Datasets:
metadata
license: apache-2.0
task_categories:
- multiple-choice
- visual-question-answering
language:
- en
size_categories:
- n<1K
configs:
- config_name: benchmark
data_files:
- split: test
path: dataset.json
paperswithcode_id: mapeval-visual
tags:
- geospatial
MapEval-Visual
This dataset was introduced in MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models
Example
Query
I am presently visiting Mount Royal Park . Could you please inform me about the nearby historical landmark?
Options
- Circle Stone
- Secret pool
- Maison William Caldwell Cottingham
- Poste de cavalerie du Service de police de la Ville de Montreal
Correct Option
- Circle Stone
Prerequisite
Download the Vdata.zip and extract in the working directory. This directory contains all the images.
Usage
from datasets import load_dataset
import PIL.Image
# Load dataset
ds = load_dataset("MapEval/MapEval-Visual", name="benchmark")
for item in ds["test"]:
# Start with a clear task description
prompt = (
"You are a highly intelligent assistant. "
"Based on the given image, answer the multiple-choice question by selecting the correct option.\n\n"
"Question:\n" + item["question"] + "\n\n"
"Options:\n"
)
# List the options more clearly
for i, option in enumerate(item["options"], start=1):
prompt += f"{i}. {option}\n"
# Add a concluding sentence to encourage selection of the answer
prompt += "\nSelect the best option by choosing its number."
# Load image from Vdata/ directory
img = PIL.Image.open(item["context"])
# Use the prompt as needed
print([prompt, img]) # Replace with your processing logic
# Then match the output with item["answer"] or item["options"][item["answer"]-1]
# If item["answer"] == 0: then it's unanswerable
Leaderboard
Model | Overall | Place Info | Nearby | Routing | Counting | Unanswerable |
---|---|---|---|---|---|---|
Claude-3.5-Sonnet | 61.65 | 82.64 | 55.56 | 45.00 | 47.73 | 90.00 |
GPT-4o | 58.90 | 76.86 | 57.78 | 50.00 | 47.73 | 40.00 |
Gemini-1.5-Pro | 56.14 | 76.86 | 56.67 | 43.75 | 32.95 | 80.00 |
GPT-4-Turbo | 55.89 | 75.21 | 56.67 | 42.50 | 44.32 | 40.00 |
Gemini-1.5-Flash | 51.94 | 70.25 | 56.47 | 38.36 | 32.95 | 55.00 |
GPT-4o-mini | 50.13 | 77.69 | 47.78 | 41.25 | 28.41 | 25.00 |
Qwen2-VL-7B-Instruct | 51.63 | 71.07 | 48.89 | 40.00 | 40.91 | 40.00 |
Glm-4v-9b | 48.12 | 73.55 | 42.22 | 41.25 | 34.09 | 10.00 |
InternLm-Xcomposer2 | 43.11 | 70.41 | 48.89 | 43.75 | 34.09 | 10.00 |
MiniCPM-Llama3-V-2.5 | 40.60 | 60.33 | 32.22 | 32.50 | 31.82 | 30.00 |
Llama-3-VILA1.5-8B | 32.99 | 46.90 | 32.22 | 28.75 | 26.14 | 5.00 |
DocOwl1.5 | 31.08 | 43.80 | 23.33 | 32.50 | 27.27 | 0.00 |
Llava-v1.6-Mistral-7B-hf | 31.33 | 42.15 | 28.89 | 32.50 | 21.59 | 15.00 |
Paligemma-3B-mix-224 | 30.58 | 37.19 | 25.56 | 38.75 | 23.86 | 10.00 |
Llava-1.5-7B-hf | 20.05 | 22.31 | 18.89 | 13.75 | 28.41 | 0.00 |
Human | 82.23 | 81.67 | 82.42 | 85.18 | 78.41 | 65.00 |
Citation
If you use this dataset, please cite the original paper:
@article{dihan2024mapeval,
title={MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models},
author={Dihan, Mahir Labib and Hassan, Md Tanvir and Parvez, Md Tanvir and Hasan, Md Hasebul and Alam, Md Almash and Cheema, Muhammad Aamir and Ali, Mohammed Eunus and Parvez, Md Rizwan},
journal={arXiv preprint arXiv:2501.00316},
year={2024}
}