sourceName
stringclasses 1
value | url
stringclasses 20
values | action
stringclasses 1
value | body
stringlengths 23
1.11k
| format
stringclasses 1
value | metadata
dict | title
stringclasses 20
values | updated
stringclasses 1
value | embedding
sequencelengths 384
384
|
---|---|---|---|---|---|---|---|---|
devcenter | https://www.mongodb.com/developer/products/mongodb/build-go-web-application-gin-mongodb-help-ai | created | [4]: https://images.contentstack.io/v3/assets/blt39790b633ee0d5a7/blta325fcc27ed55546/651482786fefa7183fc43138/image7.png
[5]: https://images.contentstack.io/v3/assets/blt39790b633ee0d5a7/bltc8029e22c4381027/6514880ecf50bf3147fff13f/A7n71ej.gif
[6]: https://images.contentstack.io/v3/assets/blt39790b633ee0d5a7/blt438f1d659d2f1043/6514887b27287d9b63bf9215/6O8d6cR.gif | md | {
"tags": [
"MongoDB",
"Go"
],
"pageDescription": "Learn how to build a web application with the Gin framework for Go and MongoDB using the help of Cody AI from Sourcegraph.",
"contentType": "Tutorial"
} | How to Build a Go Web Application with Gin, MongoDB, and with the Help of AI | 2024-05-20T17:32:23.500Z | [
-0.02919306606054306,
0.014891638420522213,
0.024003518745303154,
-0.010366319678723812,
0.034340303391218185,
0.019679617136716843,
0.004534272477030754,
0.022148190066218376,
-0.006425179075449705,
-0.03987327218055725,
0.020153438672423363,
-0.07984752207994461,
0.03557003661990166,
0.021481378003954887,
0.03401476517319679,
-0.008969014510512352,
0.02858051098883152,
0.030128860846161842,
-0.06828644126653671,
0.029973909258842468,
0.042065102607011795,
-0.017688877880573273,
0.011968957260251045,
-0.06261353194713593,
0.017850900068879128,
0.018266336992383003,
-0.026431016623973846,
0.018169403076171875,
-0.0512949638068676,
-0.20388732850551605,
-0.016805818304419518,
-0.06885775923728943,
0.0215840432792902,
-0.04470757395029068,
0.009079605340957642,
0.001132023404352367,
-0.04858735203742981,
0.07591479271650314,
-0.037914570420980453,
0.04162999242544174,
0.06201663240790367,
-0.03871379792690277,
-0.056452661752700806,
-0.04287063702940941,
-0.045194294303655624,
-0.045679762959480286,
-0.019038839265704155,
-0.006893707439303398,
0.03980876877903938,
-0.054898928850889206,
0.01773803122341633,
-0.00714337220415473,
-0.02299053966999054,
0.037625476717948914,
0.03149256110191345,
0.030214207246899605,
0.08042202144861221,
0.03474663197994232,
0.024371357634663582,
0.06245889514684677,
0.051035452634096146,
0.07024747878313065,
-0.2361963391304016,
0.07072935998439789,
0.05515708774328232,
0.01889982260763645,
-0.02264106273651123,
0.009549415670335293,
0.0045720236375927925,
0.04499278590083122,
-0.024150479584932327,
0.014225360937416553,
0.018365120515227318,
0.0012125027133151889,
-0.00368077727034688,
-0.03033491224050522,
-0.03054335154592991,
-0.01804289035499096,
-0.03862651437520981,
-0.03314908966422081,
-0.015691474080085754,
-0.00713067501783371,
-0.029262149706482887,
-0.04170047491788864,
0.005584999453276396,
-0.0139138363301754,
-0.041034944355487823,
-0.08408717811107635,
0.06031617894768715,
0.03905804455280304,
-0.017270788550376892,
0.018873590975999832,
-0.01641327515244484,
0.022299831733107567,
-0.06751429289579391,
-0.02277984283864498,
0.0382830835878849,
0.0020371824502944946,
-0.018861671909689903,
0.18759623169898987,
-0.09743475168943405,
0.012571645900607109,
0.054831817746162415,
-0.0025388384237885475,
0.026679985225200653,
-0.042105693370103836,
0.0246381014585495,
-0.03464309871196747,
-0.021213581785559654,
0.04396617040038109,
0.008599402382969856,
-0.018303584307432175,
0.05439724773168564,
-0.04356800392270088,
-0.01147772092372179,
-0.015792688354849815,
0.0264086052775383,
0.0037134212907403708,
-0.06085122004151344,
-0.01807830110192299,
0.0018637290922924876,
0.022090451791882515,
0.05059918016195297,
-0.004615918267518282,
0.053541313856840134,
-0.0209494736045599,
0.046250611543655396,
0.1035943478345871,
0.04954581707715988,
0.049129996448755264,
0.06096998229622841,
0.005650962237268686,
0.021235521882772446,
0.00038332334952428937,
-0.03547433763742447,
0.055392853915691376,
-0.002348159672692418,
-0.02509421855211258,
0.015184147283434868,
-0.038513388484716415,
-0.03227812051773071,
-0.1660047322511673,
0.0002300692576682195,
-0.07292313128709793,
0.002753707580268383,
0.08375652134418488,
-0.019602742046117783,
0.013671185821294785,
-0.09941598027944565,
0.024625636637210846,
0.010099070146679878,
0.05231977626681328,
-0.010483268648386002,
0.019003067165613174,
0.02286216802895069,
-0.0023973973002284765,
0.023751085624098778,
0.0948205217719078,
-0.037655603140592575,
-0.012347527779638767,
-0.04617583751678467,
-0.053703129291534424,
-0.03287467360496521,
0.09429433196783066,
0.014825540594756603,
-0.07659068703651428,
-0.01936626061797142,
0.0035500070080161095,
0.0031280918046832085,
-0.014051295816898346,
-0.035811737179756165,
0.0453047975897789,
-0.011140594258904457,
0.010749599896371365,
0.12822596728801727,
0.03729233890771866,
-0.04312857985496521,
0.0022817670833319426,
-0.004537666216492653,
0.03510164096951485,
0.021120810881257057,
-0.016530461609363556,
-0.04797549173235893,
0.08575443178415298,
-0.0027616701554507017,
-0.04737233370542526,
0.014870308339595795,
-0.06531685590744019,
0.056773606687784195,
0.07228649407625198,
-0.025742657482624054,
0.024751976132392883,
-0.03762800246477127,
0.001247819629497826,
-0.023601258173584938,
-0.06176140159368515,
-0.06009305641055107,
-0.05979982763528824,
-0.013376867398619652,
-0.06757772713899612,
0.07071839272975922,
-0.021182870492339134,
-0.029983744025230408,
0.013607962056994438,
-0.015728119760751724,
0.020859891548752785,
0.0065664444118738174,
0.02674398012459278,
0.04432165250182152,
0.04130443558096886,
-0.038597024977207184,
0.043713293969631195,
0.0452660471200943,
-0.009481185115873814,
0.030695900321006775,
-0.028297720476984978,
0.021435169503092766,
0.033657874912023544,
0.008645419962704182,
0.012437052093446255,
0.01698445715010166,
-0.10168249160051346,
-0.0873488187789917,
-0.21145211160182953,
0.013122878968715668,
-0.012336893938481808,
-0.04453004524111748,
0.01932387426495552,
-0.009205636568367481,
0.032597631216049194,
-0.008447212167084217,
0.011742508970201015,
0.05160682648420334,
0.08484537154436111,
0.003969341982156038,
-0.02001626044511795,
0.009322678670287132,
-0.008127065375447273,
0.022811194881796837,
0.01280348002910614,
-0.011851497925817966,
-0.026245130226016045,
-0.04999646916985512,
-0.03734796494245529,
0.012209617532789707,
-0.013129988685250282,
-0.057776596397161484,
0.022085603326559067,
-0.027772756293416023,
0.2294415682554245,
0.06921476870775223,
0.020280882716178894,
0.008005868643522263,
0.029807059094309807,
0.03740732744336128,
-0.01456894539296627,
-0.07983092218637466,
0.03474609553813934,
0.04300471767783165,
0.013254609890282154,
-0.010767391882836819,
-0.02456337958574295,
-0.02891598641872406,
0.021408233791589737,
0.027612296864390373,
-0.03311237320303917,
-0.05918176844716072,
0.01971183903515339,
-0.01420168299227953,
-0.0634632557630539,
0.026921287178993225,
-0.004419267177581787,
0.01798040047287941,
0.010011093690991402,
-0.0018675042083486915,
0.013499336317181587,
0.0061818999238312244,
0.01000671274960041,
-0.0475320927798748,
-0.04699453338980675,
0.009105457924306393,
-0.003783311927691102,
0.0802759900689125,
-0.03025732934474945,
-0.05785047262907028,
0.007928348146378994,
-0.06185884028673172,
0.05232994630932808,
0.02615148201584816,
-0.012843419797718525,
-0.028629690408706665,
0.023178352043032646,
-0.03378387168049812,
