MMStar / README.md
Lin-Chen's picture
Update README.md
2b43bbb verified
---
task_categories:
- multiple-choice
- question-answering
- visual-question-answering
language:
- en
size_categories:
- 1K<n<10K
configs:
- config_name: val
data_files:
- split: val
path: "mmstar.parquet"
dataset_info:
- config_name: val
features:
- name: index
dtype: int64
- name: question
dtype: string
- name: image
dtype: image
- name: answer
dtype: string
- name: category
dtype: string
- name: l2_category
dtype: string
- name: meta_info
struct:
- name: source
dtype: string
- name: split
dtype: string
- name: image_path
dtype: string
splits:
- name: val
num_bytes: 44831593
num_examples: 1500
---
# MMStar (Are We on the Right Way for Evaluating Large Vision-Language Models?)
[**🌐 Homepage**](https://mmstar-benchmark.github.io/) | [**πŸ€— Dataset**](https://huggingface.co/datasets/Lin-Chen/MMStar) | [**πŸ€— Paper**](https://huggingface.co/papers/2403.20330) | [**πŸ“– arXiv**](https://arxiv.org/pdf/2403.20330.pdf) | [**GitHub**](https://github.com/MMStar-Benchmark/MMStar)
## Dataset Details
As shown in the figure below, existing benchmarks lack consideration of the vision dependency of evaluation samples and potential data leakage from LLMs' and LVLMs' training data.
<p align="center">
<img src="https://raw.githubusercontent.com/MMStar-Benchmark/MMStar/main/resources/4_case_in_1.png" width="80%"> <br>
</p>
Therefore, we introduce MMStar: an elite vision-indispensible multi-modal benchmark, aiming to ensure each curated sample exhibits **visual dependency**, **minimal data leakage**, and **requires advanced multi-modal capabilities**.
🎯 **We have released a full set comprising 1500 offline-evaluating samples.** After applying the coarse filter process and manual review, we narrow down from a total of 22,401 samples to 11,607 candidate samples and finally select 1,500 high-quality samples to construct our MMStar benchmark.
<p align="center">
<img src="https://raw.githubusercontent.com/MMStar-Benchmark/MMStar/main/resources/data_source.png" width="80%"> <br>
</p>
In MMStar, we display **6 core capabilities** in the inner ring, with **18 detailed axes** presented in the outer ring. The middle ring showcases the number of samples for each detailed dimension. Each core capability contains a meticulously **balanced 250 samples**. We further ensure a relatively even distribution across the 18 detailed axes.
<p align="center">
<img src="https://raw.githubusercontent.com/MMStar-Benchmark/MMStar/main/resources/mmstar.png" width="60%"> <br>
</p>
## πŸ† Mini-Leaderboard
We show a mini-leaderboard here and please find more information in our paper or [homepage](https://mmstar-benchmark.github.io/).
| Model | Acc. | MG ⬆ | ML ⬇ |
|----------------------------|:---------:|:------------:|:------------:|
| GPT4V (high)| **57.1** | **43.6** | 1.3 |
| InternLM-Xcomposer2| 55.4 | 28.1 | 7.5|
| LLaVA-Next-34B |52.1|29.4|2.4|
|GPT4V (low)|46.1|32.6|1.3|
|InternVL-Chat-v1.2|43.7|32.6|**0.0**|
|GeminiPro-Vision|42.6|27.4|**0.0**|
|Sphinx-X-MoE|38.9|14.8|1.0|
|Monkey-Chat|38.3|13.5|17.6|
|Yi-VL-6B|37.9|15.6|**0.0**|
|Qwen-VL-Chat|37.5|23.9|**0.0**|
|Deepseek-VL-7B|37.1|15.7|**0.0**|
|CogVLM-Chat|36.5|14.9|**0.0**|
|Yi-VL-34B|36.1|18.8|**0.0**|
|TinyLLaVA|36.0|16.4|7.6|
|ShareGPT4V-7B|33.0|11.9|**0.0**|
|LLaVA-1.5-13B|32.8|13.9|**0.0**|
|LLaVA-1.5-7B|30.3|10.7|**0.0**|
|Random Choice|24.6|-|-|
## πŸ“§ Contact
- [Lin Chen](https://lin-chen.site/): [email protected]
- [Jinsong Li](https://li-jinsong.github.io/): [email protected]
## βœ’οΈ Citation
If you find our work helpful for your research, please consider giving a star ⭐ and citation πŸ“
```bibtex
@article{chen2024we,
title={Are We on the Right Way for Evaluating Large Vision-Language Models?},
author={Chen, Lin and Li, Jinsong and Dong, Xiaoyi and Zhang, Pan and Zang, Yuhang and Chen, Zehui and Duan, Haodong and Wang, Jiaqi and Qiao, Yu and Lin, Dahua and others},
journal={arXiv preprint arXiv:2403.20330},
year={2024}
}
```