI- | 5,617 | Fix CI by temporarily pinning fsspec < 2023.3.0 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008771 / 0.011353 (-0.002582) | 0.004665 / 0.011008 (-0.006343) | 0.101645 / 0.038508 (0.063137) | 0.030190 / 0.023109 (0.007081) | 0.298581 / 0.275898 (0.022683) | 0.371206 / 0.323480 (0.047727) | 0.007272 / 0.007986 (-0.000714) | 0.003432 / 0.004328 (-0.000896) | 0.078645 / 0.004250 (0.074395) | 0.037640 / 0.037052 (0.000588) | 0.314014 / 0.258489 (0.055525) | 0.345682 / 0.293841 (0.051841) | 0.033675 / 0.128546 (-0.094871) | 0.011513 / 0.075646 (-0.064134) | 0.320683 / 0.419271 (-0.098589) | 0.041633 / 0.043533 (-0.001900) | 0.302697 / 0.255139 (0.047558) | 0.323560 / 0.283200 (0.040361) | 0.089309 / 0.141683 (-0.052374) | 1.477570 / 1.452155 (0.025415) | 1.528004 / 1.492716 (0.035287) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.184710 / 0.018006 (0.166704) | 0.412794 / 0.000490 (0.412305) | 0.001421 / 0.000200 (0.001221) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023133 / 0.037411 (-0.014278) | 0.099492 / 0.014526 (0.084967) | 0.104806 / 0.176557 (-0.071751) | 0.150765 / 0.737135 (-0.586370) | 0.110127 / 0.296338 (-0.186211) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438642 / 0.215209 (0.223433) | 4.349753 / 2.077655 (2.272098) | 2.178754 / 1.504120 (0.674634) | 1.952839 / 1.541195 (0.411645) | 1.840574 / 1.468490 (0.372084) | 0.694016 / 4.584777 (-3.890761) | 3.375186 / 3.745712 (-0.370526) | 1.892391 / 5.269862 (-3.377470) | 1.177643 / 4.565676 (-3.388033) | 0.082328 / 0.424275 (-0.341947) | 0.012280 / 0.007607 (0.004673) | 0.534478 / 0.226044 (0.308434) | 5.377043 / 2.268929 (3.108114) | 2.645273 / 55.444624 (-52.799351) | 2.336391 / 6.876477 (-4.540086) | 2.387917 / 2.142072 (0.245845) | 0.814399 / 4.805227 (-3.990828) | 0.149226 / 6.500664 (-6.351438) | 0.066614 / 0.075469 (-0.008855) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.205467 / 1.841788 (-0.636321) | 13.857481 / 8.074308 (5.783173) | 14.269958 / 10.191392 (4.078566) | 0.152199 / 0.680424 (-0.528225) | 0.029083 / 0.534201 (-0.505118) | 0.397590 / 0.579283 (-0.181693) | 0.410587 / 0.434364 (-0.023777) | 0.480479 / 0.540337 (-0.059858) | 0.576014 / 1.386936 (-0.810922) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006956 / 0.011353 (-0.004397) | 0.004914 / 0.011008 (-0.006094) | 0.077571 / 0.038508 (0.039063) | 0.028309 / 0.023109 (0.005200) | 0.344523 / 0.275898 (0.068625) | 0.383039 / 0.323480 (0.059560) | 0.005202 / 0.007986 (-0.002783) | 0.003513 / 0.004328 (-0.000816) | 0.076393 / 0.004250 (0.072142) | 0.042035 / 0.037052 (0.004982) | 0.342950 / 0.258489 (0.084461) | 0.387432 / 0.293841 (0.093591) | 0.032267 / 0.128546 (-0.096280) | 0.011914 / 0.075646 (-0.063732) | 0.087140 / 0.419271 (-0.332131) | 0.042624 / 0.043533 (-0.000909) | 0.342391 / 0.255139 (0.087253) | 0.367016 / 0.283200 (0.083817) | 0.091757 / 0.141683 (-0.049926) | 1.515845 / 1.452155 (0.063690) | 1.607929 / 1.492716 (0.115213) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234461 / 0.018006 (0.216455) | 0.420430 / 0.000490 (0.419941) | 0.000403 / 0.000200 (0.000203) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026639 / 0.037411 (-0.010772) | 0.101860 / 0.014526 (0.087334) | 0.109696 / 0.176557 (-0.066860) | 0.160902 / 0.737135 (-0.576233) | 0.112431 / 0.296338 (-0.183907) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438444 / 0.215209 (0.223235) | 4.378881 / 2.077655 (2.301226) | 2.063975 / 1.504120 (0.559855) | 1.863069 / 1.541195 (0.321874) | 1.955684 / 1.468490 (0.487193) | 0.694106 / 4.584777 (-3.890671) | 3.467683 / 3.745712 (-0.278029) | 2.882441 / 5.269862 (-2.387421) | 1.484533 / 4.565676 (-3.081143) | 0.082682 / 0.424275 (-0.341593) | 0.012597 / 0.007607 (0.004990) | 0.539219 / 0.226044 (0.313174) | 5.384838 / 2.268929 (3.115909) | 2.528273 / 55.444624 (-52.916351) | 2.190332 / 6.876477 (-4.686145) | 2.252573 / 2.142072 (0.110500) | 0.801047 / 4.805227 (-4.004180) | 0.151082 / 6.500664 (-6.349582) | 0.067564 / 0.075469 (-0.007905) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306469 / 1.841788 (-0.535319) | 14.220154 / 8.074308 (6.145846) | 13.300979 / 10.191392 (3.109586) | 0.153827 / 0.680424 (-0.526597) | 0.016818 / 0.534201 (-0.517383) | 0.383528 / 0.579283 (-0.195755) | 0.393970 / 0.434364 (-0.040394) | 0.468395 / 0.540337 (-0.071943) | 0.558748 / 1.386936 (-0.828188) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#824860ca204a3bd84a7d63f71df5df4c56c2432f \"CML watermark\")\n"
] | 2023-03-07T08:18:20 | 2023-03-07T08:44:55 | 2023-03-07T08:37:28 | MEMBER | null | As a hotfix for our CI, temporarily pin `fsspec`:
Fix #5616.
Until root cause is fixed, see:
- #5614 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5617/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5617/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5617",
"html_url": "https://github.com/huggingface/datasets/pull/5617",
"diff_url": "https://github.com/huggingface/datasets/pull/5617.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5617.patch",
"merged_at": "2023-03-07T08:37:28"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5616 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5616/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5616/comments | https://api.github.com/repos/huggingface/datasets/issues/5616/events | https://github.com/huggingface/datasets/issues/5616 | 1,612,932,508 | I_kwDODunzps5gI2Wc | 5,616 | CI is broken after fsspec-2023.3.0 release | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | null | [] | null | [] | 2023-03-07T08:06:39 | 2023-03-07T08:37:29 | 2023-03-07T08:37:29 | MEMBER | null | As reported by @lhoestq, our CI is broken after `fsspec` 2023.3.0 release:
```
FAILED tests/test_filesystem.py::test_compression_filesystems[Bz2FileSystem] - AssertionError: assert [{'created': ...: False, ...}] == ['file.txt']
At index 0 diff: {'name': 'file.txt', 'size': 70, 'type': 'file', 'created': 1678175677.1887748, 'islink': False, 'mode': 33188, 'uid': 1001, 'gid': 123, 'mtime': 1678175677.1887748, 'ino': 286957, 'nlink': 1} != 'file.txt'
Full diff:
[
- 'file.txt',
+ {'created': 1678175677.1887748,
+ 'gid': 123,
+ 'ino': 286957,
+ 'islink': False,
+ 'mode': 33188,
+ 'mtime': 1678175677.1887748,
+ 'name': 'file.txt',
+ 'nlink': 1,
+ 'size': 70,
+ 'type': 'file',
+ 'uid': 1001},
]
```
Also:
```
FAILED tests/test_filesystem.py::test_compression_filesystems[GzipFileSystem] - AssertionError: assert [{'created': ...: False, ...}] == ['file.txt']
FAILED tests/test_filesystem.py::test_compression_filesystems[Lz4FileSystem] - AssertionError: assert [{'created': ...: False, ...}] == ['file.txt']
FAILED tests/test_filesystem.py::test_compression_filesystems[XzFileSystem] - AssertionError: assert [{'created': ...: False, ...}] == ['file.txt']
FAILED tests/test_filesystem.py::test_compression_filesystems[ZstdFileSystem] - AssertionError: assert [{'created': ...: False, ...}] == ['file.txt']
===== 5 failed, 2134 passed, 18 skipped, 38 warnings in 157.21s (0:02:37) ======
```
See:
- fsspec/filesystem_spec#1205 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5616/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5616/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5615 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5615/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5615/comments | https://api.github.com/repos/huggingface/datasets/issues/5615/events | https://github.com/huggingface/datasets/issues/5615 | 1,612,552,653 | I_kwDODunzps5gHZnN | 5,615 | IterableDataset.add_column is unable to accept another IterableDataset as a parameter. | {
"login": "zsaladin",
"id": 6466389,
"node_id": "MDQ6VXNlcjY0NjYzODk=",
"avatar_url": "https://avatars.githubusercontent.com/u/6466389?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/zsaladin",
"html_url": "https://github.com/zsaladin",
"followers_url": "https://api.github.com/users/zsaladin/followers",
"following_url": "https://api.github.com/users/zsaladin/following{/other_user}",
"gists_url": "https://api.github.com/users/zsaladin/gists{/gist_id}",
"starred_url": "https://api.github.com/users/zsaladin/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/zsaladin/subscriptions",
"organizations_url": "https://api.github.com/users/zsaladin/orgs",
"repos_url": "https://api.github.com/users/zsaladin/repos",
"events_url": "https://api.github.com/users/zsaladin/events{/privacy}",
"received_events_url": "https://api.github.com/users/zsaladin/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892913,
"node_id": "MDU6TGFiZWwxOTM1ODkyOTEz",
"url": "https://api.github.com/repos/huggingface/datasets/labels/wontfix",
"name": "wontfix",
"color": "ffffff",
"default": true,
"description": "This will not be worked on"
}
] | closed | false | null | [] | null | [
"Hi! You can use `concatenate_datasets([ids1, ids2], axis=1)` to do this."
] | 2023-03-07T01:52:00 | 2023-03-09T15:24:05 | 2023-03-09T15:23:54 | NONE | null | ### Describe the bug
`IterableDataset.add_column` occurs an exception when passing another `IterableDataset` as a parameter.
The method seems to accept only eager evaluated values.
https://github.com/huggingface/datasets/blob/35b789e8f6826b6b5a6b48fcc2416c890a1f326a/src/datasets/iterable_dataset.py#L1388-L1391
I wrote codes below to make it.
```py
def add_column(dataset: IterableDataset, name: str, add_dataset: IterableDataset, key: str) -> IterableDataset:
iter_add_dataset = iter(add_dataset)
def add_column_fn(example):
if name in example:
raise ValueError(f"Error when adding {name}: column {name} is already in the dataset.")
return {name: next(iter_add_dataset)[key]}
return dataset.map(add_column_fn)
```
Is there other way to do it? Or is it intended?
### Steps to reproduce the bug
Thie codes below occurs `NotImplementedError`
```py
from datasets import IterableDataset
def gen(num):
yield {f"col{num}": 1}
yield {f"col{num}": 2}
yield {f"col{num}": 3}
ids1 = IterableDataset.from_generator(gen, gen_kwargs={"num": 1})
ids2 = IterableDataset.from_generator(gen, gen_kwargs={"num": 2})
new_ids = ids1.add_column("new_col", ids1)
for row in new_ids:
print(row)
```
### Expected behavior
`IterableDataset.add_column` is able to task `IterableDataset` and lazy evaluated values as a parameter since IterableDataset is lazy evalued.