-0.037426967173814774,
0.11825218796730042,
0.01213036384433508,
-0.019283633679151535,
0.07754000276327133,
0.00971443671733141,
0.019627567380666733,
0.0012882465962320566,
0.013797742314636707,
-0.023449432104825974,
0.07660923898220062,
-0.013705605641007423,
-0.010209141299128532,
0.043771542608737946,
0.02214406244456768,
0.03149762377142906,
0.009272927418351173,
-0.05026254430413246,
0.0525338388979435,
-0.06612526625394821,
0.007592854555696249,
0.01122265588492155,
-0.05872633308172226,
-0.015484008006751537,
0.027029460296034813,
0.010388902388513088,
-0.3457517623901367,
0.07371927052736282,
0.0363481268286705,
0.05002712830901146,
0.00607431773096323,
0.022623110562562943,
0.02217746153473854,
0.01874655857682228,
-0.03149240463972092,
0.021197883412241936,
0.0035286475904285908,
0.0352962464094162,
0.028323138132691383,
-0.05543994531035423,
-0.007396577391773462,
0.03193245083093643,
0.005865868646651506,
-0.038617782294750214,
0.04799540340900421,
-0.051931414753198624,
0.0053122639656066895,
0.019600048661231995,
0.22388732433319092,
-0.01763082481920719,
-0.034049004316329956,
0.023821301758289337,
-0.023236770182847977,
0.00656083831563592,
0.037686288356781006,
0.01668570749461651,
0.010003602132201195,
-0.00742129934951663,
0.04012595862150192,
-0.0035069521982222795,
0.011264042928814888,
0.06811162829399109,
-0.06749680638313293,
0.01288024615496397,
0.020674534142017365,
-0.05250310152769089,
-0.03203626722097397,
-0.007113514002412558,
-0.04994233325123787,
-0.03814937546849251,
0.09483099728822708,
-0.007076173555105925,
-0.002866764785721898,
-0.0510304793715477,
0.017769718542695045,
-0.008137566968798637,
-0.037788040935993195,
0.014741014689207077,
-0.026316195726394653,
0.0006710106390528381,
0.04159305989742279,
0.024093935266137123,
-0.038187284022569656,
-0.004565410315990448,
-0.03467705845832825,
0.034396179020404816,
0.01784862019121647,
-0.04337848722934723,
0.00681235222145915,
0.02483251877129078,
0.030078481882810593
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/build-go-web-application-gin-mongodb-help-ai | created | [7]: https://images.contentstack.io/v3/assets/blt39790b633ee0d5a7/bltd6759b52be548308/651482b2d45f2927c800b583/image3.png
[8]: https://images.contentstack.io/v3/assets/blt39790b633ee0d5a7/bltfc8ea470eb6585bd/651482da69060a5af7fc2c40/image5.png
[9]: https://images.contentstack.io/v3/assets/blt39790b633ee0d5a7/blte5d9fb517f22f08f/651488d82a06d70de3f4faf9/Y2HuNHe.gif | md | {
"tags": [
"MongoDB",
"Go"
],
"pageDescription": "Learn how to build a web application with the Gin framework for Go and MongoDB using the help of Cody AI from Sourcegraph.",
"contentType": "Tutorial"
} | How to Build a Go Web Application with Gin, MongoDB, and with the Help of AI | 2024-05-20T17:32:23.500Z | [
-0.044189319014549255,
-0.010568817146122456,
0.033681418746709824,
-0.014799040742218494,
0.038115814328193665,
0.018738053739070892,
-0.007383090443909168,
0.026860078796744347,
0.004617145750671625,
-0.034826673567295074,
0.017833849415183067,
-0.09220899641513824,
0.04585318639874458,
0.026278765872120857,
0.05490667000412941,
-0.013021931983530521,
0.03127165511250496,
0.037373099476099014,
-0.07512369006872177,
0.012882116250693798,
0.04071847349405289,
-0.008042133413255215,
0.009038480930030346,
-0.07202509790658951,
0.005716993939131498,
0.02145690657198429,
-0.02434258721768856,
0.003404933726415038,
-0.03680763393640518,
-0.19343923032283783,
-0.011453649960458279,
-0.044828861951828,
0.044442880898714066,
-0.053860172629356384,
0.008716068230569363,
0.004277596715837717,
-0.033803727477788925,
0.07183387875556946,
-0.028841698542237282,
0.04259004443883896,
0.06758489459753036,
-0.029165659099817276,
-0.06707468628883362,
-0.04027191177010536,
-0.02615358494222164,
-0.036185771226882935,
-0.01225509587675333,
-0.0039262427017092705,
0.025763142853975296,
-0.04369378834962845,
-0.013690130785107613,
-0.01656496897339821,
0.0027872698847204447,
0.024403421208262444,
-0.0006177839240990579,
0.022714821621775627,
0.05966385826468468,
0.016591787338256836,
0.026295488700270653,
0.05248456075787544,
0.0590466633439064,
0.014895826578140259,
-0.23321859538555145,
0.05667606368660927,
0.05128573253750801,
0.018535928800702095,
-0.038364067673683167,
-0.0071829333901405334,
-0.0013176953652873635,
0.05995898321270943,
-0.01647930219769478,
0.030189692974090576,
0.0011126744793727994,
0.03201207518577576,
0.007323143072426319,
-0.05212840437889099,
-0.026506662368774414,
0.005291192792356014,
-0.05048784241080284,
-0.023160289973020554,
0.0045451754704117775,
-0.013840108178555965,
-0.02829405479133129,
-0.013287069275975227,
0.0007149174925871193,
-0.04227564483880997,
-0.03794651851058006,
-0.08329376578330994,
0.053886085748672485,
0.0202442929148674,
-0.012296723201870918,
0.004907195456326008,
-0.003184936009347439,
0.03345717117190361,
-0.06792125850915909,
-0.029416125267744064,
0.041072238236665726,
-0.0134068438783288,
-0.013800996355712414,
0.21419399976730347,
-0.09147617220878601,
0.009683878161013126,
0.07412541657686234,
0.0028681783005595207,
0.050127800554037094,
-0.05818084999918938,
-0.0006823688163422048,
-0.053891390562057495,
-0.02967994660139084,
0.054786328226327896,
0.005714580416679382,
-0.0218228530138731,
0.06308452785015106,
-0.05475765839219093,
0.01753392070531845,
-0.010471957735717297,
0.047214899212121964,
-0.000625578744802624,
-0.03922072425484657,
-0.03170379623770714,
-0.007764473557472229,
0.03960511088371277,
0.029406828805804253,
-0.024065157398581505,
0.045148398727178574,
-0.015059101395308971,
0.04684099182486534,
0.09710343182086945,
0.09083962440490723,
0.05805565416812897,
0.05750294402241707,
-0.004479727707803249,
0.0012978065060451627,
-0.02060687728226185,
-0.012474683113396168,
0.04948437213897705,
0.0045168730430305,
-0.03338417038321495,
0.01457605604082346,
-0.024583177641034126,
-0.04703923314809799,
-0.15681029856204987,
0.02226259373128414,
-0.08750305324792862,
-0.011540570296347141,
0.07417619973421097,
-0.02040778286755085,
0.0147430170327425,
-0.09327740222215652,
0.018632154911756516,
0.01451120525598526,
0.029814353212714195,
-0.03383403643965721,
0.00016355229308828712,
0.02101932279765606,
0.007921339944005013,
0.0519099235534668,
0.1003829762339592,
-0.021408800035715103,
-0.008884647861123085,
-0.036979541182518005,
-0.05995110422372818,
-0.051741618663072586,
0.09218616783618927,
0.024940703064203262,
-0.09010974317789078,
-0.017990587279200554,
-0.0030599418096244335,
-0.0032185467425733805,
-0.0035900406073778868,
-0.03372383490204811,
0.0483672171831131,
-0.01749405637383461,
0.04172296077013016,
0.13134008646011353,
0.008790814317762852,
-0.032260701060295105,
-0.006815661210566759,
-0.0035495099145919085,
0.014816202223300934,
0.004850167781114578,
-0.027031969279050827,
-0.037757664918899536,
0.08030050992965698,
0.013668511994183064,
-0.05213802307844162,
0.016045503318309784,
-0.03416247293353081,
0.06273902207612991,
0.0723641961812973,
-0.017808297649025917,
0.023479336872696877,
-0.039475344121456146,
0.013901467435061932,
-0.020852934569120407,
-0.07071436941623688,
-0.04352729767560959,
-0.03831026703119278,
-0.004955199081450701,
-0.05427874997258186,
0.08146889507770538,
-0.019124241545796394,
-0.03416084870696068,
0.016763310879468918,
-0.04088381305336952,
0.019594959914684296,
-0.002632299903780222,
-0.0012376134982332587,
0.04443056136369705,
0.04316829890012741,
-0.027427252382040024,
0.04086962714791298,
0.04494072496891022,
-0.00464720418676734,
0.025970393791794777,
-0.029376588761806488,
