|
|
|
import random |
|
import numpy as np |
|
import torch |
|
seed = SEED = 20 |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = True |
|
np.random.seed(seed) |
|
random.seed(seed) |
|
|
|
|
|
try: |
|
from model import Model |
|
from dataset import BinaryClassifierDataset as Dataset |
|
from dataset import get_optimize_class |
|
except ImportError: |
|
from .model import Model |
|
from .dataset import BinaryClassifierDataset as Dataset |
|
from .dataset import get_optimize_class |
|
|
|
|
|
import torch.nn as nn |
|
from torch import optim |
|
from torch.optim import lr_scheduler |
|
from torch.utils.data import DataLoader |
|
from torch.nn import functional as F |
|
import os |
|
import sys |
|
import warnings |
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
|
|
|
import json |
|
config_file = os.path.join(os.path.dirname(os.path.dirname(__file__)), "config.json") |
|
with open(config_file, "r") as f: |
|
additional_config = json.load(f) |
|
|
|
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
config = { |
|
"dataset_root": "from_additional_config", |
|
"batch_size": 500 if __name__ == "__main__" else 50, |
|
"num_workers": 16, |
|
"pre_learning_rate": 0.01, |
|
"learning_rate": 1e-4, |
|
"pre_epochs": 2, |
|
"epochs": 13, |
|
"weight_decay": 0.1, |
|
"save_learning_rate": 2e-5, |
|
"total_save_number": 5, |
|
"tag": os.path.basename(os.path.dirname(__file__)), |
|
"optimize_class": get_optimize_class()[0], |
|
"optimize_class_int": get_optimize_class()[1], |
|
} |
|
config.update(additional_config) |
|
print("Training:", config["optimize_class"]) |
|
|
|
|
|
|
|
|
|
|
|
dataset = Dataset( |
|
root=config["small_dataset_root"], |
|
train=True, |
|
optimize_class=config["optimize_class"], |
|
) |
|
train_loader = DataLoader( |
|
dataset=dataset, |
|
batch_size=config["batch_size"], |
|
num_workers=config["num_workers"], |
|
shuffle=True, |
|
drop_last=True, |
|
pin_memory=True, |
|
persistent_workers=True, |
|
) |
|
test_loader = DataLoader( |
|
dataset=Dataset( |
|
root=config["small_dataset_root"], |
|
train=False, |
|
optimize_class=config["optimize_class"], |
|
), |
|
batch_size=config["batch_size"], |
|
num_workers=config["num_workers"], |
|
shuffle=False, |
|
) |
|
|
|
|
|
model, head = Model() |
|
model = model.to(device) |
|
class FocalLoss(nn.Module): |
|
def __init__(self, weight=None, gamma=2): |
|
super(FocalLoss, self).__init__() |
|
self.weight = weight |
|
self.gamma = gamma |
|
def forward(self, input, target): |
|
ce_loss = F.cross_entropy(input, target, reduction='none', weight=self.weight) |
|
pt = torch.exp(-ce_loss) |
|
focal_loss = (1 - pt) ** self.gamma * ce_loss |
|
return focal_loss.mean() |
|
criterion = FocalLoss() |
|
|
|
|
|
head_optimizer = optim.AdamW( |
|
head.parameters(), |
|
lr=config["pre_learning_rate"], |
|
weight_decay=config["weight_decay"], |
|
) |
|
optimizer = optim.AdamW( |
|
model.parameters(), |
|
lr=config["learning_rate"], |
|
weight_decay=config["weight_decay"], |
|
) |
|
scheduler = lr_scheduler.CosineAnnealingLR( |
|
optimizer, |
|
T_max=config["epochs"], |
|
eta_min=config["save_learning_rate"], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def train(model=model, optimizer=optimizer, scheduler=scheduler): |
|
model.train() |
|
for batch_idx, (inputs, targets) in enumerate(train_loader): |
|
inputs, targets = inputs.to(device), targets.to(device) |
|
optimizer.zero_grad() |
|
with torch.amp.autocast("cuda", enabled=False, dtype=torch.bfloat16): |
|
outputs = model(inputs) |
|
loss = criterion(outputs, targets) |
|
loss.backward() |
|
optimizer.step() |
|
if scheduler is not None: |
|
scheduler.step() |
|
|
|
|
|
@torch.no_grad() |
|
def test(model=model): |
|
model.eval() |
|
all_targets = [] |
|
all_predicts = [] |
|
test_loss = 0 |
|
correct = 0 |
|
total = 0 |
|
for batch_idx, (inputs, targets) in enumerate(test_loader): |
|
inputs, targets = inputs.to(device), targets.to(device) |
|
with torch.amp.autocast("cuda", enabled=False, dtype=torch.bfloat16): |
|
outputs = model(inputs) |
|
loss = criterion(outputs, targets) |
|
|
|
all_targets.extend(targets.flatten().tolist()) |
|
test_loss += loss.item() |
|
_, predicts = outputs.max(1) |
|
all_predicts.extend(predicts.flatten().tolist()) |
|
total += targets.size(0) |
|
correct += predicts.eq(targets).sum().item() |
|
loss = test_loss / (batch_idx + 1) |
|
acc = correct / total |
|
print(f"Loss: {loss:.4f} | Acc: {acc:.4f}\n") |
|
model.train() |
|
return loss, acc, all_targets, all_predicts |
|
|
|
|
|
def save_train(model=model, optimizer=optimizer): |
|
data_loader = DataLoader( |
|
dataset=dataset, |
|
batch_size=min(len(dataset) // config["total_save_number"], config["batch_size"]), |
|
num_workers=config["num_workers"], |
|
shuffle=True, |
|
drop_last=True, |
|
) |
|
model.train() |
|
for batch_idx, (inputs, targets) in enumerate(data_loader): |
|
inputs, targets = inputs.to(device), targets.to(device) |
|
optimizer.zero_grad() |
|
with torch.amp.autocast("cuda", enabled=False, dtype=torch.bfloat16): |
|
outputs = model(inputs) |
|
loss = criterion(outputs, targets) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
_, acc, _, _ = test(model=model) |
|
if not os.path.isdir('checkpoint'): |
|
os.mkdir('checkpoint') |
|
save_state = {key: value.cpu().to(torch.float32) for key, value in model.state_dict().items()} |
|
torch.save(save_state, f"checkpoint/{str(batch_idx).zfill(4)}_acc{acc:.4f}_class{config['optimize_class_int']}_{config['tag']}.pth") |
|
print("save:", f"checkpoint/{str(batch_idx).zfill(4)}_acc{acc:.4f}_class{config['optimize_class_int']}_{config['tag']}.pth") |
|
|
|
if batch_idx+1 == config["total_save_number"]: |
|
break |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
for epoch in range(config["pre_epochs"]): |
|
train(model=model, optimizer=head_optimizer, scheduler=None) |
|
|
|
for epoch in range(config["epochs"]): |
|
train(model=model, optimizer=optimizer, scheduler=scheduler) |
|
|
|
save_train(model=model, optimizer=optimizer) |
|
|