### Environment info
- `datasets` version: 2.8.0
- Platform: Linux-3.10.0-1160.36.2.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.9.7
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5615/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5615/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5614 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5614/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5614/comments | https://api.github.com/repos/huggingface/datasets/issues/5614/events | https://github.com/huggingface/datasets/pull/5614 | 1,611,896,357 | PR_kwDODunzps5LZOTd | 5,614 | Fix archive fs test | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008664 / 0.011353 (-0.002689) | 0.004622 / 0.011008 (-0.006387) | 0.101716 / 0.038508 (0.063208) | 0.030044 / 0.023109 (0.006935) | 0.298476 / 0.275898 (0.022578) | 0.360873 / 0.323480 (0.037393) | 0.007012 / 0.007986 (-0.000974) | 0.003409 / 0.004328 (-0.000919) | 0.077731 / 0.004250 (0.073480) | 0.035493 / 0.037052 (-0.001560) | 0.311474 / 0.258489 (0.052985) | 0.357276 / 0.293841 (0.063435) | 0.033909 / 0.128546 (-0.094638) | 0.011315 / 0.075646 (-0.064332) | 0.323149 / 0.419271 (-0.096122) | 0.040678 / 0.043533 (-0.002855) | 0.298487 / 0.255139 (0.043348) | 0.323107 / 0.283200 (0.039907) | 0.086641 / 0.141683 (-0.055042) | 1.452905 / 1.452155 (0.000750) | 1.510953 / 1.492716 (0.018237) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.190607 / 0.018006 (0.172601) | 0.409786 / 0.000490 (0.409297) | 0.000818 / 0.000200 (0.000618) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023267 / 0.037411 (-0.014144) | 0.095390 / 0.014526 (0.080864) | 0.104381 / 0.176557 (-0.072175) | 0.150735 / 0.737135 (-0.586401) | 0.106876 / 0.296338 (-0.189462) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434259 / 0.215209 (0.219050) | 4.326978 / 2.077655 (2.249323) | 2.036690 / 1.504120 (0.532570) | 1.836459 / 1.541195 (0.295264) | 1.904003 / 1.468490 (0.435513) | 0.697265 / 4.584777 (-3.887512) | 3.435911 / 3.745712 (-0.309802) | 3.240918 / 5.269862 (-2.028944) | 1.629220 / 4.565676 (-2.936456) | 0.083158 / 0.424275 (-0.341117) | 0.012604 / 0.007607 (0.004997) | 0.539818 / 0.226044 (0.313773) | 5.397860 / 2.268929 (3.128932) | 2.483890 / 55.444624 (-52.960735) | 2.132404 / 6.876477 (-4.744072) | 2.162583 / 2.142072 (0.020510) | 0.817773 / 4.805227 (-3.987454) | 0.151677 / 6.500664 (-6.348987) | 0.066569 / 0.075469 (-0.008900) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.243449 / 1.841788 (-0.598339) | 13.699854 / 8.074308 (5.625546) | 13.930979 / 10.191392 (3.739587) | 0.165344 / 0.680424 (-0.515079) | 0.028910 / 0.534201 (-0.505291) | 0.396201 / 0.579283 (-0.183082) | 0.404448 / 0.434364 (-0.029916) | 0.482031 / 0.540337 (-0.058306) | 0.570023 / 1.386936 (-0.816913) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006785 / 0.011353 (-0.004568) | 0.004643 / 0.011008 (-0.006365) | 0.076755 / 0.038508 (0.038247) | 0.027893 / 0.023109 (0.004783) | 0.342539 / 0.275898 (0.066641) | 0.379103 / 0.323480 (0.055623) | 0.005107 / 0.007986 (-0.002879) | 0.003413 / 0.004328 (-0.000915) | 0.075779 / 0.004250 (0.071528) | 0.039251 / 0.037052 (0.002199) | 0.343425 / 0.258489 (0.084935) | 0.385292 / 0.293841 (0.091451) | 0.032229 / 0.128546 (-0.096317) | 0.011666 / 0.075646 (-0.063980) | 0.086452 / 0.419271 (-0.332819) | 0.042918 / 0.043533 (-0.000615) | 0.343145 / 0.255139 (0.088006) | 0.367916 / 0.283200 (0.084717) | 0.090810 / 0.141683 (-0.050873) | 1.471679 / 1.452155 (0.019524) | 1.566683 / 1.492716 (0.073966) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220343 / 0.018006 (0.202336) | 0.396155 / 0.000490 (0.395665) | 0.003831 / 0.000200 (0.003631) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024990 / 0.037411 (-0.012421) | 0.101270 / 0.014526 (0.086744) | 0.110115 / 0.176557 (-0.066442) | 0.161770 / 0.737135 (-0.575365) | 0.112187 / 0.296338 (-0.184151) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436199 / 0.215209 (0.220989) | 4.329084 / 2.077655 (2.251429) | 2.043335 / 1.504120 (0.539215) | 1.836799 / 1.541195 (0.295604) | 1.908362 / 1.468490 (0.439872) | 0.700518 / 4.584777 (-3.884259) | 3.418003 / 3.745712 (-0.327710) | 1.860621 / 5.269862 (-3.409241) | 1.171343 / 4.565676 (-3.394334) | 0.083150 / 0.424275 (-0.341125) | 0.012543 / 0.007607 (0.004936) | 0.533528 / 0.226044 (0.307483) | 5.339660 / 2.268929 (3.070732) | 2.499494 / 55.444624 (-52.945131) | 2.154773 / 6.876477 (-4.721704) | 2.198734 / 2.142072 (0.056661) | 0.803383 / 4.805227 (-4.001844) | 0.150980 / 6.500664 (-6.349684) | 0.068050 / 0.075469 (-0.007419) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.309487 / 1.841788 (-0.532301) | 14.177068 / 8.074308 (6.102760) | 13.218912 / 10.191392 (3.027520) | 0.156857 / 0.680424 (-0.523567) | 0.016534 / 0.534201 (-0.517667) | 0.383986 / 0.579283 (-0.195297) | 0.395264 / 0.434364 (-0.039100) | 0.442310 / 0.540337 (-0.098027) | 0.535535 / 1.386936 (-0.851401) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#64e24bca88be711f4fdcb9c18edaddc1db0bbe2e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009446 / 0.011353 (-0.001907) | 0.005061 / 0.011008 (-0.005948) | 0.099783 / 0.038508 (0.061275) | 0.036379 / 0.023109 (0.013270) | 0.296769 / 0.275898 (0.020871) | 0.368990 / 0.323480 (0.045510) | 0.007891 / 0.007986 (-0.000094) | 0.003940 / 0.004328 (-0.000389) | 0.076284 / 0.004250 (0.072034) | 0.044390 / 0.037052 (0.007337) | 0.313373 / 0.258489 (0.054884) | 0.361118 / 0.293841 (0.067277) | 0.039058 / 0.128546 (-0.089488) | 0.012016 / 0.075646 (-0.063631) | 0.334239 / 0.419271 (-0.085033) | 0.047028 / 0.043533 (0.003495) | 0.297766 / 0.255139 (0.042627) | 0.312853 / 0.283200 (0.029653) | 0.099117 / 0.141683 (-0.042566) | 1.475487 / 1.452155 (0.023332) | 1.557487 / 1.492716 (0.064771) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206243 / 0.018006 (0.188237) | 0.443920 / 0.000490 (0.443430) | 0.001404 / 0.000200 (0.001205) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026347 / 0.037411 (-0.011065) | 0.105880 / 0.014526 (0.091354) | 0.116227 / 0.176557 (-0.060330) | 0.157404 / 0.737135 (-0.579732) | 0.121668 / 0.296338 (-0.174671) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398614 / 0.215209 (0.183405) | 3.970657 / 2.077655 (1.893002) | 1.778899 / 1.504120 (0.274779) | 1.591806 / 1.541195 (0.050611) | 1.687717 / 1.468490 (0.219227) | 0.695399 / 4.584777 (-3.889378) | 3.829281 / 3.745712 (0.083569) | 2.140856 / 5.269862 (-3.129006) | 1.355027 / 4.565676 (-3.210650) | 0.085714 / 0.424275 (-0.338561) | 0.012130 / 0.007607 (0.004523) | 0.505807 / 0.226044 (0.279762) | 5.053098 / 2.268929 (2.784170) | 2.321694 / 55.444624 (-53.122931) | 2.015909 / 6.876477 (-4.860568) | 2.100862 / 2.142072 (-0.041210) | 0.855689 / 4.805227 (-3.949539) | 0.167192 / 6.500664 (-6.333472) | 0.062376 / 0.075469 (-0.013093) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196647 / 1.841788 (-0.645141) | 14.971356 / 8.074308 (6.897048) | 13.897184 / 10.191392 (3.705792) | 0.193267 / 0.680424 (-0.487157) | 0.029252 / 0.534201 (-0.504949) | 0.444885 / 0.579283 (-0.134398) | 0.452792 / 0.434364 (0.018429) | 0.550157 / 0.540337 (0.009819) | 0.658524 / 1.386936 (-0.728412) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007774 / 0.011353 (-0.003579) | 0.005304 / 0.011008 (-0.005704) | 0.075530 / 0.038508 (0.037022) | 0.034930 / 0.023109 (0.011821) | 0.343879 / 0.275898 (0.067981) | 0.386487 / 0.323480 (0.063008) | 0.005998 / 0.007986 (-0.001987) | 0.005619 / 0.004328 (0.001291) | 0.075865 / 0.004250 (0.071614) | 0.050499 / 0.037052 (0.013446) | 0.345503 / 0.258489 (0.087014) | 0.392081 / 0.293841 (0.098240) | 0.037118 / 0.128546 (-0.091429) | 0.012540 / 0.075646 (-0.063107) | 0.086202 / 0.419271 (-0.333069) | 0.050672 / 0.043533 (0.007139) | 0.343622 / 0.255139 (0.088483) | 0.353853 / 0.283200 (0.070653) | 0.105408 / 0.141683 (-0.036274) | 1.460695 / 1.452155 (0.008540) | 1.524270 / 1.492716 (0.031554) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219356 / 0.018006 (0.201350) | 0.440740 / 0.000490 (0.440251) | 0.014313 / 0.000200 (0.014114) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030297 / 0.037411 (-0.007115) | 0.108723 / 0.014526 (0.094197) | 0.125085 / 0.176557 (-0.051471) | 0.176664 / 0.737135 (-0.560471) | 0.126659 / 0.296338 (-0.169680) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445790 / 0.215209 (0.230581) | 4.241046 / 2.077655 (2.163391) | 2.027381 / 1.504120 (0.523261) | 1.821070 / 1.541195 (0.279876) | 1.934417 / 1.468490 (0.465927) | 0.710897 / 4.584777 (-3.873880) | 3.840397 / 3.745712 (0.094685) | 3.959196 / 5.269862 (-1.310666) | 1.646069 / 4.565676 (-2.919608) | 0.088615 / 0.424275 (-0.335660) | 0.012321 / 0.007607 (0.004714) | 0.523463 / 0.226044 (0.297418) | 5.240147 / 2.268929 (2.971218) | 2.521639 / 55.444624 (-52.922986) | 2.246535 / 6.876477 (-4.629942) | 2.365913 / 2.142072 (0.223841) | 0.851288 / 4.805227 (-3.953939) | 0.170179 / 6.500664 (-6.330485) | 0.064732 / 0.075469 (-0.010737) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255505 / 1.841788 (-0.586283) | 15.305457 / 8.074308 (7.231148) | 13.214186 / 10.191392 (3.022794) | 0.188971 / 0.680424 (-0.491453) | 0.018972 / 0.534201 (-0.515229) | 0.429621 / 0.579283 (-0.149662) | 0.428738 / 0.434364 (-0.005626) | 0.536241 / 0.540337 (-0.004096) | 0.632998 / 1.386936 (-0.753938) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b64fae9509f6e9da9cabf0ce677966598fc61e38 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008435 / 0.011353 (-0.002918) | 0.004454 / 0.011008 (-0.006554) | 0.099091 / 0.038508 (0.060583) | 0.028890 / 0.023109 (0.005781) | 0.297450 / 0.275898 (0.021551) | 0.329025 / 0.323480 (0.005545) | 0.006584 / 0.007986 (-0.001401) | 0.004669 / 0.004328 (0.000340) | 0.077387 / 0.004250 (0.073137) | 0.033701 / 0.037052 (-0.003352) | 0.301272 / 0.258489 (0.042783) | 0.345401 / 0.293841 (0.051560) | 0.033473 / 0.128546 (-0.095073) | 0.011244 / 0.075646 (-0.064402) | 0.321941 / 0.419271 (-0.097330) | 0.040646 / 0.043533 (-0.002887) | 0.306686 / 0.255139 (0.051547) | 0.321868 / 0.283200 (0.038668) | 0.084281 / 0.141683 (-0.057401) | 1.491414 / 1.452155 (0.039259) | 1.542799 / 1.492716 (0.050083) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.188368 / 0.018006 (0.170362) | 0.398595 / 0.000490 (0.398105) | 0.000805 / 0.000200 (0.000605) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022690 / 0.037411 (-0.014721) | 0.096795 / 0.014526 (0.082269) | 0.104037 / 0.176557 (-0.072520) | 0.149409 / 0.737135 (-0.587727) | 0.108022 / 0.296338 (-0.188317) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419316 / 0.215209 (0.204107) | 4.186850 / 2.077655 (2.109196) | 1.920182 / 1.504120 (0.416062) | 1.715493 / 1.541195 (0.174298) | 1.757767 / 1.468490 (0.289277) | 0.692296 / 4.584777 (-3.892480) | 3.342330 / 3.745712 (-0.403382) | 1.842063 / 5.269862 (-3.427798) | 1.150190 / 4.565676 (-3.415487) | 0.082792 / 0.424275 (-0.341483) | 0.012540 / 0.007607 (0.004933) | 0.528867 / 0.226044 (0.302822) | 5.297818 / 2.268929 (3.028890) | 2.313173 / 55.444624 (-53.131451) | 1.941723 / 6.876477 (-4.934754) | 1.982948 / 2.142072 (-0.159125) | 0.808951 / 4.805227 (-3.996276) | 0.149338 / 6.500664 (-6.351326) | 0.064838 / 0.075469 (-0.010631) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.187865 / 1.841788 (-0.653923) | 13.381918 / 8.074308 (5.307610) | 13.730627 / 10.191392 (3.539234) | 0.149976 / 0.680424 (-0.530447) | 0.028249 / 0.534201 (-0.505952) | 0.392591 / 0.579283 (-0.186692) | 0.403451 / 0.434364 (-0.030912) | 0.467484 / 0.540337 (-0.072853) | 0.560296 / 1.386936 (-0.826640) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006440 / 0.011353 (-0.004913) | 0.004488 / 0.011008 (-0.006521) | 0.077875 / 0.038508 (0.039367) | 0.027284 / 0.023109 (0.004174) | 0.341625 / 0.275898 (0.065727) | 0.374960 / 0.323480 (0.051480) | 0.005581 / 0.007986 (-0.002405) | 0.003326 / 0.004328 (-0.001003) | 0.076928 / 0.004250 (0.072677) | 0.038205 / 0.037052 (0.001153) | 0.345933 / 0.258489 (0.087444) | 0.383675 / 0.293841 (0.089834) | 0.031908 / 0.128546 (-0.096638) | 0.011724 / 0.075646 (-0.063922) | 0.086974 / 0.419271 (-0.332298) | 0.043084 / 0.043533 (-0.000449) | 0.339663 / 0.255139 (0.084524) | 0.363782 / 0.283200 (0.080582) | 0.090934 / 0.141683 (-0.050749) | 1.459718 / 1.452155 (0.007563) | 1.541104 / 1.492716 (0.048388) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224005 / 0.018006 (0.205998) | 0.400727 / 0.000490 (0.400238) | 0.000427 / 0.000200 (0.000227) | 0.000061 / 0.000054 (0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024604 / 0.037411 (-0.012807) | 0.099813 / 0.014526 (0.085287) | 0.104034 / 0.176557 (-0.072523) | 0.156245 / 0.737135 (-0.580890) | 0.108739 / 0.296338 (-0.187600) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440500 / 0.215209 (0.225291) | 4.379934 / 2.077655 (2.302279) | 2.075826 / 1.504120 (0.571706) | 1.867635 / 1.541195 (0.326441) | 1.919035 / 1.468490 (0.450545) | 0.696613 / 4.584777 (-3.888164) | 3.334993 / 3.745712 (-0.410720) | 1.857139 / 5.269862 (-3.412723) | 1.160598 / 4.565676 (-3.405079) | 0.083120 / 0.424275 (-0.341155) | 0.012475 / 0.007607 (0.004868) | 0.544607 / 0.226044 (0.318563) | 5.436808 / 2.268929 (3.167879) | 2.518562 / 55.444624 (-52.926063) | 2.158434 / 6.876477 (-4.718042) | 2.170691 / 2.142072 (0.028618) | 0.811297 / 4.805227 (-3.993930) | 0.150675 / 6.500664 (-6.349990) | 0.065655 / 0.075469 (-0.009814) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277627 / 1.841788 (-0.564160) | 13.833501 / 8.074308 (5.759193) | 13.038718 / 10.191392 (2.847325) | 0.148837 / 0.680424 (-0.531587) | 0.016440 / 0.534201 (-0.517761) | 0.379147 / 0.579283 (-0.200136) | 0.379753 / 0.434364 (-0.054611) | 0.460197 / 0.540337 (-0.080141) | 0.544152 / 1.386936 (-0.842784) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6e2a235cbab1c91dc5eca0cb123f9c9d9f743461 \"CML watermark\")\n"
] | 2023-03-06T17:28:09 | 2023-03-07T13:27:50 | 2023-03-07T13:20:57 | MEMBER | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5614/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5614/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5614",
"html_url": "https://github.com/huggingface/datasets/pull/5614",
"diff_url": "https://github.com/huggingface/datasets/pull/5614.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5614.patch",
"merged_at": "2023-03-07T13:20:57"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5613 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5613/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5613/comments | https://api.github.com/repos/huggingface/datasets/issues/5613/events | https://github.com/huggingface/datasets/issues/5613 | 1,611,875,473 | I_kwDODunzps5gE0SR | 5,613 | Version mismatch with multiprocess and dill on Python 3.10 | {
"login": "adampauls",
"id": 1243668,
"node_id": "MDQ6VXNlcjEyNDM2Njg=",
"avatar_url": "https://avatars.githubusercontent.com/u/1243668?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/adampauls",
"html_url": "https://github.com/adampauls",
"followers_url": "https://api.github.com/users/adampauls/followers",
"following_url": "https://api.github.com/users/adampauls/following{/other_user}",
"gists_url": "https://api.github.com/users/adampauls/gists{/gist_id}",
"starred_url": "https://api.github.com/users/adampauls/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/adampauls/subscriptions",
"organizations_url": "https://api.github.com/users/adampauls/orgs",
"repos_url": "https://api.github.com/users/adampauls/repos",
"events_url": "https://api.github.com/users/adampauls/events{/privacy}",
"received_events_url": "https://api.github.com/users/adampauls/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Sorry, I just found https://github.com/apache/beam/issues/24458. It seems this issue is being worked on. ",
"Reopening, since I think the docs should inform the user of this problem. For example, [this page](https://huggingface.co/docs/datasets/installation) says \r\n> Datasets is tested on Python 3.7+.\r\n\r\nbut it should probably say that Beam Datasets do not work with Python 3.10 (or link to a known issues page). ",
"Same problem on Colab using a vanilla setup running :\r\nPython 3.10.11 \r\napache-beam 2.47.0\r\ndatasets 2.12.0",
"Same problem, \r\npy 3.10.11\r\napache-beam==2.47.0\r\ndatasets==2.12.0"
] | 2023-03-06T17:14:41 | 2023-05-28T01:03:55 | null | NONE | null | ### Describe the bug
Grabbing the latest version of `datasets` and `apache-beam` with `poetry` using Python 3.10 gives a crash at runtime. The crash is
```
File "/Users/adpauls/sc/git/DSI-transformers/data/NQ/create_NQ_train_vali.py", line 1, in <module>
import datasets
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/datasets/__init__.py", line 43, in <module>
from .arrow_dataset import Dataset
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 65, in <module>
from .arrow_reader import ArrowReader
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/datasets/arrow_reader.py", line 30, in <module>
from .download.download_config import DownloadConfig
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/datasets/download/__init__.py", line 9, in <module>
from .download_manager import DownloadManager, DownloadMode
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/datasets/download/download_manager.py", line 35, in <module>
from ..utils.py_utils import NestedDataStructure, map_nested, size_str
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 40, in <module>
import multiprocess.pool
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/multiprocess/pool.py", line 609, in <module>
class ThreadPool(Pool):
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/multiprocess/pool.py", line 611, in ThreadPool
from .dummy import Process
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/multiprocess/dummy/__init__.py", line 87, in <module>
class Condition(threading._Condition):
AttributeError: module 'threading' has no attribute '_Condition'. Did you mean: 'Condition'?
```
I think this is a bad interaction of versions from `dill`, `multiprocess`, `apache-beam`, and `threading` from the Python (3.10) standard lib. Upgrading `multiprocess` to a version that does not crash like this is not possible because `apache-beam` pins `dill` to and old version:
```
Because multiprocess (0.70.10) depends on dill (>=0.3.2)
and apache-beam (2.45.0) depends on dill (>=0.3.1.1,<0.3.2), multiprocess (0.70.10) is incompatible with apache-beam (2.45.0).
And because no versions of apache-beam match >2.45.0,<3.0.0, multiprocess (0.70.10) is incompatible with apache-beam (>=2.45.0,<3.0.0).
So, because yyy depends on both apache-beam (^2.45.0) and multiprocess (0.70.10), version solving failed.
```
Perhaps it is not right to file a bug here, but I'm not totally sure whose fault it is. And in any case, this is an immediate blocker to using `datasets` out of the box.
Possibly related to https://github.com/huggingface/datasets/issues/5232.
### Steps to reproduce the bug
Steps to reproduce:
1. Make a poetry project with this configuration
```
[tool.poetry]
name = "yyy"
version = "0.1.0"
description = ""
authors = ["Adam Pauls <[email protected]>"]
readme = "README.md"
packages = [{ include = "xxx" }]
[tool.poetry.dependencies]
python = ">=3.10,<3.11"
datasets = "^2.10.1"
apache-beam = "^2.45.0"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"
```
2. `poetry install`.
3. `poetry run python -c "import datasets"`.
### Expected behavior
Script runs.
### Environment info
Python 3.10. Here are the versions installed by `poetry`:
```
โขโข Installing frozenlist (1.3.3)
โข Installing idna (3.4)
โข Installing multidict (6.0.4)
โข Installing aiosignal (1.3.1)
โข Installing async-timeout (4.0.2)
โข Installing attrs (22.2.0)
โข Installing certifi (2022.12.7)
โข Installing charset-normalizer (3.1.0)
โข Installing six (1.16.0)
โข Installing urllib3 (1.26.14)
โข Installing yarl (1.8.2)
โข Installing aiohttp (3.8.4)
โข Installing dill (0.3.1.1)
โข Installing docopt (0.6.2)
โข Installing filelock (3.9.0)
โข Installing numpy (1.22.4)
โข Installing pyparsing (3.0.9)
โข Installing protobuf (3.19.4)
โข Installing packaging (23.0)
โข Installing python-dateutil (2.8.2)
โข Installing pytz (2022.7.1)
โข Installing pyyaml (6.0)
โข Installing requests (2.28.2)
โข Installing tqdm (4.65.0)
โข Installing typing-extensions (4.5.0)
โข Installing cloudpickle (2.2.1)
โข Installing crcmod (1.7)
โข Installing fastavro (1.7.2)
โข Installing fasteners (0.18)
โข Installing fsspec (2023.3.0)
โข Installing grpcio (1.51.3)
โข Installing hdfs (2.7.0)
โข Installing httplib2 (0.20.4)
โข Installing huggingface-hub (0.12.1)
โข Installing multiprocess (0.70.9)
โข Installing objsize (0.6.1)
โข Installing orjson (3.8.7)
โข Installing pandas (1.5.3)
โข Installing proto-plus (1.22.2)
โข Installing pyarrow (9.0.0)
โข Installing pydot (1.4.2)
โข Installing pymongo (3.13.0)
โข Installing regex (2022.10.31)
โข Installing responses (0.18.0)
โข Installing xxhash (3.2.0)
โข Installing zstandard (0.20.0)
โข Installing apache-beam (2.45.0)
โข Installing datasets (2.10.1)
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5613/reactions",
"total_count": 4,
"+1": 4,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5613/timeline | null | reopened | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5612 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5612/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5612/comments | https://api.github.com/repos/huggingface/datasets/issues/5612/events | https://github.com/huggingface/datasets/issues/5612 | 1,611,262,510 | I_kwDODunzps5gCeou | 5,612 | Arrow map type in parquet files unsupported | {
"login": "TevenLeScao",
"id": 26709476,
"node_id": "MDQ6VXNlcjI2NzA5NDc2",
"avatar_url": "https://avatars.githubusercontent.com/u/26709476?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/TevenLeScao",
"html_url": "https://github.com/TevenLeScao",
"followers_url": "https://api.github.com/users/TevenLeScao/followers",
"following_url": "https://api.github.com/users/TevenLeScao/following{/other_user}",
"gists_url": "https://api.github.com/users/TevenLeScao/gists{/gist_id}",
"starred_url": "https://api.github.com/users/TevenLeScao/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/TevenLeScao/subscriptions",
"organizations_url": "https://api.github.com/users/TevenLeScao/orgs",
"repos_url": "https://api.github.com/users/TevenLeScao/repos",
"events_url": "https://api.github.com/users/TevenLeScao/events{/privacy}",
"received_events_url": "https://api.github.com/users/TevenLeScao/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"I'm attaching a minimal reproducible example:\r\n```python\r\nfrom datasets import load_dataset\r\nimport pyarrow as pa\r\nimport pyarrow.parquet as pq\r\n\r\ntable_with_map = pa.Table.from_pydict(\r\n {\"a\": [1, 2], \"b\": [[(\"a\", 2)], [(\"b\", 4)]]},\r\n schema=pa.schema({\"a\": pa.int32(), \"b\": pa.map_(pa.string(), pa.int32())})\r\n)\r\npq.write_table(table_with_map, \"parquet_with_map.parquet\")\r\ndset = load_dataset(\"parquet\", data_files=\"parquet_with_map.parquet\", split=\"train\") # error unless streaming=True\r\n``` \r\n\r\nFor a dataset generated with the packaged loaders (CSV, JSON, Parquet), `streaming=True` sets the dataset's features to `None` (unless explicitly provided in `load_dataset`), hence no error will be thrown as long as the features stay \"unresolved\" (resolving the features with `_resolve_features` will lead to an error)."