0.012239175848662853,
0.02834651805460453,
0.002676475327461958,
0.00718813668936491,
0.019266841933131218,
-0.10836991667747498,
-0.08215780556201935,
-0.2176017016172409,
-0.020771220326423645,
-0.0029576392844319344,
-0.06035158410668373,
0.012360654771327972,
-0.02459026128053665,
0.00801130197942257,
-0.013255770318210125,
0.012464425526559353,
0.04895249754190445,
0.08212131261825562,
0.0030808872543275356,
-0.047618620097637177,
0.004963661078363657,
-0.028577810153365135,
0.003242750884965062,
0.004421069752424955,
-0.001535124029032886,
-0.03860325738787651,
-0.01943065971136093,
-0.04708646610379219,
0.022239699959754944,
-0.01508521381765604,
-0.07608501613140106,
0.024229679256677628,
-0.022259831428527832,
0.23312735557556152,
0.08304804563522339,
0.020676366984844208,
0.008932717144489288,
0.022735798731446266,
0.043757811188697815,
-0.03210960701107979,
-0.10503660887479782,
0.04754355549812317,
0.03314041718840599,
0.013773600570857525,
-0.016047140583395958,
-0.004126391839236021,
-0.029625078663229942,
0.00027645353111438453,
0.03761991113424301,
-0.01711151748895645,
-0.04715673625469208,
0.028357677161693573,
-0.02759670652449131,
-0.04121944308280945,
0.013956938870251179,
-0.004582803230732679,
0.031272489577531815,
0.01569284312427044,
0.012235394679009914,
0.020021023228764534,
-0.0007164052804000676,
0.009001166559755802,
-0.02194887585937977,
-0.03862685710191727,
-0.002519488101825118,
-0.027732808142900467,
0.0930318608880043,
-0.002672712318599224,
-0.05428022891283035,
-0.02104087732732296,
-0.08221889287233353,
0.05645855516195297,
0.024075716733932495,
-0.003994629252701998,
-0.04421309381723404,
0.034832920879125595,
-0.039225704967975616,
-0.041741084307432175,
0.1211949810385704,
0.016240937635302544,
-0.00852609146386385,
0.06666438281536102,
0.03310674428939819,
0.017887774854898453,
-0.0034784842282533646,
0.02197222225368023,
-0.019316449761390686,
0.05505162477493286,
-0.02545834891498089,
0.0003452915698289871,
0.061753008514642715,
0.027255216613411903,
0.03225861117243767,
0.029448701068758965,
-0.03340998291969299,
0.07391484826803207,
-0.05249611288309097,
-0.010289886966347694,
-0.01042162161320448,
-0.04269999638199806,
-0.022087641060352325,
0.022529765963554382,
0.013522638939321041,
-0.3295029401779175,
0.07910921424627304,
0.03632991388440132,
0.04053899645805359,
0.017308568581938744,
0.028465628623962402,
0.030763136222958565,
0.028409969061613083,
-0.053839102387428284,
0.009657536633312702,
0.011105849407613277,
0.06403867900371552,
0.024326957762241364,
-0.019279304891824722,
0.0056002517230808735,
0.008424467407166958,
0.021907657384872437,
-0.017070498317480087,
0.0453338660299778,
-0.03215673193335533,
0.017374731600284576,
0.011714117601513863,
0.21234217286109924,
-0.03705383464694023,
-0.02900511957705021,
0.008696691133081913,
-0.029192015528678894,
0.006021527107805014,
0.04173163324594498,
-0.00020941034017596394,
0.02481204830110073,
0.006639786064624786,
0.05480317398905754,
-0.027663005515933037,
-0.0017459802329540253,
0.049943383783102036,
-0.07228302210569382,
0.013872809708118439,
-0.00006754952482879162,
-0.035771068185567856,
-0.025125309824943542,
0.018127724528312683,
-0.05137636139988899,
-0.03641371428966522,
0.07907884567975998,
-0.022726010531187057,
-0.006124057807028294,
-0.035957012325525284,
0.03463170304894447,
0.0074511943385005,
-0.06039900332689285,
0.00664732838049531,
-0.024045545607805252,
0.0016220586840063334,
0.035155586898326874,
0.029706763103604317,
-0.012035802006721497,
-0.012826168909668922,
-0.028539620339870453,
0.019587215036153793,
0.024660198017954826,
-0.03263578563928604,
0.0008561147842556238,
0.019984567537903786,
0.03606494888663292
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/build-go-web-application-gin-mongodb-help-ai | created | [10]: https://images.contentstack.io/v3/assets/blt39790b633ee0d5a7/bltc2467265b39e7d2b/651483038f0457d9df12aceb/image6.png
[11]: https://images.contentstack.io/v3/assets/blt39790b633ee0d5a7/blt972b959f5918c282/651483244f2fa81286699c09/image1.png
[12]: https://images.contentstack.io/v3/assets/blt39790b633ee0d5a7/blt9c888329868b60b6/6514892c2a06d7d0a6f4fafd/g4xtxUg.gif | md | {
"tags": [
"MongoDB",
"Go"
],
"pageDescription": "Learn how to build a web application with the Gin framework for Go and MongoDB using the help of Cody AI from Sourcegraph.",
"contentType": "Tutorial"
} | How to Build a Go Web Application with Gin, MongoDB, and with the Help of AI | 2024-05-20T17:32:23.500Z | [
-0.03999573737382889,
-0.0005060909898020327,
0.028289152309298515,
-0.03453768044710159,
0.043509144335985184,
0.013511709868907928,
-0.009030942805111408,
0.027238896116614342,
0.0036280725616961718,
-0.026429366320371628,
0.014726255089044571,
-0.07695293426513672,
0.04984772205352783,
0.02015429362654686,
0.05538884177803993,
-0.004708609078079462,
0.027643270790576935,
0.020023060962557793,
-0.0756821557879448,
0.025042898952960968,
0.05347231775522232,
-0.015881812199950218,
0.021381283178925514,
-0.05080398917198181,
0.0052389297634363174,
0.011074759997427464,
-0.014534881338477135,
0.011851547285914421,
-0.04344853758811951,
-0.1893828958272934,
-0.011170562356710434,
-0.059959668666124344,
0.04026640206575394,
-0.030356738716363907,
0.010836072266101837,
-0.03052332065999508,
-0.0323798693716526,
0.08248034119606018,
-0.04470771178603172,
0.049112480133771896,
0.05839026719331741,
-0.026630433276295662,
-0.05594737082719803,
-0.06400046497583389,
-0.02936604991555214,
-0.04148728400468826,
-0.03399856761097908,
-0.01484969723969698,
0.01974232867360115,
-0.05284247174859047,
0.013200405053794384,
-0.018796255812048912,
0.0020046206191182137,
0.051472365856170654,
0.023965628817677498,
0.03555414825677872,
0.07372164726257324,
0.03981561213731766,
0.0525716170668602,
0.04460916668176651,
0.030617445707321167,
0.04306545853614807,
-0.2281389832496643,
0.07905831933021545,
0.07559189200401306,
0.02691943570971489,
-0.02452806569635868,
0.009620173834264278,
0.01020586583763361,
0.04923288896679878,
-0.01688542775809765,
0.00586414011195302,
0.015828628093004227,
0.020122118294239044,
0.008335445076227188,
-0.05250716209411621,
-0.02163209393620491,
0.0025693585630506277,
-0.03836637735366821,
-0.03328704088926315,
-0.0003567413950804621,
-0.009523281827569008,
-0.007864338345825672,
-0.027316244319081306,
0.010802573524415493,
-0.021093735471367836,
-0.027831625193357468,
-0.07699979841709137,
0.029048390686511993,
0.01091510709375143,
-0.010724642314016819,
-0.003999331500381231,
-0.014651142060756683,
0.023009466007351875,
-0.06461354345083237,
-0.02341374009847641,
0.019072480499744415,
-0.0027183620259165764,
-0.026434151455760002,
0.22739587724208832,
-0.08334570378065109,
0.009830871596932411,
0.0717354565858841,
-0.0071472423151135445,
0.04058802127838135,
-0.06799530237913132,
-0.00008197146962629631,
-0.04317571222782135,
-0.03939677029848099,
0.01932220533490181,
0.025115439668297768,
-0.012294509448111057,
0.07165355235338211,
-0.02132248878479004,
0.009736442007124424,
-0.02280569076538086,
0.02433153986930847,
-0.007021037861704826,
-0.04056914150714874,
-0.024183709174394608,
-0.02980400249361992,
0.023183617740869522,
0.03755912184715271,
-0.027386128902435303,
0.044723570346832275,
-0.030752534046769142,
0.0575697086751461,
0.0928388237953186,
0.040330931544303894,
0.05298026651144028,
0.06326232105493546,
-0.006448864936828613,
0.010020023211836815,
-0.002011982724070549,
-0.04314139857888222,
0.04674013704061508,
-0.0176608394831419,
-0.023001130670309067,
0.0057541080750525,
