|
import json |
|
|
|
import datasets |
|
|
|
|
|
_AMAZON_REVIEW_2023_DESCRIPTION = """\ |
|
Amazon Review 2023 is an updated version of the Amazon Review 2018 dataset. |
|
This dataset mainly includes reviews (ratings, text) and item metadata (desc- |
|
riptions, category information, price, brand, and images). Compared to the pre- |
|
vious versions, the 2023 version features larger size, newer reviews (up to Sep |
|
2023), richer and cleaner meta data, and finer-grained timestamps (from day to |
|
milli-second). |
|
|
|
""" |
|
|
|
|
|
class RawMetaAmazonReview2023Config(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(RawMetaAmazonReview2023Config, self).__init__(**kwargs) |
|
|
|
self.suffix = 'jsonl' |
|
self.domain = self.name[len(f'raw_meta_'):] |
|
self.description = f'This is a subset for items in domain: {self.domain}.' |
|
self.data_dir = f'raw/meta_categories/meta_{self.domain}.jsonl' |
|
|
|
|
|
class AmazonReview2023(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
|
|
RawMetaAmazonReview2023Config(name='raw_meta_All_Beauty'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Toys_and_Games'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Cell_Phones_and_Accessories'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Industrial_and_Scientific'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Gift_Cards'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Musical_Instruments'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Electronics'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Handmade_Products'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Arts_Crafts_and_Sewing'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Baby_Products'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Health_and_Household'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Office_Products'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Digital_Music'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Grocery_and_Gourmet_Food'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Sports_and_Outdoors'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Home_and_Kitchen'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Subscription_Boxes'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Tools_and_Home_Improvement'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Pet_Supplies'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Video_Games'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Kindle_Store'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Clothing_Shoes_and_Jewelry'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Patio_Lawn_and_Garden'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Unknown'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Books'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Automotive'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_CDs_and_Vinyl'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Beauty_and_Personal_Care'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Amazon_Fashion'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Magazine_Subscriptions'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Software'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Health_and_Personal_Care'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Appliances'), |
|
RawMetaAmazonReview2023Config(name='raw_meta_Movies_and_TV'), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_AMAZON_REVIEW_2023_DESCRIPTION + self.config.description, |
|
features=datasets.Features({ |
|
'main_category': datasets.Value('string'), |
|
'title': datasets.Value('string'), |
|
'average_rating': datasets.Value(dtype='float64'), |
|
'rating_number': datasets.Value(dtype='int64'), |
|
'features': datasets.Sequence(datasets.Value('string')), |
|
'description': datasets.Sequence(datasets.Value('string')), |
|
'price': datasets.Value('string'), |
|
'images': datasets.Sequence({ |
|
'hi_res': datasets.Value('string'), |
|
'large': datasets.Value('string'), |
|
'thumb': datasets.Value('string'), |
|
'variant': datasets.Value('string') |
|
}), |
|
'videos': datasets.Sequence({ |
|
'title': datasets.Value('string'), |
|
'url': datasets.Value('string'), |
|
'user_id': datasets.Value('string') |
|
}), |
|
'store': datasets.Value('string'), |
|
'categories': datasets.Sequence(datasets.Value('string')), |
|
'details': datasets.Value('string'), |
|
'parent_asin': datasets.Value('string'), |
|
'bought_together': datasets.Value(dtype='null', id=None), |
|
'subtitle': datasets.Value('string'), |
|
'author': datasets.Value('string') |
|
}) |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(self.config.data_dir) |
|
return [ |
|
datasets.SplitGenerator( |
|
name='full', |
|
gen_kwargs={"filepath": dl_dir} |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, 'r', encoding='utf-8') as file: |
|
for idx, line in enumerate(file): |
|
if self.config.suffix == 'jsonl': |
|
try: |
|
dp = json.loads(line) |
|
""" |
|
For item metadata, 'details' is free-form structured data |
|
Here we dump it to string to make huggingface datasets easy |
|
to store. |
|
""" |
|
if isinstance(self.config, RawMetaAmazonReview2023Config): |
|
if 'details' in dp: |
|
dp['details'] = json.dumps(dp['details']) |
|
if 'price' in dp: |
|
dp['price'] = str(dp['price']) |
|
for optional_key in ['subtitle', 'author']: |
|
if optional_key not in dp: |
|
dp[optional_key] = None |
|
for i in range(len(dp['images'])): |
|
for k in ['hi_res', 'large', 'thumb', 'variant']: |
|
if k not in dp['images'][i]: |
|
dp['images'][i][k] = None |
|
for i in range(len(dp['videos'])): |
|
for k in ['title', 'url', 'user_id']: |
|
if k not in dp['videos'][i]: |
|
dp['videos'][i][k] = None |
|
except: |
|
continue |
|
else: |
|
raise ValueError(f'Unknown suffix {self.config.suffix}.') |
|
yield idx, dp |
|
|