] | 2023-03-06T12:03:24 | 2023-03-14T17:20:25 | null | CONTRIBUTOR | null | ### Describe the bug
When I try to load parquet files that were processed with Spark, I get the following issue:
`ValueError: Arrow type map<string, string ('warc_headers')> does not have a datasets dtype equivalent.`
Strangely, loading the dataset with `streaming=True` solves the issue.
### Steps to reproduce the bug
The dataset is private, but this can be reproduced with any dataset that has Arrow maps.
### Expected behavior
Loading the dataset no matter whether streaming is True or not.
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-5.15.0-1029-gcp-x86_64-with-glibc2.31
- Python version: 3.10.7
- PyArrow version: 8.0.0
- Pandas version: 1.4.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5612/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5612/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5611 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5611/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5611/comments | https://api.github.com/repos/huggingface/datasets/issues/5611/events | https://github.com/huggingface/datasets/pull/5611 | 1,611,197,906 | PR_kwDODunzps5LW2Lx | 5,611 | add Dataset.to_list | {
"login": "kyoto7250",
"id": 50972773,
"node_id": "MDQ6VXNlcjUwOTcyNzcz",
"avatar_url": "https://avatars.githubusercontent.com/u/50972773?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kyoto7250",
"html_url": "https://github.com/kyoto7250",
"followers_url": "https://api.github.com/users/kyoto7250/followers",
"following_url": "https://api.github.com/users/kyoto7250/following{/other_user}",
"gists_url": "https://api.github.com/users/kyoto7250/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kyoto7250/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kyoto7250/subscriptions",
"organizations_url": "https://api.github.com/users/kyoto7250/orgs",
"repos_url": "https://api.github.com/users/kyoto7250/repos",
"events_url": "https://api.github.com/users/kyoto7250/events{/privacy}",
"received_events_url": "https://api.github.com/users/kyoto7250/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Hi, thanks for working on this! `Table.to_pylist` requires PyArrow 7.0+, and our minimal version requirement is 6.0, so we need to bump the version requirement to avoid CI failure. I'll do this in a separate PR.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006857 / 0.011353 (-0.004496) | 0.004711 / 0.011008 (-0.006297) | 0.098332 / 0.038508 (0.059824) | 0.028547 / 0.023109 (0.005438) | 0.307647 / 0.275898 (0.031749) | 0.334891 / 0.323480 (0.011411) | 0.005252 / 0.007986 (-0.002734) | 0.003495 / 0.004328 (-0.000833) | 0.075529 / 0.004250 (0.071279) | 0.042167 / 0.037052 (0.005114) | 0.308509 / 0.258489 (0.050020) | 0.348294 / 0.293841 (0.054453) | 0.032042 / 0.128546 (-0.096504) | 0.011684 / 0.075646 (-0.063962) | 0.321740 / 0.419271 (-0.097531) | 0.057725 / 0.043533 (0.014193) | 0.309431 / 0.255139 (0.054292) | 0.326818 / 0.283200 (0.043618) | 0.093261 / 0.141683 (-0.048422) | 1.475344 / 1.452155 (0.023190) | 1.563952 / 1.492716 (0.071236) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.205056 / 0.018006 (0.187050) | 0.421656 / 0.000490 (0.421166) | 0.004167 / 0.000200 (0.003967) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023935 / 0.037411 (-0.013476) | 0.097220 / 0.014526 (0.082695) | 0.104942 / 0.176557 (-0.071615) | 0.170339 / 0.737135 (-0.566796) | 0.107556 / 0.296338 (-0.188782) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424509 / 0.215209 (0.209300) | 4.223637 / 2.077655 (2.145982) | 2.090700 / 1.504120 (0.586580) | 1.902537 / 1.541195 (0.361343) | 1.981192 / 1.468490 (0.512701) | 0.695272 / 4.584777 (-3.889505) | 3.570169 / 3.745712 (-0.175544) | 1.885007 / 5.269862 (-3.384854) | 1.162828 / 4.565676 (-3.402848) | 0.084956 / 0.424275 (-0.339319) | 0.012818 / 0.007607 (0.005210) | 0.534395 / 0.226044 (0.308351) | 5.354318 / 2.268929 (3.085389) | 2.436875 / 55.444624 (-53.007749) | 2.111365 / 6.876477 (-4.765112) | 2.232874 / 2.142072 (0.090802) | 0.804703 / 4.805227 (-4.000524) | 0.152406 / 6.500664 (-6.348258) | 0.066926 / 0.075469 (-0.008543) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.198621 / 1.841788 (-0.643166) | 13.907491 / 8.074308 (5.833183) | 14.356286 / 10.191392 (4.164894) | 0.140714 / 0.680424 (-0.539710) | 0.016440 / 0.534201 (-0.517761) | 0.380868 / 0.579283 (-0.198415) | 0.396004 / 0.434364 (-0.038360) | 0.448275 / 0.540337 (-0.092062) | 0.537818 / 1.386936 (-0.849118) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006789 / 0.011353 (-0.004564) | 0.004652 / 0.011008 (-0.006356) | 0.076449 / 0.038508 (0.037941) | 0.028389 / 0.023109 (0.005280) | 0.378644 / 0.275898 (0.102746) | 0.423870 / 0.323480 (0.100391) | 0.005824 / 0.007986 (-0.002162) | 0.003398 / 0.004328 (-0.000931) | 0.075575 / 0.004250 (0.071324) | 0.039656 / 0.037052 (0.002604) | 0.370072 / 0.258489 (0.111583) | 0.441812 / 0.293841 (0.147971) | 0.031817 / 0.128546 (-0.096729) | 0.011701 / 0.075646 (-0.063946) | 0.085759 / 0.419271 (-0.333513) | 0.042328 / 0.043533 (-0.001205) | 0.364103 / 0.255139 (0.108964) | 0.413910 / 0.283200 (0.130711) | 0.090871 / 0.141683 (-0.050812) | 1.505749 / 1.452155 (0.053594) | 1.608555 / 1.492716 (0.115839) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212533 / 0.018006 (0.194527) | 0.404519 / 0.000490 (0.404030) | 0.000373 / 0.000200 (0.000174) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024849 / 0.037411 (-0.012562) | 0.100769 / 0.014526 (0.086243) | 0.110450 / 0.176557 (-0.066107) | 0.161715 / 0.737135 (-0.575420) | 0.113599 / 0.296338 (-0.182739) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436780 / 0.215209 (0.221571) | 4.387103 / 2.077655 (2.309448) | 2.081942 / 1.504120 (0.577822) | 1.873661 / 1.541195 (0.332466) | 1.947718 / 1.468490 (0.479228) | 0.696434 / 4.584777 (-3.888343) | 3.405300 / 3.745712 (-0.340412) | 1.897388 / 5.269862 (-3.372474) | 1.169969 / 4.565676 (-3.395707) | 0.083085 / 0.424275 (-0.341190) | 0.012480 / 0.007607 (0.004873) | 0.535635 / 0.226044 (0.309591) | 5.364462 / 2.268929 (3.095533) | 2.531168 / 55.444624 (-52.913457) | 2.184324 / 6.876477 (-4.692153) | 2.228613 / 2.142072 (0.086541) | 0.807127 / 4.805227 (-3.998100) | 0.151971 / 6.500664 (-6.348693) | 0.068430 / 0.075469 (-0.007039) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306401 / 1.841788 (-0.535387) | 14.479552 / 8.074308 (6.405244) | 14.428398 / 10.191392 (4.237006) | 0.159505 / 0.680424 (-0.520919) | 0.016856 / 0.534201 (-0.517344) | 0.375197 / 0.579283 (-0.204086) | 0.384328 / 0.434364 (-0.050036) | 0.440688 / 0.540337 (-0.099650) | 0.524998 / 1.386936 (-0.861938) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#50b887b840cf3cab86b0394b41050b579c4b79ba \"CML watermark\")\n"
] | 2023-03-06T11:21:57 | 2023-03-27T13:34:19 | 2023-03-27T13:26:38 | CONTRIBUTOR | null | close https://github.com/huggingface/datasets/issues/5606
This PR is for adding the `Dataset.to_list` method.
Thank you in advance.
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5611/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5611/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5611",
"html_url": "https://github.com/huggingface/datasets/pull/5611",
"diff_url": "https://github.com/huggingface/datasets/pull/5611.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5611.patch",
"merged_at": "2023-03-27T13:26:38"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5610 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5610/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5610/comments | https://api.github.com/repos/huggingface/datasets/issues/5610/events | https://github.com/huggingface/datasets/issues/5610 | 1,610,698,006 | I_kwDODunzps5gAU0W | 5,610 | use datasets streaming mode in trainer ddp mode cause memory leak | {
"login": "gromzhu",
"id": 15223544,
"node_id": "MDQ6VXNlcjE1MjIzNTQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/15223544?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gromzhu",
"html_url": "https://github.com/gromzhu",
"followers_url": "https://api.github.com/users/gromzhu/followers",
"following_url": "https://api.github.com/users/gromzhu/following{/other_user}",
"gists_url": "https://api.github.com/users/gromzhu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gromzhu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gromzhu/subscriptions",
"organizations_url": "https://api.github.com/users/gromzhu/orgs",
"repos_url": "https://api.github.com/users/gromzhu/repos",
"events_url": "https://api.github.com/users/gromzhu/events{/privacy}",
"received_events_url": "https://api.github.com/users/gromzhu/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Same problem, \r\ntransformers 4.28.1\r\ndatasets 2.12.0\r\n\r\nleak around 100Mb per 10 seconds when use dataloader_num_werker > 0 in training argumennts for transformer train, possile bug in transformers repo, but still not found solution :(\r\n",
"found an article described a problem, may be helpful for somebody:\r\nhttps://ppwwyyxx.com/blog/2022/Demystify-RAM-Usage-in-Multiprocess-DataLoader/\r\nI confirm, it`s not memory leak, after some time memory growing has stopped"
] | 2023-03-06T05:26:49 | 2023-05-07T15:15:32 | null | NONE | null | ### Describe the bug
use datasets streaming mode in trainer ddp mode cause memory leak
### Steps to reproduce the bug
import os
import time
import datetime
import sys
import numpy as np
import random
import torch
from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler, SequentialSampler,DistributedSampler,BatchSampler
torch.manual_seed(42)
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, GPT2Model,DataCollatorForLanguageModeling,AutoModelForCausalLM
from transformers import AdamW, get_linear_schedule_with_warmup
hf_model_path ='./Wenzhong-GPT2-110M'
tokenizer = GPT2Tokenizer.from_pretrained(hf_model_path)
tokenizer.add_special_tokens({'pad_token': '<|pad|>'})
from datasets import load_dataset
gpus=8
max_len = 576
batch_size_node = 17
save_step = 5000
gradient_accumulation = 2
dataloader_num = 4
max_step = 351000*1000//batch_size_node//gradient_accumulation//gpus
#max_step = -1
print("total_step:%d"%(max_step))
import datasets
datasets.version
dataset = load_dataset("text", data_files="./gpt_data_v1/*",split='train',cache_dir='./dataset_cache',streaming=True)
print('load over')
shuffled_dataset = dataset.shuffle(seed=42)
print('shuffle over')
def dataset_tokener(example,max_lenth=max_len):
example['text'] = list(map(lambda x : x.strip()+'<|endoftext|>',example['text'] ))
return tokenizer(example['text'], truncation=True, max_length=max_lenth, padding="longest")
new_new_dataset = shuffled_dataset.map(dataset_tokener, batched=True, remove_columns=["text"])
print('map over')
configuration = GPT2Config.from_pretrained(hf_model_path, output_hidden_states=False)
model = AutoModelForCausalLM.from_pretrained(hf_model_path)
model.resize_token_embeddings(len(tokenizer))
seed_val = 42
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
from transformers import Trainer,TrainingArguments
import os
print("strat train")
training_args = TrainingArguments(output_dir="./test_trainer",
num_train_epochs=1.0,
report_to="none",
do_train=True,
dataloader_num_workers=dataloader_num,
local_rank=int(os.environ.get('LOCAL_RANK', -1)),
overwrite_output_dir=True,
logging_strategy='steps',
logging_first_step=True,
logging_dir="./logs",
log_on_each_node=False,
per_device_train_batch_size=batch_size_node,
warmup_ratio=0.03,
save_steps=save_step,
save_total_limit=5,
gradient_accumulation_steps=gradient_accumulation,
max_steps=max_step,
disable_tqdm=False,
data_seed=42
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=new_new_dataset,
eval_dataset=None,
tokenizer=tokenizer,
data_collator=DataCollatorForLanguageModeling(tokenizer,mlm=False),
#compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
#preprocess_logits_for_metrics=preprocess_logits_for_metrics
#if training_args.do_eval and not is_torch_tpu_available()
#else None,
)
trainer.train(resume_from_checkpoint=True)
### Expected behavior
use the train code uppper
my dataset ./gpt_data_v1 have 1000 files, each file size is 120mb
start cmd is : python -m torch.distributed.launch --nproc_per_node=8 my_train.py
here is result:
![image](https://user-images.githubusercontent.com/15223544/223026042-1a81489f-897a-43e4-8339-65a202fd5dc7.png)
here is memory usage monitor in 12 hours
![image](https://user-images.githubusercontent.com/15223544/223027076-14e32e8b-9608-4282-9a80-f15d0277026d.png)
every dataloader work allocate over 24gb cpu memory
according to memory usage monitor in 12 hours,sometime small memory releases, but total memory usage is increase.