-0.033373259007930756,
-0.033748578280210495,
-0.15522530674934387,
-0.0022634549532085657,
-0.07974212616682053,
0.0015784091083332896,
0.09194421768188477,
-0.015881488099694252,
0.005734801292419434,
-0.08493281155824661,
0.02250184677541256,
0.004436047747731209,
0.0404537059366703,
-0.013550777919590473,
0.018047701567411423,
0.017336156219244003,
0.012875702232122421,
0.045253630727529526,
0.08985122293233871,
-0.043083518743515015,
-0.014989443123340607,
-0.01856081187725067,
-0.06975449621677399,
-0.05549970641732216,
0.10282786190509796,
0.01393216848373413,
-0.08694960922002792,
-0.0016686419257894158,
-0.01196206547319889,
-0.018559575080871582,
-0.01446126215159893,
-0.03263923525810242,
0.013194480910897255,
-0.017404373735189438,
0.022606724873185158,
0.11843983829021454,
0.034596998244524,
-0.043310437351465225,
-0.015580165199935436,
-0.005566706415265799,
0.015620351769030094,
0.015756923705339432,
-0.02738187648355961,
-0.04590727388858795,
0.08685540407896042,
0.015879450365900993,
-0.0572001188993454,
0.01686861924827099,
-0.06051082909107208,
0.046166520565748215,
0.056347526609897614,
-0.024978630244731903,
0.012233138084411621,
-0.029566844925284386,
0.027616092935204506,
-0.033933039754629135,
-0.054595671594142914,
-0.025237541645765305,
-0.03753893822431564,
-0.014669463969767094,
-0.05414554476737976,
0.09497407078742981,
-0.018662745133042336,
-0.047617409378290176,
0.00559161277487874,
-0.04113765433430672,
0.03356285020709038,
0.006621244829148054,
0.027797477319836617,
0.04994277283549309,
0.03528494015336037,
-0.025739217177033424,
0.039349403232336044,
0.027309095486998558,
0.008954834192991257,
0.026452921330928802,
-0.01565771922469139,
0.0069666048511862755,
0.04409407824277878,
0.0010844714706763625,
0.005827724933624268,
0.008393162861466408,
-0.1072729080915451,
-0.06724940985441208,
-0.2112101912498474,
0.00010757438576547429,
0.0057016597129404545,
-0.051396001130342484,
0.02340082637965679,
-0.02753205969929695,
0.020428799092769623,
0.014120234176516533,
0.008055128157138824,
0.045355528593063354,
0.09017108380794525,
0.007280808407813311,
-0.021547917276620865,
0.013829473406076431,
-0.0189697053283453,
0.01996559463441372,
0.002760845236480236,
0.007237215992063284,
-0.01964835822582245,
-0.046715255826711655,
-0.03791579231619835,
-0.004454667679965496,
0.005473795812577009,
-0.06901188939809799,
0.03937451168894768,
-0.03787563741207123,
0.2419455647468567,
0.08723001182079315,
0.0026173593942075968,
0.0008094750810414553,
0.03813454508781433,
0.049749571830034256,
-0.02540922351181507,
-0.08058234304189682,
0.04585042595863342,
0.033775050193071365,
0.00029076318605802953,
-0.022634824737906456,
0.006228514481335878,
-0.030405759811401367,
-0.009833406656980515,
0.05146070569753647,
-0.02817184291779995,
-0.06090451776981354,
0.021007779985666275,
-0.015471654944121838,
-0.04468134790658951,
0.01640845276415348,
-0.01072132308036089,
0.049397069960832596,
0.01085043977946043,
0.01650083251297474,
0.02144641801714897,
0.01376933790743351,
-0.01048666425049305,
-0.043893128633499146,
-0.05716850236058235,
-0.0009097238653339446,
0.014097016304731369,
0.06305520236492157,
-0.014662989415228367,
-0.05477985739707947,
-0.019749438390135765,
-0.07516675442457199,
0.04015405848622322,
0.02433769963681698,
-0.016555190086364746,
-0.03930746763944626,
0.06185095012187958,
-0.03803502395749092,
-0.011400500312447548,
0.11110624670982361,
0.014930599369108677,
-0.021903133019804955,
0.06331446021795273,
0.03269818797707558,
0.00593609968200326,
0.0016035402659326792,
0.007983824238181114,
-0.02733468823134899,
0.05559635907411575,
-0.010820225812494755,
-0.008581719361245632,
0.04596903175115585,
0.022705290466547012,
0.02258671075105667,
0.01904863864183426,
-0.03748762607574463,
0.04964534565806389,
-0.05544153228402138,
0.00019060110207647085,
0.0006371439667418599,
-0.040296293795108795,
-0.01586645469069481,
0.01696459762752056,
0.01698806881904602,
-0.3482059836387634,
0.10360044240951538,
0.035255905240774155,
0.0367375910282135,
0.008291737176477909,
0.03257280960679054,
0.04392590746283531,
0.018710628151893616,
-0.02563474141061306,
0.0009672603919170797,
0.009903617203235626,
0.034085046499967575,
0.03983752429485321,
-0.03180747479200363,
-0.022460760548710823,
0.029054393991827965,
0.00628437427803874,
-0.013506833463907242,
0.0561366081237793,
-0.017845042049884796,
0.021857047453522682,
0.007848620414733887,
0.219970241189003,
-0.019291387870907784,
-0.024263156577944756,
0.02403140440583229,
-0.029619615525007248,
-0.017875980585813522,
0.05439256131649017,
0.004690706264227629,
0.011197109706699848,
-0.001143644331023097,
0.048335108906030655,
-0.024261489510536194,
0.026158617809414864,
0.06124920770525932,
-0.08125735819339752,
0.044643450528383255,
-0.022182023152709007,
-0.06450439244508743,
-0.019979404285550117,
0.01672627590596676,
-0.046990107744932175,
-0.013053099624812603,
0.07543577253818512,
-0.016667883843183517,
-0.013024546205997467,
-0.04323205351829529,
0.021708061918616295,
-0.006356651894748211,
-0.04310458526015282,
0.003788379253819585,
-0.013854783959686756,
-0.007469265256077051,
0.02781539037823677,
-0.010707898996770382,
-0.004770997446030378,
-0.03760748729109764,
-0.04113561287522316,
0.004311542958021164,
0.03341744467616081,
-0.04807049781084061,
0.013195019215345383,
0.00936892069876194,
0.0343012660741806
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | # Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas
In today’s data-centric world, time-series data has become indispensable for driving key organizational decisions, trend analyses, and forecasts. This kind of data is everywhere — from stock markets and IoT sensors to user behavior analytics. But as these datasets grow in volume and complexity, so does the challenge of efficiently storing and analyzing them. Whether you’re an IoT developer or a data analyst dealing with time-sensitive information, MongoDB offers a robust ecosystem tailored to meet both your storage and analytics needs for complex time-series data. | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.02833707258105278,
0.0024371319450438023,
0.02177046239376068,
-0.04160935431718826,
0.07728856801986694,
-0.02501668781042099,
0.011450113728642464,
0.015000634826719761,
0.019216835498809814,
0.022285381332039833,
-0.007820398546755314,
-0.06186875328421593,
0.019022731110453606,
0.02063073217868805,
-0.0029469747096300125,
-0.006700383499264717,
-0.01784657873213291,
0.011010394431650639,
-0.05583612248301506,
0.014958149753510952,
-0.001966553507372737,
-0.030706577003002167,
-0.0668247789144516,
-0.05525597929954529,
0.03891480714082718,
0.07119492441415787,
0.01148348767310381,
-0.020087575539946556,
-0.05793824791908264,
-0.19426003098487854,
-0.0008259637397713959,
-0.074854776263237,
0.05493156611919403,
-0.059220924973487854,
0.026443522423505783,
-0.016877489164471626,
-0.004525362513959408,
0.055768463760614395,
0.0016614024061709642,
0.05790378525853157,
0.03550180792808533,
0.009339746087789536,
-0.06576334685087204,
-0.04865574091672897,
-0.04772733896970749,
-0.06621731072664261,
-0.0071105449460446835,
-0.018341373652219772,
-0.011543703265488148,
-0.029764873906970024,
-0.01571507379412651,
0.0009148127865046263,
0.014339408837258816,
0.038660019636154175,
0.03204383701086044,
0.033564310520887375,
0.05953935161232948,
0.0167374424636364,
0.045478664338588715,
-0.015106171369552612,
0.07704814523458481,
0.012234952300786972,
-0.1619710922241211,
0.0919916182756424,
0.03699728474020958,
0.051164887845516205,
