Dataset Viewer
Full Screen Viewer
Full Screen
The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
Coco dataset loader based on tensorflow dataset coco
Object Detection
import os
from datasets import load_dataset
from PIL import Image, ImageFont, ImageDraw, ImageColor
def calc_lum(rgb):
return (0.2126*rgb[0] + 0.7152*rgb[1] + 0.0722*rgb[2])
COLOR_MAP = [ImageColor.getrgb(code) for name, code in ImageColor.colormap.items()]
def get_text_bbox(bb, tbb, margin, im_w, im_h, anchor="leftBottom"):
m = margin
l, t, r, b = bb
tl, tt, tr, tb = tbb
bbw, bbh = r - l, b - t
tbbw, tbbh = tr - tl, tb - tt
# bbox (left-top)
if anchor == "leftTop":
ax, ay = l, t
if tbbw*3 > bbw or tbbh*4 > bbh:
# align (text box: left-bottom)
x1, y1 = max(ax, 0), max(ay - tb - 2*m, 0)
x2, y2 = min(x1 + tr + 2*m, im_w), min(y1 + tb + 2*m, im_h)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
else:
# align (text box: left-top)
x1, y1 = max(ax, 0), max(ay, 0)
x2, y2 = min(x1 + tr + 2*m, im_w), min(y1 + tb + 2*m, im_h)
return (( x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
elif anchor == "rightTop":
ax, ay = r, t
if tbbw*3 > bbw or tbbh*4 > bbh:
# align (text box: left-bottom)
x2, y1 = max(ax, 0), max(ay - tb - 2*m, 0)
x1, y2 = max(x2 - tr - 2*m, 0), min(y1 + tb + 2*m, im_h)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
else:
# align (text box: left-top)
x2, y1 = max(ax, 0), max(ay, 0)
x1, y2 = max(x2 - tr - 2*m, 0), min(y1 + tb + 2*m, im_h)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
elif anchor == "rightBottom":
ax, ay = r, b
if tbbw*3 > bbw or tbbh*4 > bbh:
# align (text box: left-top)
x2, y2 = min(ax, im_w), min(ay + tb + 2*m, im_h)
x1, y1 = max(x2 - tr - 2*m, 0), max(y2 - tb - 2*m, 0)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
else:
# align (text box: left-bottom)
x2, y2 = min(ax, im_w), max(ay, 0)
x1, y1 = max(x2 - tr - 2*m, 0), max(y2 - tb - 2*m, 0)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
elif anchor == "leftBottom":
ax, ay = l, b
if tbbw*3 > bbw or tbbh*4 > bbh:
# align (text box: left-top)
x1, y2 = min(ax, im_w), min(ay + tb + 2*m, im_h)
x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
else:
# align (text box: left-bottom)
x1, y2 = min(ax, im_w), max(ay, 0)
x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
elif anchor == "centerBottom":
ax, ay = (l+r)//2, b
if tbbw*3 > bbw or tbbh*4 > bbh:
# align (text box: left-top)
x1, y2 = min(ax - tr//2 - m, im_w), min(ay + tb + 2*m, im_h)
x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
else:
# align (text box: left-bottom)
x1, y2 = min(ax - tr//2 - m, im_w), max(ay, 0)
x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
def draw_bbox(image, objects, out_path, label_names=None, font="Roboto-Bold.ttf", fontsize=15, fill=True, opacity=60, width=2, margin=3, anchor="leftBottom"):
fnt = ImageFont.truetype(font, fontsize)
im_w, im_h = image.size
img = image.convert("RGBA")
overlay = Image.new('RGBA', img.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
for bb, lbl_id in zip(objects["bbox"], objects["label"]):
c = COLOR_MAP[min(lbl_id, len(COLOR_MAP)-1)]
fill_c = c + (opacity, ) if fill else None
draw.rectangle((bb[0], bb[1], bb[2], bb[3]), outline=c, fill=fill_c, width=width)
text = ""
if label_names is not None:
text = label_names[lbl_id]
tbb = fnt.getbbox(text)
btn_bbox, text_pos = get_text_bbox(bb, tbb, margin, im_w, im_h, anchor)
fc = (0, 0, 0) if calc_lum(c) > 150 else (255, 255, 255)
draw.rectangle(btn_bbox, outline=c, fill=c + (255, ))
draw.text(text_pos, text, font=fnt, fill=fc + (255, ))
img = Image.alpha_composite(img, overlay)
overlay = Image.new('RGBA', img.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
img = img.convert("RGB")
img.save(out_path)
raw_datasets = load_dataset(
"coco.py",
"2017",
cache_dir="./huggingface_datasets",
)
train_dataset = raw_datasets["train"]
label_list = raw_datasets["train"].features["objects"].feature['label'].names
for idx, item in zip(range(10), train_dataset):
draw_bbox(item["image"], item["objects"], item["image/filename"], label_list)
Panoptic segmentation
import numpy as np
from datasets import load_dataset
from PIL import Image, ImageFont, ImageDraw, ImageColor
from transformers.image_transforms import (
rgb_to_id,
)
def calc_lum(rgb):
return (0.2126*rgb[0] + 0.7152*rgb[1] + 0.0722*rgb[2])
COLOR_MAP = [ImageColor.getrgb(code) for name, code in ImageColor.colormap.items()]
def get_text_bbox(bb, tbb, margin, im_w, im_h, anchor="leftBottom"):
m = margin
l, t, r, b = bb
tl, tt, tr, tb = tbb
bbw, bbh = r - l, b - t
tbbw, tbbh = tr - tl, tb - tt
# bbox (left-top)
if anchor == "leftTop":
ax, ay = l, t
if tbbw*3 > bbw or tbbh*4 > bbh:
