|
--- |
|
task_categories: |
|
- multiple-choice |
|
- question-answering |
|
- visual-question-answering |
|
language: |
|
- en |
|
size_categories: |
|
- 1K<n<10K |
|
configs: |
|
- config_name: val |
|
data_files: |
|
- split: val |
|
path: "mmstar.parquet" |
|
dataset_info: |
|
- config_name: val |
|
features: |
|
- name: index |
|
dtype: int64 |
|
- name: question |
|
dtype: string |
|
- name: image |
|
dtype: image |
|
- name: answer |
|
dtype: string |
|
- name: category |
|
dtype: string |
|
- name: l2_category |
|
dtype: string |
|
- name: meta_info |
|
struct: |
|
- name: source |
|
dtype: string |
|
- name: split |
|
dtype: string |
|
- name: image_path |
|
dtype: string |
|
splits: |
|
- name: val |
|
num_bytes: 44831593 |
|
num_examples: 1500 |
|
--- |
|
|
|
# MMStar (Are We on the Right Way for Evaluating Large Vision-Language Models?) |
|
|
|
[**π Homepage**](https://mmstar-benchmark.github.io/) | [**π€ Dataset**](https://huggingface.co/datasets/Lin-Chen/MMStar) | [**π€ Paper**](https://huggingface.co/papers/2403.20330) | [**π arXiv**](https://arxiv.org/pdf/2403.20330.pdf) | [**GitHub**](https://github.com/MMStar-Benchmark/MMStar) |
|
|
|
## Dataset Details |
|
|
|
As shown in the figure below, existing benchmarks lack consideration of the vision dependency of evaluation samples and potential data leakage from LLMs' and LVLMs' training data. |
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/MMStar-Benchmark/MMStar/main/resources/4_case_in_1.png" width="80%"> <br> |
|
</p> |
|
|
|
Therefore, we introduce MMStar: an elite vision-indispensible multi-modal benchmark, aiming to ensure each curated sample exhibits **visual dependency**, **minimal data leakage**, and **requires advanced multi-modal capabilities**. |
|
|
|
π― **We have released a full set comprising 1500 offline-evaluating samples.** After applying the coarse filter process and manual review, we narrow down from a total of 22,401 samples to 11,607 candidate samples and finally select 1,500 high-quality samples to construct our MMStar benchmark. |
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/MMStar-Benchmark/MMStar/main/resources/data_source.png" width="80%"> <br> |
|
</p> |
|
|
|
In MMStar, we display **6 core capabilities** in the inner ring, with **18 detailed axes** presented in the outer ring. The middle ring showcases the number of samples for each detailed dimension. Each core capability contains a meticulously **balanced 250 samples**. We further ensure a relatively even distribution across the 18 detailed axes. |
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/MMStar-Benchmark/MMStar/main/resources/mmstar.png" width="60%"> <br> |
|
</p> |
|
|
|
## π Mini-Leaderboard |
|
We show a mini-leaderboard here and please find more information in our paper or [homepage](https://mmstar-benchmark.github.io/). |
|
|
|
| Model | Acc. | MG β¬ | ML β¬ | |
|
|----------------------------|:---------:|:------------:|:------------:| |
|
| GPT4V (high)| **57.1** | **43.6** | 1.3 | |
|
| InternLM-Xcomposer2| 55.4 | 28.1 | 7.5| |
|
| LLaVA-Next-34B |52.1|29.4|2.4| |
|
|GPT4V (low)|46.1|32.6|1.3| |
|
|InternVL-Chat-v1.2|43.7|32.6|**0.0**| |
|
|GeminiPro-Vision|42.6|27.4|**0.0**| |
|
|Sphinx-X-MoE|38.9|14.8|1.0| |
|
|Monkey-Chat|38.3|13.5|17.6| |
|
|Yi-VL-6B|37.9|15.6|**0.0**| |
|
|Qwen-VL-Chat|37.5|23.9|**0.0**| |
|
|Deepseek-VL-7B|37.1|15.7|**0.0**| |
|
|CogVLM-Chat|36.5|14.9|**0.0**| |
|
|Yi-VL-34B|36.1|18.8|**0.0**| |
|
|TinyLLaVA|36.0|16.4|7.6| |
|
|ShareGPT4V-7B|33.0|11.9|**0.0**| |
|
|LLaVA-1.5-13B|32.8|13.9|**0.0**| |
|
|LLaVA-1.5-7B|30.3|10.7|**0.0**| |
|
|Random Choice|24.6|-|-| |
|
|
|
## π§ Contact |
|
|
|
- [Lin Chen](https://lin-chen.site/): [email protected] |
|
- [Jinsong Li](https://li-jinsong.github.io/): [email protected] |
|
|
|
## βοΈ Citation |
|
|
|
If you find our work helpful for your research, please consider giving a star β and citation π |
|
```bibtex |
|
@article{chen2024we, |
|
title={Are We on the Right Way for Evaluating Large Vision-Language Models?}, |
|
author={Chen, Lin and Li, Jinsong and Dong, Xiaoyi and Zhang, Pan and Zang, Yuhang and Chen, Zehui and Duan, Haodong and Wang, Jiaqi and Qiao, Yu and Lin, Dahua and others}, |
|
journal={arXiv preprint arXiv:2403.20330}, |
|
year={2024} |
|
} |
|
``` |