-0.026061836630105972,
-0.02746823988854885,
0.023826375603675842,
0.03324470296502113,
-0.031832702457904816,
-0.007052071858197451,
0.00717127462849021,
0.025334874168038368,
0.014161771163344383,
-0.0142590356990695,
-0.012108382768929005,
-0.07991895079612732,
-0.00920686312019825,
0.028190959244966507,
-0.015570544637739658,
-0.024574963375926018,
-0.049041714519262314,
-0.005674503277987242,
-0.0013946479884907603,
-0.0336245596408844,
0.030161406844854355,
-0.021052686497569084,
0.015439282171428204,
-0.0013361942255869508,
-0.005010625347495079,
-0.018940096721053123,
0.01251723151654005,
0.034581977874040604,
-0.05876942351460457,
-0.006739969830960035,
0.04343361034989357,
0.041689854115247726,
-0.008244019001722336,
0.2454778254032135,
-0.07022112607955933,
0.05207999795675278,
-0.0028447378426790237,
-0.021530164405703545,
0.037453196942806244,
-0.0575069859623909,
0.0037498734891414642,
-0.06545525044202805,
0.00560810137540102,
-0.0014017005451023579,
-0.01894325390458107,
-0.033509209752082825,
0.03517761453986168,
-0.07582477480173111,
0.04758501052856445,
-0.005247344728559256,
-0.009968627244234085,
0.03206828609108925,
-0.018518339842557907,
0.03819112107157707,
-0.00760659808292985,
0.01598397269845009,
0.07230742275714874,
-0.023474832996726036,
0.03608904778957367,
-0.0312897153198719,
0.0475815124809742,
0.11714478582143784,
0.004802516661584377,
0.005886245518922806,
0.004585259594023228,
-0.000028673202905338258,
-0.09643552452325821,
-0.0008890395401977003,
0.017331143841147423,
0.018164772540330887,
-0.015957798808813095,
0.015583496540784836,
0.04665910080075264,
0.00769841717556119,
-0.042029377073049545,
-0.07141461968421936,
0.004004199989140034,
-0.07361948490142822,
-0.04320608079433441,
0.14970162510871887,
-0.0020497574005275965,
0.06600818037986755,
-0.0685701072216034,
-0.016834374517202377,
-0.04331013932824135,
0.026624802500009537,
-0.03335314616560936,
-0.048743002116680145,
0.01992279849946499,
0.02587032876908779,
0.054519202560186386,
0.03329453989863396,
-0.017653245478868484,
-0.02938184142112732,
-0.06433188915252686,
-0.006467354018241167,
-0.03239191323518753,
0.08227792382240295,
-0.01340777799487114,
-0.14265570044517517,
0.010599813424050808,
0.02357499860227108,
0.016270611435174942,
-0.02011049911379814,
0.029634440317749977,
0.038931846618652344,
-0.04291464760899544,
0.032737262547016144,
0.09229110926389694,
0.004686403088271618,
-0.03219706937670708,
-0.007521589286625385,
0.03328600898385048,
0.005434707272797823,
0.016951940953731537,
-0.0351327508687973,
-0.020157774910330772,
0.014638260938227177,
0.007241751998662949,
-0.046859439462423325,
0.0155403520911932,
-0.003310111351311207,
0.0194709412753582,
0.03953943029046059,
0.02404954470694065,
-0.029470164328813553,
-0.023591842502355576,
0.017918365076184273,
-0.024469750002026558,
-0.04021361842751503,
-0.02115355245769024,
-0.015253787860274315,
0.015979189425706863,
-0.06503346562385559,
0.01631319150328636,
-0.013068296946585178,
-0.013382906094193459,
0.03339904919266701,
0.03412289917469025,
0.011759699322283268,
-0.03665114939212799,
0.014676080085337162,
0.059972263872623444,
-0.01596938446164131,
0.010167059488594532,
0.0018548705847933888,
0.020106669515371323,
-0.027239743620157242,
-0.029725592583417892,
-0.007833709008991718,
0.012245717458426952,
0.021846259012818336,
0.02503589540719986,
0.04790779575705528,
0.01561846025288105,
-0.0640719011425972,
-0.053003814071416855,
-0.26336216926574707,
-0.006622788496315479,
0.004204621538519859,
0.03530076518654823,
0.04195405915379524,
-0.06617379933595657,
-0.0031912524718791246,
-0.029004331678152084,
0.009449528530240059,
0.08240590989589691,
0.06503334641456604,
-0.0020925661083310843,
0.00015655794413760304,
0.008364634588360786,
-0.024441378191113472,
0.07668855041265488,
0.014335475862026215,
0.03007403016090393,
-0.06382203102111816,
0.015985114499926567,
-0.014070108532905579,
0.002005906542763114,
-0.025113916024565697,
-0.09014753252267838,
0.02457130141556263,
0.011140862479805946,
0.19166108965873718,
0.021646711975336075,
0.007941587828099728,
-0.045101817697286606,
0.022886032238602638,
-0.04235294088721275,
-0.03956977277994156,
-0.08737996220588684,
0.05121041461825371,
0.02804265357553959,
0.04884633421897888,
0.014951161108911037,
-0.05110609903931618,
-0.03140764683485031,
-0.045160695910453796,
0.04271295666694641,
0.055329617112874985,
-0.04111986234784126,
-0.029987996444106102,
-0.021708214655518532,
-0.008476653136312962,
-0.007783643435686827,
-0.053771957755088806,
0.004154140129685402,
0.02045382186770439,
0.006227754056453705,
0.0787816196680069,
0.013676841743290424,
-0.021225837990641594,
-0.04398728534579277,
-0.07159506529569626,
0.04436764121055603,
-0.030964992940425873,
0.030703961849212646,
-0.022000405937433243,
-0.06419261544942856,
0.030934423208236694,
-0.008037857711315155,
0.03149416297674179,
-0.0187528133392334,
-0.019145946949720383,
-0.02506713755428791,
-0.002676629461348057,
-0.023929370567202568,
-0.014135654084384441,
0.12928570806980133,
-0.0449051596224308,
0.0037104496732354164,
0.04434756562113762,
0.03181862086057663,
0.030228272080421448,
0.009093605913221836,
-0.0470685213804245,
-0.022205762565135956,
0.07751625776290894,
-0.01096698734909296,
0.017670145258307457,
0.06283444166183472,
0.05364499241113663,
-0.00490142684429884,
0.08861200511455536,
-0.03004010207951069,
0.022475047037005424,
-0.040429502725601196,
-0.014324083924293518,
-0.021499883383512497,
-0.05608554929494858,
-0.025539740920066833,
0.012879679910838604,
0.04305288940668106,
-0.2943277657032013,
0.054422777146101,
-0.043118786066770554,
0.00562465563416481,
0.014496255666017532,
-0.0008133189403451979,
0.005904556717723608,
0.04386455565690994,
-0.032176218926906586,
0.013104738667607307,
0.0017986655002459884,
0.03601939603686333,
0.04951372742652893,
-0.01940285414457321,
-0.005711541511118412,
0.03709438443183899,
0.06819664686918259,
-0.05937543883919716,
0.021934909746050835,
0.004272923804819584,
0.058879271149635315,
0.04304821044206619,
0.2565692365169525,
-0.0037878339644521475,
0.04002999886870384,
0.016211235895752907,
0.0135263130068779,
0.004381445236504078,
0.04922662675380707,
-0.004376755096018314,
0.008070381358265877,
-0.014829709194600582,
0.07161139696836472,
-0.027308395132422447,
0.017481617629528046,
0.07345986366271973,
-0.03941500931978226,
0.040749747306108475,
0.02762714959681034,
-0.04962284862995148,
0.004867944400757551,
0.010847492143511772,
-0.02048845961689949,
-0.025023765861988068,
0.12448279559612274,
-0.035318050533533096,
-0.04102663695812225,
-0.10255145281553268,
0.023840168491005898,
0.04767727106809616,
-0.07199452817440033,
-0.026936760172247887,
-0.041787102818489075,
0.03176523745059967,
0.018572567030787468,
0.054049424827098846,
0.007217273116111755,
0.012303497642278671,
0.012940185144543648,
-0.06740830838680267,
0.01792319305241108,
-0.10546953976154327,
-0.013821110129356384,
0.0055364761501550674,
0.005318940617144108
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | MongoDB has built-in support to store time-series data in a special type of collection called a time-series collection. Time-series collections are different from the normal collections. Time-series collections use an underlying columnar storage format and store data in time-order with an automatically created clustered index. The columnar storage format provides the following benefits:
* Reduced complexity: The columnar format is tailored for time-series data, making it easier to manage and query.