i think datasets streaming mode should not used so much memery,so maybe somewhere has memory leak.
### Environment info
pytorch 1.11.0
py 3.8
cuda 11.3
transformers 4.26.1
datasets 2.9.0
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5610/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5610/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5609 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5609/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5609/comments | https://api.github.com/repos/huggingface/datasets/issues/5609/events | https://github.com/huggingface/datasets/issues/5609 | 1,610,062,862 | I_kwDODunzps5f95wO | 5,609 | `load_from_disk` vs `load_dataset` performance. | {
"login": "davidgilbertson",
"id": 4443482,
"node_id": "MDQ6VXNlcjQ0NDM0ODI=",
"avatar_url": "https://avatars.githubusercontent.com/u/4443482?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/davidgilbertson",
"html_url": "https://github.com/davidgilbertson",
"followers_url": "https://api.github.com/users/davidgilbertson/followers",
"following_url": "https://api.github.com/users/davidgilbertson/following{/other_user}",
"gists_url": "https://api.github.com/users/davidgilbertson/gists{/gist_id}",
"starred_url": "https://api.github.com/users/davidgilbertson/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/davidgilbertson/subscriptions",
"organizations_url": "https://api.github.com/users/davidgilbertson/orgs",
"repos_url": "https://api.github.com/users/davidgilbertson/repos",
"events_url": "https://api.github.com/users/davidgilbertson/events{/privacy}",
"received_events_url": "https://api.github.com/users/davidgilbertson/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi! We've recently made some improvements to `save_to_disk`/`list_to_disk` (100x faster in some scenarios), so it would help if you could install `datasets` directly from `main` (`pip install git+https://github.com/huggingface/datasets.git`) and re-run the \"benchmark\".",
"Great to hear! I'll give it a try when I've got a moment.",
"@mariosasko is that fix released to pip in the meantime? Asking cause im facing still the same issue (regarding loading images from local paths):\r\n```\r\ndataset = load_dataset(\"csv\", cache_dir=\"cache\", data_files=[\"/STORAGE/DATA/mijam/vit/code/list_filtered.csv\"], num_proc=16, split=\"train\").cast_column(\"image\", Image())\r\ndataset = dataset.class_encode_column(\"label\")\r\n```\r\nquite fast. \r\n\r\nThen I do `save_to_disk()` and some time later:\r\n```\r\ndataset = load_from_disk('/STORAGE/DATA/mijam/accel/saved_arrow_big')\r\n```\r\nreally slow. In theory it should be quicked since it only loads arrow files, no conversions and so on.\r\n",
"@mjamroz I assume your CSV file stores image file paths. This means `save_to_disk` needs to embed the image bytes resulting in a much bigger Arrow file (than the initial one). Maybe specifying `num_shards` to make the Arrow files smaller can help (large Arrow files on some systems take a long time to load)."
] | 2023-03-05T05:27:15 | 2023-07-13T18:48:05 | null | NONE | null | ### Describe the bug
I have downloaded `openwebtext` (~12GB) and filtered out a small amount of junk (it's still huge). Now, I would like to use this filtered version for future work. It seems I have two choices:
1. Use `load_dataset` each time, relying on the cache mechanism, and re-run my filtering.
2. `save_to_disk` and then use `load_from_disk` to load the filtered version.
The performance of these two approaches is wildly different:
* Using `load_dataset` takes about 20 seconds to load the dataset, and a few seconds to re-filter (thanks to the brilliant filter/map caching)
* Using `load_from_disk` takes 14 minutes! And the second time I tried, the session just crashed (on a machine with 32GB of RAM)
I don't know if you'd call this a bug, but it seems like there shouldn't need to be two methods to load from disk, or that they should not take such wildly different amounts of time, or that one should not crash. Or maybe that the docs could offer some guidance about when to pick which method and why two methods exist, or just how do most people do it?
Something I couldn't work out from reading the docs was this: can I modify a dataset from the hub, save it (locally) and use `load_dataset` to load it? This [post seemed to suggest that the answer is no](https://discuss.huggingface.co/t/save-and-load-datasets/9260).
### Steps to reproduce the bug
See above
### Expected behavior
Load times should be about the same.
### Environment info
- `datasets` version: 2.9.0
- Platform: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31
- Python version: 3.10.8
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5609/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5609/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5608 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5608/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5608/comments | https://api.github.com/repos/huggingface/datasets/issues/5608/events | https://github.com/huggingface/datasets/issues/5608 | 1,609,996,563 | I_kwDODunzps5f9pkT | 5,608 | audiofolder only creates dataset of 13 rows (files) when the data folder it's reading from has 20,000 mp3 files. | {
"login": "jcho19",
"id": 107211437,
"node_id": "U_kgDOBmPqrQ",
"avatar_url": "https://avatars.githubusercontent.com/u/107211437?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jcho19",
"html_url": "https://github.com/jcho19",
"followers_url": "https://api.github.com/users/jcho19/followers",
"following_url": "https://api.github.com/users/jcho19/following{/other_user}",
"gists_url": "https://api.github.com/users/jcho19/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jcho19/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jcho19/subscriptions",
"organizations_url": "https://api.github.com/users/jcho19/orgs",
"repos_url": "https://api.github.com/users/jcho19/repos",
"events_url": "https://api.github.com/users/jcho19/events{/privacy}",
"received_events_url": "https://api.github.com/users/jcho19/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi!\r\n\r\n> naming convention of mp3 files\r\n\r\nYes, this could be the problem. MP3 files should end with `.mp3`/`.MP3` to be recognized as audio files.\r\n\r\nIf the file names are not the culprit, can you paste the audio folder's directory structure to help us reproduce the error (e.g., by running the `tree \"x\"` command)?",
"Hi! I'm sorry, I don't want to reveal my entire dataset, but here's a snippet (all of the mp3 files below are some of the ones not being recognized by audiofolder. Also, for another dataset, audiofolder loaded zero mp3 files because \"train\" was in the name of one of the mp3 files. \r\nmy_dataset\r\nโโโ data\r\nโย ย โโโ VHA_Innovation_Stories_-_Day_2-123.mp3\r\nโย ย โโโ VHA_Innovation_Stories_-_Day_2-124.mp3\r\nโย ย โโโ ASSOCIATION_OF_GENERAL_PRACTITIONERS_OF_JAMAICA_NEPHROLOGY_CONFERENCE_-_JULY_3,_2022-93.mp3\r\nโย ย โโโ ASSOCIATION_OF_GENERAL_PRACTITIONERS_OF_JAMAICA_NEPHROLOGY_CONFERENCE_-_JULY_3,_2022-94.mp3\r\nโย ย โโโ ASSOCIATION_OF_GENERAL_PRACTITIONERS_OF_JAMAICA_NEPHROLOGY_CONFERENCE_-_JULY_3,_2022-95.mp3\r\nโย ย โโโ Your_Impact\\357\\274\\232_Neurosurgery_equipment-5.mp3\r\nโย ย โโโ Your_Impact\\357\\274\\232_Neurosurgery_equipment-6.mp3\r\nโโโ metadata.csv\r\n\r\nHere's a few of the 13 files recognized by the dataset:\r\nBritish_Heart_Foundation_-_Your_guide_to_a_Coronary_Angiogram,_a_test_for_heart_disease-1.mp3\r\nBritish_Heart_Foundation_-_Your_guide_to_a_Coronary_Angiogram,_a_test_for_heart_disease-2.mp3\r\nBritish_Heart_Foundation_-_Your_guide_to_a_Coronary_Angiogram,_a_test_for_heart_disease-3.mp3\r\nIVP_โงธ_IVU_test_Procedure_for_Kidneys_intravenous_pyelogram_-_medical_radiology_X-ray_ivp-1.mp3\r\nIVP_โงธ_IVU_test_Procedure_for_Kidneys_intravenous_pyelogram_-_medical_radiology_X-ray_ivp-2.mp3"
] | 2023-03-05T00:14:45 | 2023-03-12T00:02:57 | 2023-03-12T00:02:57 | NONE | null | ### Describe the bug
x = load_dataset("audiofolder", data_dir="x")
When running this, x is a dataset of 13 rows (files) when it should be 20,000 rows (files) as the data_dir "x" has 20,000 mp3 files. Does anyone know what could possibly cause this (naming convention of mp3 files, etc.)
### Steps to reproduce the bug
x = load_dataset("audiofolder", data_dir="x")
### Expected behavior
x = load_dataset("audiofolder", data_dir="x") should create a dataset of 20,000 rows (files).
