|
import os |
|
import sys |
|
if __name__ == "__main__": |
|
from train import * |
|
else: |
|
from .train import * |
|
from torchvision.datasets import CIFAR10 |
|
from torchvision import transforms |
|
|
|
|
|
|
|
|
|
try: |
|
test_item = sys.argv[1] |
|
except IndexError: |
|
assert __name__ == "__main__" |
|
test_item = "./generated" |
|
test_items = [] |
|
if os.path.isdir(test_item): |
|
for item in os.listdir(test_item): |
|
item = os.path.join(test_item, item) |
|
test_items.append(item) |
|
elif os.path.isfile(test_item): |
|
test_items.append(test_item) |
|
|
|
|
|
|
|
|
|
original_dataset = CIFAR10( |
|
root=config["dataset_root"], |
|
train=False, |
|
download=True, |
|
transform=transforms.Compose([ |
|
transforms.Resize(224), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
|
]) |
|
) |
|
original_targets = [original_dataset[i][1] for i in range(len(original_dataset))] |
|
original_targets = torch.tensor(original_targets, dtype=torch.long) |
|
|
|
|
|
|
|
|
|
for item in test_items: |
|
state = torch.load(item, map_location="cpu", weights_only=True) |
|
model.load_state_dict({key: value.to(torch.float32).to(device) for key, value in state.items()}) |
|
loss, acc, all_targets, all_predicts = test(model=model) |
|
all_targets, all_predicts = torch.tensor(all_targets), torch.tensor(all_predicts) |
|
|
|
for class_idx in range(10): |
|
class_mask = torch.where(original_targets == class_idx, 1, 0) |
|
total_number = torch.sum(class_mask) |
|
correct = torch.where(all_targets == all_predicts, 1, 0) |
|
class_correct = class_mask * correct |
|
correct_number = torch.sum(class_correct) |
|
class_acc = correct_number.item() / total_number.item() |
|
print(f"class{class_idx}:", class_acc) |