* Query efficiency: MongoDB automatically creates an internal clustered index on the time field which improves query performance.
* Disk usage: This storage approach uses disk space more efficiently compared to traditional collections.
* I/O optimization: The read operations require fewer input/output operations, improving the overall system performance.
* Cache usage: The design allows for better utilization of the WiredTiger cache, further enhancing query performance. | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.027096791192889214,
0.023273304104804993,
0.030341608449816704,
-0.0043558645993471146,
0.06963969767093658,
-0.0035120437387377024,
-0.005248436238616705,
0.01133462693542242,
0.007697366643697023,
-0.0037319192197173834,
-0.011030576191842556,
-0.03577454388141632,
0.03645750507712364,
0.0467967614531517,
-0.02764912135899067,
-0.006028277333825827,
-0.022988513112068176,
-0.006424985826015472,
-0.035342488437891006,
0.012256846763193607,
0.044157981872558594,
-0.02959834784269333,
-0.021506808698177338,
-0.03315013647079468,
0.02603711001574993,
0.06520124524831772,
-0.02309349738061428,
-0.028629068285226822,
-0.060495760291814804,
-0.2172297090291977,
0.01575082167983055,
-0.07067795097827911,
0.07096723467111588,
-0.03420355170965195,
-0.015347831882536411,
-0.03644159808754921,
0.01113788690418005,
0.07781583070755005,
-0.05048434063792229,
0.04842117801308632,
0.03430260717868805,
0.022471146658062935,
-0.02904377691447735,
-0.04816778376698494,
-0.053459882736206055,
-0.07662423700094223,
-0.021040165796875954,
-0.022177670150995255,
-0.0010977959027513862,
-0.022638114169239998,
-0.0434555858373642,
0.01535982545465231,
-0.025414012372493744,
0.020645959302783012,
0.018328363075852394,
0.06257420033216476,
0.06384769082069397,
0.00027943728491663933,
0.007683258503675461,
-0.01238124631345272,
0.09777761995792389,
0.004102672915905714,
-0.16290296614170074,
0.08033474534749985,
0.004438498988747597,
0.023472938686609268,
-0.0018112232210114598,
-0.023109883069992065,
0.014830627478659153,
-0.0006459122523665428,
-0.05613844841718674,
0.007553157862275839,
0.03142167627811432,
0.013515138998627663,
0.018813418224453926,
0.004734949208796024,
-0.007320064585655928,
-0.06825363636016846,
-0.02172849327325821,
0.05304368585348129,
-0.033050861209630966,
-0.040592093020677567,
-0.006344796624034643,
-0.018506238237023354,
-0.01625235006213188,
-0.05830775201320648,
0.02523842640221119,
-0.08876731246709824,
0.02922855317592621,
0.006171786226332188,
-0.01358141377568245,
-0.008603121154010296,
0.035949867218732834,
0.04236496984958649,
-0.06697793304920197,
-0.01662343181669712,
0.04292731732130051,
0.0808546394109726,
-0.009142368100583553,
0.23591631650924683,
-0.022022444754838943,
0.055019162595272064,
0.022687813267111778,
-0.032358963042497635,
0.004897402133792639,
-0.07526960223913193,
0.0525440014898777,
-0.05656794086098671,
-0.032072022557258606,
-0.003380236914381385,
0.007335143629461527,
-0.016204791143536568,
0.01549929566681385,
-0.06998151540756226,
0.028709592297673225,
-0.0058294739574193954,
-0.015081994235515594,
0.02841527946293354,
-0.011339348740875721,
0.023926256224513054,
-0.0025336695834994316,
0.06372207403182983,
0.06350035965442657,
0.003086068434640765,
0.036055441945791245,
-0.04311825707554817,
0.08406905084848404,
0.0990011915564537,
-0.008798373863101006,
0.02534286119043827,
0.0034165107645094395,
-0.0192718468606472,
-0.08271295577287674,
0.0000695801863912493,
0.01877366565167904,
0.00288576097227633,
0.004136255942285061,
0.0016202263068407774,
0.03023688495159149,
-0.007036289665848017,
-0.02177061326801777,
-0.05211895704269409,
0.023192251101136208,
-0.061857786029577255,
-0.0457773357629776,
0.1425594836473465,
0.009399675764143467,
0.06407710164785385,
-0.07665472477674484,
-0.012036851607263088,
-0.02404814213514328,
0.04485968127846718,
-0.02916358783841133,
-0.0647222027182579,
-0.0027684129308909178,
0.01314782164990902,
0.025071922689676285,
0.03237129747867584,
-0.033939607441425323,
-0.015397489070892334,
-0.06686122715473175,
0.015028017573058605,
-0.012295471504330635,
0.08464633673429489,
-0.0041386825032532215,
-0.1281253546476364,
-0.01956600695848465,
0.032931435853242874,
0.011116806417703629,
-0.037415970116853714,
0.04692400246858597,
-0.005995194893330336,
-0.025422027334570885,
0.03633541986346245,
0.1043989360332489,
0.010084390640258789,
-0.05751902982592583,
-0.021934056654572487,
-0.009735653176903725,
-0.04167661443352699,
0.027530908584594727,
-0.001869117608293891,
-0.019654372707009315,
0.05304226651787758,
0.014939587563276291,
-0.016094882041215897,
-0.021219830960035324,
0.0051377685740590096,
0.03848715499043465,
0.03935614600777626,
0.009201708249747753,
-0.01393158920109272,
-0.029203398153185844,
0.057023048400878906,
-0.03024955652654171,
-0.05672059208154678,
0.001855528331361711,
-0.009221352636814117,
0.011238990351557732,
-0.05256783589720726,
0.04565788432955742,
-0.006264990195631981,
-0.010145439766347408,
0.05236135795712471,
0.040806952863931656,
-0.0004368024237919599,
-0.0523664690554142,
-0.0408564954996109,
0.01662589982151985,
-0.021903928369283676,
-0.03697547689080238,
-0.004201702307909727,
0.023569341748952866,
0.00548487389460206,
-0.0625123679637909,
-0.010870398953557014,
0.04299012944102287,
-0.002141734817996621,
0.038240354508161545,
0.04781324043869972,
0.03008238784968853,
-0.07209545373916626,
-0.04639023169875145,
-0.23203282058238983,
0.008928027004003525,
-0.02713576890528202,
0.0267904382199049,
0.07470017671585083,
-0.06138046830892563,
-0.002672959119081497,
-0.016086941584944725,
0.01348528265953064,
0.028420424088835716,
0.008606980554759502,
-0.04828130826354027,
-0.01630055345594883,
0.018185071647167206,
-0.04632788896560669,
0.07151550054550171,
0.019947508350014687,
0.012225184589624405,
-0.05585669353604317,
0.014956805855035782,
0.006629146169871092,
0.02355976030230522,
-0.02354205772280693,
-0.07734932750463486,
0.046529803425073624,
0.03447016701102257,
0.17471493780612946,
0.0011500522959977388,
0.0036647063679993153,
-0.05681750178337097,
0.0708400160074234,
-0.027038145810365677,
-0.028788071125745773,
-0.07840289175510406,
0.04569396376609802,
0.023270292207598686,
0.02982797659933567,
0.013293961994349957,
-0.01892818883061409,
-0.03521883860230446,
-0.06071680411696434,
0.05058244615793228,
0.04053719714283943,
-0.05324086919426918,
-0.03317226469516754,
-0.014214478433132172,
-0.012675123289227486,
0.006632340606302023,
-0.05764463543891907,
0.006890603341162205,
-0.008009567856788635,
-0.03628300130367279,
0.05359724909067154,
0.014401601627469063,
0.018913712352514267,
-0.057148277759552,
-0.06665629893541336,
0.005619130562990904,
-0.03037290647625923,
0.04004015028476715,
-0.009921531192958355,
-0.018196167424321175,
0.04816538468003273,
-0.03785441070795059,
0.016682811081409454,
0.0008774196612648666,
-0.01460825651884079,
0.002299183513969183,
-0.024102171882987022,
-0.0331563726067543,
-0.008177652023732662,
0.0582696795463562,
-0.06142651289701462,
0.01716718077659607,
0.07084178179502487,
0.026247555390000343,
0.007465333212167025,
0.024419797584414482,
-0.027214981615543365,
-0.04116467759013176,
0.05854323133826256,
-0.041639771312475204,
0.061970293521881104,
0.06374660134315491,
0.04903421550989151,
0.019442183896899223,
0.08742590248584747,
0.0000857497871038504,
-0.001160294166766107,
-0.010210205800831318,
-0.009435715153813362,
-0.019066421315073967,
-0.08150029182434082,
-0.06725163757801056,
0.013872237876057625,
-0.0053764525800943375,
-0.32755306363105774,
0.06524220108985901,
-0.008674445562064648,
-0.02508091926574707,
-0.005351999308913946,
0.006851091980934143,
-0.03054487518966198,
0.07395876944065094,
0.004263414070010185,
0.033884353935718536,
-0.02451491169631481,
0.07293771952390671,
0.01816258579492569,
-0.015505030751228333,
-0.012822074815630913,
0.07995429635047913,
0.0573582723736763,
-0.06331273913383484,
0.05882779508829117,
-0.03812102973461151,
0.052751727402210236,
0.0346287377178669,
0.24507510662078857,
0.03185528516769409,
0.016573917120695114,
0.02400878258049488,
0.021841375157237053,
0.0037602486554533243,
0.03816865384578705,
-0.005563396494835615,
0.030087100341916084,
0.005056306719779968,
0.09948369860649109,
0.013932689093053341,
0.027749063447117805,
0.07712820172309875,
-0.025210000574588776,
0.05665278807282448,
0.011350398883223534,
-0.012553072534501553,
-0.042942341417074203,
0.035061076283454895,
-0.03914845734834671,
0.0104563869535923,
0.09955667704343796,
-0.06934109330177307,
-0.051061421632766724,
-0.09344321489334106,
0.02790926955640316,
0.03239822015166283,
-0.04530588164925575,
-0.03249261900782585,
-0.01288861408829689,
0.01378445141017437,
0.027051053941249847,
0.020771298557519913,
-0.013258137740194798,
0.021919334307312965,
-0.015025570057332516,
-0.04268122836947441,
0.013897332362830639,
-0.047939881682395935,
-0.01796824112534523,
0.005877190735191107,
0.0314493328332901
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | In this tutorial, we will create a time-series collection and then store some time-series data into it. We will see how you can query it in MongoDB as well as how you can read that data into pandas DataFrame, run some analytics on it, and write the modified data back to MongoDB. This tutorial is meant to be a complete deep dive into working with time-series data in MongoDB.