### Environment info
- `datasets` version: 2.9.0
- Platform: Linux-3.10.0-1160.80.1.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.9.16
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5608/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5608/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5607 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5607/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5607/comments | https://api.github.com/repos/huggingface/datasets/issues/5607/events | https://github.com/huggingface/datasets/pull/5607 | 1,609,166,035 | PR_kwDODunzps5LQPbG | 5,607 | Fix outdated `verification_mode` values | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006142 / 0.011353 (-0.005211) | 0.004506 / 0.011008 (-0.006502) | 0.100224 / 0.038508 (0.061715) | 0.026988 / 0.023109 (0.003879) | 0.301625 / 0.275898 (0.025727) | 0.346337 / 0.323480 (0.022857) | 0.004642 / 0.007986 (-0.003343) | 0.003481 / 0.004328 (-0.000847) | 0.075847 / 0.004250 (0.071597) | 0.036959 / 0.037052 (-0.000094) | 0.302697 / 0.258489 (0.044208) | 0.351917 / 0.293841 (0.058076) | 0.030719 / 0.128546 (-0.097828) | 0.011591 / 0.075646 (-0.064056) | 0.319709 / 0.419271 (-0.099563) | 0.042000 / 0.043533 (-0.001532) | 0.306854 / 0.255139 (0.051715) | 0.326903 / 0.283200 (0.043703) | 0.082711 / 0.141683 (-0.058972) | 1.486616 / 1.452155 (0.034461) | 1.603229 / 1.492716 (0.110513) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198990 / 0.018006 (0.180983) | 0.427733 / 0.000490 (0.427243) | 0.003612 / 0.000200 (0.003412) | 0.000071 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022932 / 0.037411 (-0.014480) | 0.096969 / 0.014526 (0.082443) | 0.105749 / 0.176557 (-0.070807) | 0.166101 / 0.737135 (-0.571034) | 0.108646 / 0.296338 (-0.187692) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428174 / 0.215209 (0.212965) | 4.271452 / 2.077655 (2.193797) | 1.907588 / 1.504120 (0.403468) | 1.680870 / 1.541195 (0.139675) | 1.761336 / 1.468490 (0.292846) | 0.700380 / 4.584777 (-3.884396) | 3.415168 / 3.745712 (-0.330544) | 1.886122 / 5.269862 (-3.383740) | 1.276814 / 4.565676 (-3.288863) | 0.083429 / 0.424275 (-0.340846) | 0.012988 / 0.007607 (0.005381) | 0.518821 / 0.226044 (0.292776) | 5.188284 / 2.268929 (2.919356) | 2.433084 / 55.444624 (-53.011540) | 1.988034 / 6.876477 (-4.888443) | 2.100275 / 2.142072 (-0.041797) | 0.808252 / 4.805227 (-3.996976) | 0.158102 / 6.500664 (-6.342562) | 0.067686 / 0.075469 (-0.007783) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.204171 / 1.841788 (-0.637616) | 13.548756 / 8.074308 (5.474448) | 14.339805 / 10.191392 (4.148413) | 0.142853 / 0.680424 (-0.537571) | 0.016529 / 0.534201 (-0.517672) | 0.383800 / 0.579283 (-0.195483) | 0.380362 / 0.434364 (-0.054002) | 0.437716 / 0.540337 (-0.102621) | 0.524306 / 1.386936 (-0.862630) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006730 / 0.011353 (-0.004623) | 0.004652 / 0.011008 (-0.006356) | 0.077476 / 0.038508 (0.038968) | 0.027584 / 0.023109 (0.004475) | 0.340907 / 0.275898 (0.065009) | 0.377950 / 0.323480 (0.054470) | 0.005946 / 0.007986 (-0.002040) | 0.003548 / 0.004328 (-0.000780) | 0.076270 / 0.004250 (0.072019) | 0.037483 / 0.037052 (0.000431) | 0.346390 / 0.258489 (0.087901) | 0.384739 / 0.293841 (0.090898) | 0.031744 / 0.128546 (-0.096802) | 0.011598 / 0.075646 (-0.064049) | 0.085651 / 0.419271 (-0.333620) | 0.047308 / 0.043533 (0.003775) | 0.344704 / 0.255139 (0.089565) | 0.363410 / 0.283200 (0.080211) | 0.095009 / 0.141683 (-0.046674) | 1.478307 / 1.452155 (0.026152) | 1.576808 / 1.492716 (0.084092) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.197545 / 0.018006 (0.179539) | 0.431984 / 0.000490 (0.431494) | 0.001529 / 0.000200 (0.001329) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025452 / 0.037411 (-0.011959) | 0.100176 / 0.014526 (0.085651) | 0.108222 / 0.176557 (-0.068335) | 0.160556 / 0.737135 (-0.576580) | 0.112748 / 0.296338 (-0.183591) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436326 / 0.215209 (0.221117) | 4.378443 / 2.077655 (2.300788) | 2.056001 / 1.504120 (0.551881) | 1.853406 / 1.541195 (0.312211) | 1.931645 / 1.468490 (0.463155) | 0.698340 / 4.584777 (-3.886437) | 3.368961 / 3.745712 (-0.376751) | 2.583622 / 5.269862 (-2.686239) | 1.501274 / 4.565676 (-3.064402) | 0.083034 / 0.424275 (-0.341241) | 0.012725 / 0.007607 (0.005117) | 0.539991 / 0.226044 (0.313947) | 5.418413 / 2.268929 (3.149485) | 2.517205 / 55.444624 (-52.927420) | 2.179332 / 6.876477 (-4.697144) | 2.215376 / 2.142072 (0.073304) | 0.806133 / 4.805227 (-3.999094) | 0.151499 / 6.500664 (-6.349165) | 0.067270 / 0.075469 (-0.008199) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.308324 / 1.841788 (-0.533464) | 14.357361 / 8.074308 (6.283053) | 14.684768 / 10.191392 (4.493376) | 0.139575 / 0.680424 (-0.540849) | 0.016409 / 0.534201 (-0.517792) | 0.374087 / 0.579283 (-0.205196) | 0.390628 / 0.434364 (-0.043735) | 0.443102 / 0.540337 (-0.097235) | 0.536089 / 1.386936 (-0.850847) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#778d4e1c13ece980e706f8c7cb06e8473fd61315 \"CML watermark\")\n"
] | 2023-03-03T19:50:29 | 2023-03-09T17:34:13 | 2023-03-09T17:27:07 | CONTRIBUTOR | null | ~I think it makes sense not to save `dataset_info.json` file to a dataset cache directory when loading dataset with `verification_mode="no_checks"` because otherwise when next time the dataset is loaded **without** `verification_mode="no_checks"`, it will be loaded successfully, despite some values in info might not correspond to the ones in the repo which was the reason for using `verification_mode="no_checks"` first.~
Updated values of `verification_mode` to the current ones in some places ("none" -> "no_checks", "all" -> "all_checks") | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5607/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5607/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5607",
"html_url": "https://github.com/huggingface/datasets/pull/5607",
"diff_url": "https://github.com/huggingface/datasets/pull/5607.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5607.patch",
"merged_at": "2023-03-09T17:27:07"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5606 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5606/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5606/comments | https://api.github.com/repos/huggingface/datasets/issues/5606/events | https://github.com/huggingface/datasets/issues/5606 | 1,608,911,632 | I_kwDODunzps5f5gsQ | 5,606 | Add `Dataset.to_list` to the API | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 1935892877,
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue",
"name": "good first issue",
"color": "7057ff",
"default": true,
"description": "Good for newcomers"
}
] | closed | false | {
"login": "kyoto7250",
"id": 50972773,
"node_id": "MDQ6VXNlcjUwOTcyNzcz",
"avatar_url": "https://avatars.githubusercontent.com/u/50972773?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kyoto7250",
"html_url": "https://github.com/kyoto7250",
"followers_url": "https://api.github.com/users/kyoto7250/followers",
"following_url": "https://api.github.com/users/kyoto7250/following{/other_user}",
"gists_url": "https://api.github.com/users/kyoto7250/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kyoto7250/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kyoto7250/subscriptions",
"organizations_url": "https://api.github.com/users/kyoto7250/orgs",
"repos_url": "https://api.github.com/users/kyoto7250/repos",
"events_url": "https://api.github.com/users/kyoto7250/events{/privacy}",
"received_events_url": "https://api.github.com/users/kyoto7250/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "kyoto7250",
"id": 50972773,
"node_id": "MDQ6VXNlcjUwOTcyNzcz",
"avatar_url": "https://avatars.githubusercontent.com/u/50972773?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kyoto7250",
"html_url": "https://github.com/kyoto7250",
"followers_url": "https://api.github.com/users/kyoto7250/followers",
"following_url": "https://api.github.com/users/kyoto7250/following{/other_user}",
"gists_url": "https://api.github.com/users/kyoto7250/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kyoto7250/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kyoto7250/subscriptions",
"organizations_url": "https://api.github.com/users/kyoto7250/orgs",
"repos_url": "https://api.github.com/users/kyoto7250/repos",
"events_url": "https://api.github.com/users/kyoto7250/events{/privacy}",
"received_events_url": "https://api.github.com/users/kyoto7250/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hello, I have an interest in this issue.\r\nIs the `Dataset.to_dict` you are describing correct in the code here?\r\n\r\nhttps://github.com/huggingface/datasets/blob/35b789e8f6826b6b5a6b48fcc2416c890a1f326a/src/datasets/arrow_dataset.py#L4633-L4667",
"Yes, this is where `Dataset.to_dict` is defined.",
"#self-assign"
] | 2023-03-03T16:17:10 | 2023-03-27T13:26:40 | 2023-03-27T13:26:40 | CONTRIBUTOR | null | Since there is `Dataset.from_list` in the API, we should also add `Dataset.to_list` to be consistent.
Regarding the implementation, we can re-use `Dataset.to_dict`'s code and replace the `to_pydict` calls with `to_pylist`. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5606/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5606/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5605 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5605/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5605/comments | https://api.github.com/repos/huggingface/datasets/issues/5605/events | https://github.com/huggingface/datasets/pull/5605 | 1,608,865,460 | PR_kwDODunzps5LPPf5 | 5,605 | Update README logo | {
"login": "gary149",
"id": 3841370,
"node_id": "MDQ6VXNlcjM4NDEzNzA=",
"avatar_url": "https://avatars.githubusercontent.com/u/3841370?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gary149",
"html_url": "https://github.com/gary149",
"followers_url": "https://api.github.com/users/gary149/followers",
"following_url": "https://api.github.com/users/gary149/following{/other_user}",
"gists_url": "https://api.github.com/users/gary149/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gary149/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gary149/subscriptions",
"organizations_url": "https://api.github.com/users/gary149/orgs",
"repos_url": "https://api.github.com/users/gary149/repos",
"events_url": "https://api.github.com/users/gary149/events{/privacy}",
"received_events_url": "https://api.github.com/users/gary149/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Are you sure it's safe to remove? https://github.com/huggingface/datasets/pull/3866",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009520 / 0.011353 (-0.001833) | 0.005319 / 0.011008 (-0.005690) | 0.099372 / 0.038508 (0.060863) | 0.036173 / 0.023109 (0.013064) | 0.295752 / 0.275898 (0.019853) | 0.362882 / 0.323480 (0.039402) | 0.008442 / 0.007986 (0.000456) | 0.004225 / 0.004328 (-0.000103) | 0.076645 / 0.004250 (0.072394) | 0.044198 / 0.037052 (0.007146) | 0.311948 / 0.258489 (0.053459) | 0.342963 / 0.293841 (0.049122) | 0.038613 / 0.128546 (-0.089933) | 0.012127 / 0.075646 (-0.063519) | 0.334427 / 0.419271 (-0.084844) | 0.048309 / 0.043533 (0.004776) | 0.297046 / 0.255139 (0.041907) | 0.314562 / 0.283200 (0.031363) | 0.105797 / 0.141683 (-0.035886) | 1.460967 / 1.452155 (0.008812) | 1.500907 / 1.492716 (0.008190) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216185 / 0.018006 (0.198179) | 0.438924 / 0.000490 (0.438435) | 0.001210 / 0.000200 (0.001011) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026193 / 0.037411 (-0.011219) | 0.105888 / 0.014526 (0.091363) | 0.115812 / 0.176557 (-0.060744) | 0.158748 / 0.737135 (-0.578387) | 0.121514 / 0.296338 (-0.174824) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399837 / 0.215209 (0.184628) | 3.996992 / 2.077655 (1.919338) | 1.784964 / 1.504120 (0.280844) | 1.591078 / 1.541195 (0.049883) | 1.666424 / 1.468490 (0.197934) | 0.711450 / 4.584777 (-3.873327) | 3.787814 / 3.745712 (0.042102) | 2.056776 / 5.269862 (-3.213085) | 1.332163 / 4.565676 (-3.233514) | 0.085755 / 0.424275 (-0.338520) | 0.012033 / 0.007607 (0.004426) | 0.511500 / 0.226044 (0.285455) | 5.098999 / 2.268929 (2.830071) | 2.288261 / 55.444624 (-53.156364) | 1.947483 / 6.876477 (-4.928994) | 1.987838 / 2.142072 (-0.154234) | 0.852241 / 4.805227 (-3.952986) | 0.164781 / 6.500664 (-6.335883) | 0.061825 / 0.075469 (-0.013644) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.202253 / 1.841788 (-0.639534) | 14.632608 / 8.074308 (6.558300) | 13.331320 / 10.191392 (3.139928) | 0.157944 / 0.680424 (-0.522480) | 0.029284 / 0.534201 (-0.504917) | 0.446636 / 0.579283 (-0.132647) | 0.437009 / 0.434364 (0.002645) | 0.521883 / 0.540337 (-0.018455) | 0.606687 / 1.386936 (-0.780249) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007528 / 0.011353 (-0.003825) | 0.005274 / 0.011008 (-0.005734) | 0.073524 / 0.038508 (0.035016) | 0.033893 / 0.023109 (0.010784) | 0.335432 / 0.275898 (0.059534) | 0.379981 / 0.323480 (0.056501) | 0.005954 / 0.007986 (-0.002031) | 0.004126 / 0.004328 (-0.000203) | 0.072891 / 0.004250 (0.068641) | 0.046517 / 0.037052 (0.009465) | 0.337241 / 0.258489 (0.078752) | 0.385562 / 0.293841 (0.091721) | 0.036410 / 0.128546 (-0.092136) | 0.012246 / 0.075646 (-0.063401) | 0.085974 / 0.419271 (-0.333298) | 0.049665 / 0.043533 (0.006133) | 0.330919 / 0.255139 (0.075780) | 0.352041 / 0.283200 (0.068841) | 0.103751 / 0.141683 (-0.037931) | 1.468851 / 1.452155 (0.016696) | 1.565380 / 1.492716 (0.072663) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260431 / 0.018006 (0.242425) | 0.444554 / 0.000490 (0.444064) | 0.016055 / 0.000200 (0.015855) | 0.000283 / 0.000054 (0.000228) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029130 / 0.037411 (-0.008281) | 0.112002 / 0.014526 (0.097476) | 0.120769 / 0.176557 (-0.055788) | 0.169345 / 0.737135 (-0.567790) | 0.129609 / 0.296338 (-0.166730) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432211 / 0.215209 (0.217002) | 4.293008 / 2.077655 (2.215353) | 2.071291 / 1.504120 (0.567171) | 1.859322 / 1.541195 (0.318127) | 1.971434 / 1.468490 (0.502943) | 0.704042 / 4.584777 (-3.880735) | 3.791696 / 3.745712 (0.045983) | 3.142632 / 5.269862 (-2.127230) | 1.735151 / 4.565676 (-2.830525) | 0.086203 / 0.424275 (-0.338072) | 0.012542 / 0.007607 (0.004935) | 0.534870 / 0.226044 (0.308826) | 5.326042 / 2.268929 (3.057113) | 2.547960 / 55.444624 (-52.896664) | 2.212730 / 6.876477 (-4.663747) | 2.296177 / 2.142072 (0.154105) | 0.840311 / 4.805227 (-3.964917) | 0.168353 / 6.500664 (-6.332311) | 0.065949 / 0.075469 (-0.009520) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255589 / 1.841788 (-0.586199) | 14.947344 / 8.074308 (6.873036) | 13.253721 / 10.191392 (3.062329) | 0.162349 / 0.680424 (-0.518075) | 0.017579 / 0.534201 (-0.516622) | 0.420758 / 0.579283 (-0.158525) | 0.430030 / 0.434364 (-0.004334) | 0.524669 / 0.540337 (-0.015669) | 0.623920 / 1.386936 (-0.763016) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#35b789e8f6826b6b5a6b48fcc2416c890a1f326a \"CML watermark\")\n"
] | 2023-03-03T15:46:31 | 2023-03-03T21:57:18 | 2023-03-03T21:50:17 | CONTRIBUTOR | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5605/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5605/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5605",
"html_url": "https://github.com/huggingface/datasets/pull/5605",
"diff_url": "https://github.com/huggingface/datasets/pull/5605.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5605.patch",
"merged_at": "2023-03-03T21:50:17"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5604 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5604/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5604/comments | https://api.github.com/repos/huggingface/datasets/issues/5604/events | https://github.com/huggingface/datasets/issues/5604 | 1,608,304,775 | I_kwDODunzps5f3MiH | 5,604 | Problems with downloading The Pile | {
"login": "sentialx",
"id": 11065386,
"node_id": "MDQ6VXNlcjExMDY1Mzg2",
"avatar_url": "https://avatars.githubusercontent.com/u/11065386?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sentialx",
"html_url": "https://github.com/sentialx",
"followers_url": "https://api.github.com/users/sentialx/followers",
"following_url": "https://api.github.com/users/sentialx/following{/other_user}",
"gists_url": "https://api.github.com/users/sentialx/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sentialx/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sentialx/subscriptions",
"organizations_url": "https://api.github.com/users/sentialx/orgs",
"repos_url": "https://api.github.com/users/sentialx/repos",
"events_url": "https://api.github.com/users/sentialx/events{/privacy}",
"received_events_url": "https://api.github.com/users/sentialx/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! \r\n\r\n\r\nYou can specify `download_config=DownloadConfig(resume_download=True))` in `load_dataset` to resume the download when re-running the code after the timeout error:\r\n```python\r\nfrom datasets import load_dataset, DownloadConfig\r\ndataset = load_dataset('the_pile', split='train', cache_dir='F:\\datasets', download_config=DownloadConfig(resume_download=True))\r\n```\r\n\r\n",
"@mariosasko , I used your suggestion but its not saving anything , just stops and runs from the same point .\r\nbelow is the script to download and save on disk .\r\n\r\n```\r\nfrom datasets import load_dataset, DownloadConfig\r\n\r\n\r\n#load the Pile dataset from Hugging Face Datasets\r\n#dataset = load_dataset('the_pile')\r\ndataset = load_dataset('the_pile', split='train', cache_dir='datasets', download_config=DownloadConfig(resume_download=True))\r\n\r\n\r\n# save each file in the dataset to disk\r\nfor i, example in enumerate(dataset['train']):\r\n filename = f'pile_file_{i}.json'\r\n with open(filename, 'w') as f:\r\n f.write(str(example))\r\n\r\nprint(\"Finished saving Pile dataset files to disk.\")\r\n```\r\n",
"@mariosasko , it shows nothing in dataset folder\r\n\r\n```\r\n du -sh /mnt/nlp/hugging_face/*\r\n20K /mnt/nlp/hugging_face/datasets\r\n4.0K /mnt/nlp/hugging_face/download_pile.py\r\n```\r\n",
"@mariosasko \r\n\r\n```\r\nroot@d20f0ab8f4f8:/mnt/hugging_face# python3 download_pile.py\r\nNo config specified, defaulting to: the_pile/all\r\nDownloading and preparing dataset the_pile/all to /mnt/hugging_face/datasets/the_pile/all/0.0.0/6fadc480ecb32470826cbf5900a9558b791ce55d5e9a0fdc8ad653e7b64bb349...\r\nDownloading data files: 0%| | 0/3 [00:00<?, ?it/s]\r\n\r\n\r\n\r\n\r\n\r\nDownloading data: 70%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | 10.7G/15.2G [12:09<11:53, 6.36MB/s]\r\nDownloading data: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 15.2G/15.2G [22:15<00:00, 7.25MB/s]\r\nDownloading data: 100%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ| 15.2G/15.2G [46:17<00:00, 5.48MB/s]\r\nDownloading data: 40%|โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ | 6.07G/15.3G [50:49<1:17:02, 1.99MB/s]\r\nTraceback (most recent call last):โโโโโโโโโโโโโโโโโโโโโโโโโโโ | 6.07G/15.3G [50:49<25:35:23, 99.9kB/s]\r\n File \"/usr/local/lib/python3.8/dist-packages/urllib3/response.py\", line 444, in _error_catcher\r\n yield\r\n File \"/usr/local/lib/python3.8/dist-packages/urllib3/response.py\", line 567, in read\r\n data = self._fp_read(amt) if not fp_closed else b\"\"\r\n File \"/usr/local/lib/python3.8/dist-packages/urllib3/response.py\", line 525, in _fp_read\r\n data = self._fp.read(chunk_amt)\r\n File \"/usr/lib/python3.8/http/client.py\", line 459, in read\r\n n = self.readinto(b)\r\n File \"/usr/lib/python3.8/http/client.py\", line 503, in readinto\r\n n = self.fp.readinto(b)\r\n File \"/usr/lib/python3.8/socket.py\", line 669, in readinto\r\n return self._sock.recv_into(b)\r\n File \"/usr/lib/python3.8/ssl.py\", line 1241, in recv_into\r\n return self.read(nbytes, buffer)\r\n File \"/usr/lib/python3.8/ssl.py\", line 1099, in read\r\n return self._sslobj.read(len, buffer)\r\nConnectionResetError: [Errno 104] Connection reset by peer\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"/usr/local/lib/python3.8/dist-packages/requests/models.py\", line 816, in generate\r\n yield from self.raw.stream(chunk_size, decode_content=True)\r\n File \"/usr/local/lib/python3.8/dist-packages/urllib3/response.py\", line 628, in stream\r\n data = self.read(amt=amt, decode_content=decode_content)\r\n File \"/usr/local/lib/python3.8/dist-packages/urllib3/response.py\", line 593, in read\r\n raise IncompleteRead(self._fp_bytes_read, self.length_remaining)\r\n File \"/usr/lib/python3.8/contextlib.py\", line 131, in __exit__\r\n self.gen.throw(type, value, traceback)\r\n File \"/usr/local/lib/python3.8/dist-packages/urllib3/response.py\", line 461, in _error_catcher\r\n raise ProtocolError(\"Connection broken: %r\" % e, e)\r\nurllib3.exceptions.ProtocolError: (\"Connection broken: ConnectionResetError(104, 'Connection reset by peer')\", ConnectionResetError(104, 'Connection reset by peer'))\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"download_pile.py\", line 6, in <module>\r\n dataset = load_dataset('the_pile', split='train', cache_dir='datasets', download_config=DownloadConfig(resume_download=True))\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/load.py\", line 1782, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/builder.py\", line 872, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/builder.py\", line 1649, in _download_and_prepare\r\n super()._download_and_prepare(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/builder.py\", line 945, in _download_and_prepare\r\n split_generators = self._split_generators(dl_manager, **split_generators_kwargs)\r\n File \"/root/.cache/huggingface/modules/datasets_modules/datasets/the_pile/6fadc480ecb32470826cbf5900a9558b791ce55d5e9a0fdc8ad653e7b64bb349/the_pile.py\", line 192, in _split_generators\r\n data_dir = dl_manager.download(_DATA_URLS[self.config.name])\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/download/download_manager.py\", line 427, in download\r\n downloaded_path_or_paths = map_nested(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/py_utils.py\", line 443, in map_nested\r\n mapped = [\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/py_utils.py\", line 444, in <listcomp>\r\n _single_map_nested((function, obj, types, None, True, None))\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/py_utils.py\", line 363, in _single_map_nested\r\n mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar]\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/py_utils.py\", line 363, in <listcomp>\r\n mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar]\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/py_utils.py\", line 346, in _single_map_nested\r\n return function(data_struct)\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/download/download_manager.py\", line 453, in _download\r\n return cached_path(url_or_filename, download_config=download_config)\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/file_utils.py\", line 182, in cached_path\r\n output_path = get_from_cache(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/file_utils.py\", line 575, in get_from_cache\r\n http_get(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/file_utils.py\", line 379, in http_get\r\n for chunk in response.iter_content(chunk_size=1024):\r\n File \"/usr/local/lib/python3.8/dist-packages/requests/models.py\", line 818, in generate\r\n raise ChunkedEncodingError(e)\r\nrequests.exceptions.ChunkedEncodingError: (\"Connection broken: ConnectionResetError(104, 'Connection reset by peer')\", ConnectionResetError(104, 'Connection reset by peer'))\r\n```\r\n",
"Users with slow internet speed are doomed (4MB/s). The dataset downloads fine at minimum speed 10MB/s.\n\nAlso, when the train splits were generated and then I removed the downloads folder to save up disk space, it started redownloading the whole dataset. Is there any way to use the already generated splits instead?",
"@sentialx @mariosasko , anytime on my above script , am I downloading and saving dataset correctly . Please suggest :)"
] | 2023-03-03T09:52:08 | 2023-03-29T01:44:05 | 2023-03-24T12:44:25 | NONE | null | ### Describe the bug
The downloads in the screenshot seem to be interrupted after some time and the last download throws a "Read timed out" error.
![image](https://user-images.githubusercontent.com/11065386/222687870-ec5fcb65-84e8-467d-9593-4ad7bdac4d50.png)
Here are the downloaded files:
![image](https://user-images.githubusercontent.com/11065386/222688200-454c2288-49e5-4682-96e6-1eb69aca0852.png)
They should be all 14GB like here (https://the-eye.eu/public/AI/pile/train/).
Alternatively, can I somehow download the files by myself and use the datasets preparing script?
### Steps to reproduce the bug
dataset = load_dataset('the_pile', split='train', cache_dir='F:\datasets')
### Expected behavior
The files should be downloaded correctly.
