|
--- |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
dataset_info: |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: label |
|
dtype: int64 |
|
- name: sa |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 128596235 |
|
num_examples: 1613790 |
|
- name: test |
|
num_bytes: 35731728 |
|
num_examples: 448276 |
|
- name: dev |
|
num_bytes: 14325121 |
|
num_examples: 179310 |
|
download_size: 93470968 |
|
dataset_size: 178653084 |
|
--- |
|
|
|
The Moji dataset (Blodgett et al., 2016) (http://slanglab.cs.umass.edu/TwitterAAE/) contains tweets used for sentiment analysis (either positive or negative sentiment), with additional information on the type of English used in the tweets which is a sensitive attribute considered in fairness-aware approaches (African-American English (AAE) or Standard-American English (SAE)). |
|
|
|
The type of language is determined thanks to a supervised model. Only the data |
|
where the sensitive attribute is predicted with a certainty rate above a given threshold are kept. |
|
|
|
Based on this principle we make available two versions of the Moji dataset, |
|
respectively with a threshold of 80% and of 90%. The dataset's distributions are presented below. |
|
|
|
|
|
### Dataset with 80% threshold |
|
|
|
| | Positive sentiment | Negative Sentiment | Total | |
|
|---|---|---|---| |
|
AAE | 73 013 | 44 023 | 117 036 | |
|
SAE | 1 471 427 | 652 913 | 2 124 340 | |
|
Total | 1 544 440 | 696 936 | 2 241 376 | |
|
|
|
To load this dataset, use the following code : |
|
```python |
|
dataset = load_dataset("LabHC/moji", revision='moji_conf_08') |
|
``` |
|
or by default the version is the dataset with 80% threshold |
|
```python |
|
dataset = load_dataset("LabHC/moji") |
|
``` |
|
|
|
### Dataset with 90% threshold |
|
|
|
| | Positive sentiment | Negative Sentiment | Total | |
|
|---|---|---|---| |
|
AAE | 30 827 | 18 409 | 49 236 | |
|
SAE | 793 867 | 351 600 | 1 145 467 | |
|
Total | 824 694 | 370 009 | 1 194 703 | |
|
|
|
To load this dataset, use the following code : |
|
```python |
|
dataset = load_dataset("LabHC/moji", revision='moji_conf_09') |
|
``` |
|
|
|
---- |
|
[Demographic Dialectal Variation in Social Media: A Case Study of African-American English](https://aclanthology.org/D16-1120) (Blodgett et al., EMNLP 2016) |