### Tutorial Prerequisites
We will be using the following tools/frameworks:
* MongoDB Atlas database, to store our time-series data. If you don’t already have an Atlas cluster created, go ahead and create one, set up a user, and add your connection IP address to your IP access list.
* PyMongo driver(to connect to your MongoDB Atlas database, see the installation instructions).
* Jupyter Notebook (to run the code, see the installation instructions). | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.032573454082012177,
0.00856885127723217,
0.016349075362086296,
-0.019809279590845108,
0.058270130306482315,
-0.014143265783786774,
0.01614360511302948,
0.011343705467879772,
0.038788989186286926,
0.031106671318411827,
0.0025901116896420717,
-0.06290453672409058,
0.02396705374121666,
0.028524573892354965,
-0.02128847874701023,
0.009253925643861294,
-0.03819166496396065,
-0.021862849593162537,
-0.05448533967137337,
0.021670062094926834,
-0.018689816817641258,
-0.03999001905322075,
-0.050927355885505676,
-0.04312101751565933,
0.05025592818856239,
0.08919790387153625,
0.012565531767904758,
-0.01867365464568138,
-0.058374207466840744,
-0.22755147516727448,
0.020657766610383987,
-0.07244297862052917,
0.04817244037985802,
-0.04738057032227516,
0.012536946684122086,
-0.0004728920466732234,
-0.003390191588550806,
0.05749959498643875,
-0.010781990364193916,
0.03788627311587334,
0.057169314473867416,
0.018240181729197502,
-0.03935486823320389,
-0.0491856224834919,
-0.03504277765750885,
-0.07203443348407745,
-0.012215345166623592,
-0.017810864374041557,
0.011927327141165733,
-0.014195897616446018,
-0.04179644212126732,
-0.01743346080183983,
-0.021477051079273224,
0.02588825300335884,
0.023224594071507454,
0.036286525428295135,
0.07923270016908646,
0.02381456084549427,
0.03596975654363632,
-0.010310499928891659,
0.059969425201416016,
0.012134638614952564,
-0.17500664293766022,
0.08948463201522827,
0.013332569971680641,
0.051555052399635315,
-0.014724591746926308,
0.0109221450984478,
0.038647767156362534,
0.010509106330573559,
-0.055784210562705994,
-0.0040966118685901165,
-0.009264916181564331,
0.010206603445112705,
0.02181512676179409,
0.00884292833507061,
-0.025884954258799553,
-0.05787775665521622,
-0.006634739227592945,
0.013730498030781746,
-0.02890690229833126,
-0.011927805840969086,
-0.0012842376017943025,
0.01286895852535963,
-0.00003270725210313685,
-0.03694573789834976,
0.040561504662036896,
-0.04089535400271416,
-0.004536415450274944,
0.012740714475512505,
-0.007427436765283346,
-0.012382221408188343,
-0.003333911532536149,
0.06007498502731323,
-0.09049002826213837,
-0.02055802196264267,
0.024825382977724075,
0.05106208100914955,
0.01317010447382927,
0.21431660652160645,
-0.05752050504088402,
0.06082776188850403,
0.015421096235513687,
-0.006960051599889994,
0.015707869082689285,
-0.06850368529558182,
0.01780940778553486,
-0.051075760275125504,
-0.013143489137291908,
0.01785837858915329,
-0.006129455752670765,
-0.032105669379234314,
0.044865019619464874,
-0.09009839594364166,
0.04185191169381142,
-0.026251690462231636,
-0.022035544738173485,
0.02618194743990898,
-0.023140892386436462,
0.03272244334220886,
0.004308296367526054,
0.03878670558333397,
0.07161938399076462,
-0.03133970499038696,
0.05062425509095192,
-0.0007732038502581418,
0.0668756365776062,
0.09902280569076538,
0.004063738044351339,
0.01244392804801464,
0.010767709463834763,
0.005914425011724234,
-0.11306429654359818,
0.024575037881731987,
0.009278583340346813,
0.012347962707281113,
-0.04066906496882439,
-0.001693648286163807,
0.04062005877494812,
-0.014458034187555313,
-0.01650998368859291,
-0.07138541340827942,
0.0030133272521197796,
-0.06868887692689896,
-0.03729682415723801,
0.1304667443037033,
-0.01694529689848423,
0.054586928337812424,
-0.06386106461286545,
-0.010220087133347988,
-0.039539262652397156,
0.01893674023449421,
-0.0429694838821888,
-0.03368902578949928,
0.0068677575327456,
0.021308239549398422,
0.07525905966758728,
0.04987200349569321,
-0.050286196172237396,
-0.01489060465246439,
-0.0681833028793335,
-0.0025011764373630285,
-0.030855543911457062,
0.062357716262340546,
0.023468658328056335,
-0.14877241849899292,
-0.009034653194248676,
0.040697455406188965,
0.0051294295117259026,
-0.0504286102950573,
0.03018169477581978,
0.013850020244717598,
-0.04534267261624336,
0.02236354909837246,
0.13866370916366577,
0.03672268986701965,
-0.030942916870117188,
0.017019465565681458,
0.011330793611705303,
-0.012620218098163605,
0.005214315373450518,
-0.03023678995668888,
-0.004572196863591671,
0.028215207159519196,
-0.016980545595288277,
-0.04043065384030342,
-0.021022748202085495,
-0.045983459800481796,
0.01565566286444664,
0.035658098757267,
-0.0036396258510649204,
-0.03665244206786156,
0.0050070276483893394,
0.016413569450378418,
-0.01409462746232748,
-0.03881445899605751,
0.0006438664277084172,
-0.01919163390994072,
0.022350354120135307,
-0.05522351711988449,
0.0559418722987175,
-0.00433502160012722,
0.0021938281133770943,
0.052906863391399384,
0.02704455517232418,
0.005565566010773182,
-0.058799661695957184,
0.0036396433133631945,
0.06957756727933884,
-0.035598110407590866,
-0.015163014642894268,
0.007400847040116787,
0.022315358743071556,
-0.015823934227228165,
-0.033241454511880875,
0.014986897818744183,
0.015979984775185585,
0.04736262187361717,
0.012650322169065475,
0.04002903029322624,
0.020698579028248787,
-0.09495364129543304,
-0.06589169055223465,
-0.250503808259964,
0.00969769898802042,
0.009169516153633595,
0.05912082642316818,
0.011013268493115902,
-0.054299671202898026,
0.010862145572900772,
-0.004370869603008032,
0.03673835098743439,
0.06542006880044937,
0.06903264671564102,
0.007761422079056501,
0.003330050967633724,
-0.02031947299838066,
-0.03233398124575615,
0.06590036302804947,
0.028395740315318108,
0.032736048102378845,
-0.05986800789833069,
0.020087046548724174,
-0.004069862887263298,
-0.012907791882753372,
-0.01746009849011898,
-0.07914990931749344,
0.029976001009345055,
0.026630254462361336,
0.18845245242118835,
0.004043613560497761,
0.01872871071100235,
-0.048895224928855896,
0.05182172358036041,
-0.032979901880025864,
-0.03651227802038193,
-0.09829481691122055,
0.04263046011328697,
-0.0007818442536517978,
0.021084221079945564,
0.03763623908162117,
-0.04277193918824196,
-0.04247245192527771,
-0.05109858140349388,
0.04852061718702316,
0.05037460848689079,
-0.03451026231050491,
-0.045966822654008865,
-0.00657334178686142,
-0.014141923747956753,
-0.015940044075250626,
-0.08078867942094803,
0.003988093230873346,
-0.0034052326809614897,
0.013146099634468555,
0.08311350643634796,
0.003140064887702465,
-0.03768705576658249,
-0.044406868517398834,
-0.06231844797730446,
0.05198975279927254,
-0.05181969329714775,
0.051384586840867996,
-0.017859797924757004,
-0.023368090391159058,
0.05274156108498573,
-0.056302934885025024,