# align (text box: left-bottom)
x1, y1 = max(ax, 0), max(ay - tb - 2*m, 0)
x2, y2 = min(x1 + tr + 2*m, im_w), min(y1 + tb + 2*m, im_h)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
else:
# align (text box: left-top)
x1, y1 = max(ax, 0), max(ay, 0)
x2, y2 = min(x1 + tr + 2*m, im_w), min(y1 + tb + 2*m, im_h)
return (( x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
elif anchor == "rightTop":
ax, ay = r, t
if tbbw*3 > bbw or tbbh*4 > bbh:
# align (text box: left-bottom)
x2, y1 = max(ax, 0), max(ay - tb - 2*m, 0)
x1, y2 = max(x2 - tr - 2*m, 0), min(y1 + tb + 2*m, im_h)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
else:
# align (text box: left-top)
x2, y1 = max(ax, 0), max(ay, 0)
x1, y2 = max(x2 - tr - 2*m, 0), min(y1 + tb + 2*m, im_h)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
elif anchor == "rightBottom":
ax, ay = r, b
if tbbw*3 > bbw or tbbh*4 > bbh:
# align (text box: left-top)
x2, y2 = min(ax, im_w), min(ay + tb + 2*m, im_h)
x1, y1 = max(x2 - tr - 2*m, 0), max(y2 - tb - 2*m, 0)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
else:
# align (text box: left-bottom)
x2, y2 = min(ax, im_w), max(ay, 0)
x1, y1 = max(x2 - tr - 2*m, 0), max(y2 - tb - 2*m, 0)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
elif anchor == "leftBottom":
ax, ay = l, b
if tbbw*3 > bbw or tbbh*4 > bbh:
# align (text box: left-top)
x1, y2 = min(ax, im_w), min(ay + tb + 2*m, im_h)
x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
else:
# align (text box: left-bottom)
x1, y2 = min(ax, im_w), max(ay, 0)
x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
elif anchor == "centerBottom":
ax, ay = (l+r)//2, b
if tbbw*3 > bbw or tbbh*4 > bbh:
# align (text box: left-top)
x1, y2 = min(ax - tr//2 - m, im_w), min(ay + tb + 2*m, im_h)
x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
else:
# align (text box: left-bottom)
x1, y2 = min(ax - tr//2 - m, im_w), max(ay, 0)
x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
# Copied from transformers.models.detr.image_processing_detr.masks_to_boxes
def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
"""
Compute the bounding boxes around the provided panoptic segmentation masks.
Args:
masks: masks in format `[number_masks, height, width]` where N is the number of masks
Returns:
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
"""
if masks.size == 0:
return np.zeros((0, 4))
h, w = masks.shape[-2:]
y = np.arange(0, h, dtype=np.float32)
x = np.arange(0, w, dtype=np.float32)
# see https://github.com/pytorch/pytorch/issues/50276
y, x = np.meshgrid(y, x, indexing="ij")
x_mask = masks * np.expand_dims(x, axis=0)
x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
x_min = x.filled(fill_value=1e8)
x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
y_mask = masks * np.expand_dims(y, axis=0)
y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
y_min = y.filled(fill_value=1e8)
y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
return np.stack([x_min, y_min, x_max, y_max], 1)
def draw_seg(image, panoptic_image, oids, labels, out_path, label_names=None, font="Roboto-Bold.ttf", fontsize=15, opacity=160, anchor="leftBottom"):
fnt = ImageFont.truetype(font, fontsize)
im_w, im_h = image.size
masks = np.asarray(panoptic_image, dtype=np.uint32)
masks = rgb_to_id(masks)
oids = np.array(oids, dtype=np.uint32)
masks = masks == oids[:, None, None]
masks = masks.astype(np.uint8)
bboxes = masks_to_boxes(masks)
img = image.convert("RGBA")
for label, mask, bbox in zip(labels, masks, bboxes):
c = COLOR_MAP[min(label, len(COLOR_MAP)-1)]
cf = np.array(c + (opacity, )).astype(np.uint8)
cmask = mask[:, :, None] * cf[None, None, :]
cmask = Image.fromarray(cmask)
img = Image.alpha_composite(img, cmask)
if label_names is not None:
text = label_names[label]
tbb = fnt.getbbox(text)
btn_bbox, text_pos = get_text_bbox(bbox, tbb, 3, im_w, im_h, anchor=anchor)
overlay = Image.new('RGBA', img.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
fc = (0, 0, 0) if calc_lum(c) > 150 else (255, 255, 255)
draw.rectangle(btn_bbox, outline=c, fill=c + (255, ))
draw.text(text_pos, text, font=fnt, fill=fc + (255, ))
img = Image.alpha_composite(img, overlay)
img = img.convert("RGB")
img.save(out_path)
raw_datasets = load_dataset(
"coco.py",
"2017_panoptic",
cache_dir="./huggingface_datasets",
# data_dir="./data",
)
train_dataset = raw_datasets["train"]
label_list = raw_datasets["train"].features["panoptic_objects"].feature['label'].names
for idx, item in zip(range(10), train_dataset):
draw_seg(
item["image"],
item["panoptic_image"],
item["panoptic_objects"]["id"],
item["panoptic_objects"]["label"],
"panoptic_" + item["image/filename"],
label_list)
- Downloads last month
- 94