### Environment info
- `datasets` version: 2.10.1
- Platform: Windows-10-10.0.22623-SP0
- Python version: 3.10.5
- PyArrow version: 9.0.0
- Pandas version: 1.4.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5604/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5604/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5603 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5603/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5603/comments | https://api.github.com/repos/huggingface/datasets/issues/5603/events | https://github.com/huggingface/datasets/pull/5603 | 1,607,143,509 | PR_kwDODunzps5LJZzG | 5,603 | Don't compute checksums if not necessary in `datasets-cli test` | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008550 / 0.011353 (-0.002803) | 0.004476 / 0.011008 (-0.006532) | 0.100902 / 0.038508 (0.062394) | 0.029684 / 0.023109 (0.006575) | 0.308081 / 0.275898 (0.032183) | 0.363435 / 0.323480 (0.039955) | 0.006987 / 0.007986 (-0.000999) | 0.003401 / 0.004328 (-0.000927) | 0.078218 / 0.004250 (0.073967) | 0.036657 / 0.037052 (-0.000395) | 0.319670 / 0.258489 (0.061181) | 0.349952 / 0.293841 (0.056111) | 0.033416 / 0.128546 (-0.095130) | 0.011511 / 0.075646 (-0.064135) | 0.323888 / 0.419271 (-0.095384) | 0.042429 / 0.043533 (-0.001104) | 0.307310 / 0.255139 (0.052171) | 0.329459 / 0.283200 (0.046259) | 0.085209 / 0.141683 (-0.056474) | 1.475893 / 1.452155 (0.023739) | 1.502782 / 1.492716 (0.010065) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200137 / 0.018006 (0.182131) | 0.411269 / 0.000490 (0.410780) | 0.000415 / 0.000200 (0.000215) | 0.000061 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022626 / 0.037411 (-0.014785) | 0.097045 / 0.014526 (0.082519) | 0.102955 / 0.176557 (-0.073602) | 0.148411 / 0.737135 (-0.588725) | 0.107238 / 0.296338 (-0.189100) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421683 / 0.215209 (0.206474) | 4.203031 / 2.077655 (2.125376) | 1.908232 / 1.504120 (0.404112) | 1.698867 / 1.541195 (0.157672) | 1.743561 / 1.468490 (0.275071) | 0.693199 / 4.584777 (-3.891578) | 3.361022 / 3.745712 (-0.384690) | 2.989610 / 5.269862 (-2.280251) | 1.533036 / 4.565676 (-3.032641) | 0.082675 / 0.424275 (-0.341601) | 0.012419 / 0.007607 (0.004812) | 0.531543 / 0.226044 (0.305499) | 5.330595 / 2.268929 (3.061666) | 2.347519 / 55.444624 (-53.097105) | 1.975672 / 6.876477 (-4.900804) | 2.039541 / 2.142072 (-0.102532) | 0.810281 / 4.805227 (-3.994946) | 0.148917 / 6.500664 (-6.351747) | 0.065441 / 0.075469 (-0.010028) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266213 / 1.841788 (-0.575574) | 13.628106 / 8.074308 (5.553798) | 13.852191 / 10.191392 (3.660799) | 0.149004 / 0.680424 (-0.531420) | 0.028549 / 0.534201 (-0.505652) | 0.399824 / 0.579283 (-0.179459) | 0.401231 / 0.434364 (-0.033133) | 0.473251 / 0.540337 (-0.067086) | 0.561094 / 1.386936 (-0.825842) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006669 / 0.011353 (-0.004684) | 0.004477 / 0.011008 (-0.006532) | 0.077514 / 0.038508 (0.039006) | 0.027489 / 0.023109 (0.004380) | 0.341935 / 0.275898 (0.066037) | 0.377392 / 0.323480 (0.053912) | 0.004947 / 0.007986 (-0.003039) | 0.004600 / 0.004328 (0.000271) | 0.075938 / 0.004250 (0.071687) | 0.039586 / 0.037052 (0.002534) | 0.344966 / 0.258489 (0.086477) | 0.392181 / 0.293841 (0.098340) | 0.031838 / 0.128546 (-0.096708) | 0.011572 / 0.075646 (-0.064075) | 0.085811 / 0.419271 (-0.333461) | 0.042250 / 0.043533 (-0.001283) | 0.345605 / 0.255139 (0.090466) | 0.367814 / 0.283200 (0.084615) | 0.090683 / 0.141683 (-0.051000) | 1.483168 / 1.452155 (0.031014) | 1.559724 / 1.492716 (0.067008) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235655 / 0.018006 (0.217649) | 0.399016 / 0.000490 (0.398527) | 0.003096 / 0.000200 (0.002896) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024454 / 0.037411 (-0.012957) | 0.100710 / 0.014526 (0.086185) | 0.107950 / 0.176557 (-0.068606) | 0.161560 / 0.737135 (-0.575576) | 0.111840 / 0.296338 (-0.184498) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441362 / 0.215209 (0.226153) | 4.428105 / 2.077655 (2.350450) | 2.074501 / 1.504120 (0.570381) | 1.866672 / 1.541195 (0.325477) | 1.928266 / 1.468490 (0.459776) | 0.703561 / 4.584777 (-3.881216) | 3.396537 / 3.745712 (-0.349175) | 3.047369 / 5.269862 (-2.222492) | 1.595133 / 4.565676 (-2.970543) | 0.084028 / 0.424275 (-0.340247) | 0.012349 / 0.007607 (0.004741) | 0.539354 / 0.226044 (0.313310) | 5.401535 / 2.268929 (3.132606) | 2.499874 / 55.444624 (-52.944750) | 2.161406 / 6.876477 (-4.715071) | 2.197385 / 2.142072 (0.055313) | 0.810864 / 4.805227 (-3.994363) | 0.152277 / 6.500664 (-6.348387) | 0.067266 / 0.075469 (-0.008203) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280900 / 1.841788 (-0.560887) | 13.815731 / 8.074308 (5.741423) | 13.007438 / 10.191392 (2.816046) | 0.129711 / 0.680424 (-0.550713) | 0.016852 / 0.534201 (-0.517349) | 0.380775 / 0.579283 (-0.198508) | 0.384143 / 0.434364 (-0.050221) | 0.459954 / 0.540337 (-0.080383) | 0.549335 / 1.386936 (-0.837601) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8805d67bd81ce48f481d5c1e56b84e6ebcaa2b2b \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009570 / 0.011353 (-0.001783) | 0.005219 / 0.011008 (-0.005789) | 0.098472 / 0.038508 (0.059964) | 0.035429 / 0.023109 (0.012320) | 0.303086 / 0.275898 (0.027188) | 0.365926 / 0.323480 (0.042446) | 0.008797 / 0.007986 (0.000811) | 0.004220 / 0.004328 (-0.000108) | 0.076670 / 0.004250 (0.072419) | 0.045596 / 0.037052 (0.008543) | 0.309476 / 0.258489 (0.050987) | 0.343958 / 0.293841 (0.050117) | 0.038741 / 0.128546 (-0.089805) | 0.011990 / 0.075646 (-0.063657) | 0.332326 / 0.419271 (-0.086945) | 0.048897 / 0.043533 (0.005364) | 0.296002 / 0.255139 (0.040863) | 0.322048 / 0.283200 (0.038849) | 0.104403 / 0.141683 (-0.037280) | 1.461777 / 1.452155 (0.009622) | 1.516362 / 1.492716 (0.023645) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201565 / 0.018006 (0.183559) | 0.435781 / 0.000490 (0.435291) | 0.004215 / 0.000200 (0.004015) | 0.000282 / 0.000054 (0.000227) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027272 / 0.037411 (-0.010139) | 0.106157 / 0.014526 (0.091631) | 0.116948 / 0.176557 (-0.059609) | 0.160404 / 0.737135 (-0.576731) | 0.122518 / 0.296338 (-0.173820) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397721 / 0.215209 (0.182512) | 3.966433 / 2.077655 (1.888778) | 1.755410 / 1.504120 (0.251290) | 1.566480 / 1.541195 (0.025285) | 1.623684 / 1.468490 (0.155194) | 0.696820 / 4.584777 (-3.887957) | 3.750437 / 3.745712 (0.004725) | 2.105875 / 5.269862 (-3.163986) | 1.442026 / 4.565676 (-3.123650) | 0.085026 / 0.424275 (-0.339249) | 0.012239 / 0.007607 (0.004632) | 0.502613 / 0.226044 (0.276569) | 5.049016 / 2.268929 (2.780087) | 2.314499 / 55.444624 (-53.130126) | 1.967943 / 6.876477 (-4.908534) | 2.033507 / 2.142072 (-0.108565) | 0.861908 / 4.805227 (-3.943319) | 0.167784 / 6.500664 (-6.332880) | 0.063022 / 0.075469 (-0.012447) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.210434 / 1.841788 (-0.631353) | 14.979319 / 8.074308 (6.905011) | 14.095263 / 10.191392 (3.903871) | 0.174203 / 0.680424 (-0.506221) | 0.028547 / 0.534201 (-0.505654) | 0.442509 / 0.579283 (-0.136774) | 0.445811 / 0.434364 (0.011447) | 0.531313 / 0.540337 (-0.009024) | 0.636541 / 1.386936 (-0.750395) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007341 / 0.011353 (-0.004012) | 0.005197 / 0.011008 (-0.005811) | 0.075413 / 0.038508 (0.036905) | 0.033261 / 0.023109 (0.010152) | 0.339596 / 0.275898 (0.063698) | 0.376051 / 0.323480 (0.052571) | 0.005827 / 0.007986 (-0.002159) | 0.005473 / 0.004328 (0.001144) | 0.074851 / 0.004250 (0.070600) | 0.049059 / 0.037052 (0.012007) | 0.357182 / 0.258489 (0.098693) | 0.384589 / 0.293841 (0.090748) | 0.037122 / 0.128546 (-0.091424) | 0.012298 / 0.075646 (-0.063348) | 0.088191 / 0.419271 (-0.331081) | 0.052002 / 0.043533 (0.008469) | 0.343216 / 0.255139 (0.088077) | 0.364534 / 0.283200 (0.081334) | 0.105462 / 0.141683 (-0.036221) | 1.486717 / 1.452155 (0.034562) | 1.584725 / 1.492716 (0.092009) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.199210 / 0.018006 (0.181203) | 0.439069 / 0.000490 (0.438580) | 0.000436 / 0.000200 (0.000236) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029931 / 0.037411 (-0.007480) | 0.109564 / 0.014526 (0.095038) | 0.122284 / 0.176557 (-0.054273) | 0.170819 / 0.737135 (-0.566317) | 0.125886 / 0.296338 (-0.170452) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422724 / 0.215209 (0.207515) | 4.210304 / 2.077655 (2.132650) | 2.001481 / 1.504120 (0.497361) | 1.810818 / 1.541195 (0.269623) | 1.901367 / 1.468490 (0.432877) | 0.686004 / 4.584777 (-3.898773) | 3.768850 / 3.745712 (0.023138) | 2.079501 / 5.269862 (-3.190360) | 1.326970 / 4.565676 (-3.238706) | 0.085991 / 0.424275 (-0.338284) | 0.012298 / 0.007607 (0.004690) | 0.526878 / 0.226044 (0.300833) | 5.267241 / 2.268929 (2.998312) | 2.451781 / 55.444624 (-52.992843) | 2.109143 / 6.876477 (-4.767333) | 2.185426 / 2.142072 (0.043353) | 0.830165 / 4.805227 (-3.975063) | 0.166167 / 6.500664 (-6.334497) | 0.064077 / 0.075469 (-0.011392) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270430 / 1.841788 (-0.571358) | 14.844852 / 8.074308 (6.770544) | 13.196672 / 10.191392 (3.005280) | 0.162853 / 0.680424 (-0.517571) | 0.017727 / 0.534201 (-0.516474) | 0.424803 / 0.579283 (-0.154480) | 0.439970 / 0.434364 (0.005606) | 0.530691 / 0.540337 (-0.009647) | 0.630474 / 1.386936 (-0.756462) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#24fb01b720ef4203d4ae6225f43cba912b1f6d55 \"CML watermark\")\n"
] | 2023-03-02T16:42:39 | 2023-03-03T15:45:32 | 2023-03-03T15:38:28 | MEMBER | null | we only need them if there exists a `dataset_infos.json` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5603/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5603/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5603",
"html_url": "https://github.com/huggingface/datasets/pull/5603",
"diff_url": "https://github.com/huggingface/datasets/pull/5603.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5603.patch",
"merged_at": "2023-03-03T15:38:28"
} | true |