0.041469018906354904,
-0.03276286646723747,
-0.0077956439927220345,
-0.03356629237532616,
0.004234990105032921,
-0.025981782004237175,
-0.017362184822559357,
0.08621329069137573,
-0.04371458664536476,
0.027270952239632607,
0.06789693981409073,
0.015137138776481152,
0.0012716074706986547,
0.002068169182166457,
-0.02706747315824032,
-0.03165271878242493,
0.042954664677381516,
-0.02491995505988598,
0.03516468033194542,
0.07932423800230026,
0.06640786677598953,
0.01853916049003601,
0.06490939110517502,
-0.02051246166229248,
0.012071935459971428,
-0.011777603067457676,
-0.008345963433384895,
-0.031046520918607712,
-0.04752581939101219,
-0.014261672273278236,
-0.012367460876703262,
0.0330706387758255,
-0.29978787899017334,
0.04125697910785675,
-0.028248131275177002,
0.015009809285402298,
0.004679109901189804,
-0.02557487040758133,
-0.00041975625208579004,
0.05428848788142204,
-0.036084555089473724,
0.017073163762688637,
0.01187068596482277,
0.038277123123407364,
0.043095558881759644,
-0.00854178611189127,
-0.0077567328698933125,
0.05161828547716141,
0.03624438866972923,
-0.03772810101509094,
0.036886733025312424,
-0.02266487292945385,
0.056787505745887756,
0.06130503863096237,
0.217730313539505,
0.027468979358673096,
0.029490774497389793,
0.029189078137278557,
0.031923431903123856,
0.007659727241843939,
0.06924396753311157,
0.009447235614061356,
0.0006095124408602715,
-0.01742255501449108,
0.08663512766361237,
-0.019002487882971764,
0.027251772582530975,
0.07104000449180603,
-0.052049420773983,
0.043116245418787,
0.04983643442392349,
-0.039488840848207474,
0.0024523234460502863,
0.0105212377384305,
-0.01425099465996027,
0.00942955445498228,
0.09253770858049393,
-0.03432217240333557,
-0.05915496498346329,
-0.11243358999490738,
0.005867899861186743,
0.038200024515390396,
-0.05888582020998001,
-0.03966816887259483,
-0.013111746869981289,
0.012057933025062084,
0.0060533261857926846,
0.0319378562271595,
-0.006305552553385496,
0.010713472962379456,
-0.00008915649232221767,
-0.05437501147389412,
0.020580429583787918,
-0.1244143471121788,
0.005849574226886034,
-0.01467681024223566,
0.009487541392445564
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | >Note: Before running any code or installing any Python packages, we strongly recommend setting up a separate Python environment. This helps to isolate dependencies, manage packages, and avoid conflicts that may arise from different package versions. Creating an environment is an optional but highly recommended step.
At this point, we are assuming that you have an Atlas cluster created and ready to be used, and PyMongo and Jupyter Notebook installed. Let’s go ahead and launch Jupyter Notebook by running the following command in the terminal:
```
Jupyter Notebook
```
Once you have the Jupyter Notebook up and running, let’s go ahead and fetch the connection string of your MongoDB Atlas cluster and store that as an environment variable, which we will use later to connect to our database. After you have done that, let’s go ahead and connect to our Atlas cluster by running the following commands:
```
import pymongo
import os
from pymongo import MongoClient | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.04386018589138985,
-0.003356406930834055,
0.018787220120429993,
-0.031067360192537308,
-0.007703299168497324,
-0.03215634450316429,
-0.00855077151209116,
0.012959943152964115,
-0.002509333658963442,
-0.005472216755151749,
0.021563204005360603,
-0.08182912319898605,
0.02342536486685276,
0.00016862548363860697,
-0.024346034973859787,
0.005457338877022266,
-0.026895374059677124,
-0.022675802931189537,
-0.0513794869184494,
0.019168106839060783,
-0.05004512891173363,
-0.017662664875388145,
-0.03510381281375885,
-0.061262380331754684,
0.028559615835547447,
0.100778728723526,
-0.016498591750860214,
-0.03373734652996063,
-0.03563368692994118,
-0.22271543741226196,
0.003360008355230093,
-0.052871350198984146,
0.011670772917568684,
-0.0360640324652195,
0.007743265945464373,
0.037043873220682144,
0.016764160245656967,
0.04558182135224342,
-0.03042665868997574,
0.035971906036138535,
0.061091333627700806,
-0.00044915598118677735,
-0.037191856652498245,
-0.02682279795408249,
-0.017531804740428925,
-0.07346442341804504,
-0.017322340980172157,
-0.024678602814674377,
0.051680777221918106,
-0.04902090132236481,
-0.008351527154445648,
-0.05397384613752365,
-0.03690518066287041,
0.0007052224245853722,
-0.0245086457580328,
0.048122014850378036,
0.05641216039657593,
0.05644875764846802,
-0.0014028100995346904,
0.014864659868180752,
0.02924809604883194,
0.0451749749481678,
-0.20345015823841095,
0.11219199746847153,
0.047297876328229904,
0.0528375618159771,
-0.035627879202365875,
0.003779297461733222,
0.05436013638973236,
0.04257357865571976,
-0.08312229812145233,
0.02396260015666485,
-0.009423092938959599,
0.04939412698149681,
0.0214250311255455,
-0.019629187881946564,
-0.015392720699310303,
-0.03308742493391037,
0.024668412283062935,
0.0013295408571138978,
-0.030606472864747047,
-0.008459371514618397,
-0.02584608644247055,
0.04737197980284691,
-0.024541517719626427,
-0.016028236597776413,
0.023886146023869514,
-0.001254378934390843,
0.014777788892388344,
-0.004864179529249668,
0.0091007761657238,
-0.025942005217075348,
0.017870081588625908,
0.06459391117095947,
-0.07727256417274475,
0.0038518800865858793,
0.030864566564559937,
0.005606736056506634,
-0.014111792668700218,
0.2287922203540802,
-0.03348224610090256,
0.03279697522521019,
0.012839145958423615,
0.0037511440459638834,
0.01675032451748848,
-0.051586560904979706,
-0.000023628103008377366,
-0.05027427151799202,
-0.011359727941453457,
-0.019231237471103668,
0.02537318877875805,
-0.022923318669199944,
0.03623608872294426,
-0.0668170377612114,
0.03378564491868019,
0.007745195645838976,
-0.027098875492811203,
0.01844342239201069,
-0.023196766152977943,
0.016840513795614243,
-0.009414063766598701,
0.019155090674757957,
0.06009441986680031,
0.0012993316631764174,
0.04207313060760498,
-0.005316799506545067,
0.02759159542620182,
0.06782576441764832,
0.013662087731063366,
0.03189874067902565,
0.018204113468527794,
-0.013661081902682781,
-0.05631226673722267,
0.0218781977891922,
0.02431667223572731,
-0.01359790749847889,
-0.027498960494995117,
0.03233100846409798,
0.017104407772421837,
-0.0002659392775967717,
-0.02809329330921173,
-0.08884704858064651,
0.007862008176743984,
-0.08536799252033234,
-0.04165477305650711,
0.1002035140991211,
-0.06089842692017555,
0.08335081487894058,
-0.05943832919001579,
-0.019773155450820923,
-0.018581099808216095,
0.012124852277338505,
-0.05153496190905571,
0.007674315478652716,
0.011205009184777737,
0.03158314898610115,
0.051430147141218185,
0.08161533623933792,
-0.030767230316996574,
-0.02010597474873066,
-0.055196527391672134,
-0.04908249154686928,
-0.05647147074341774,
0.08370862156152725,
0.00518436124548316,
-0.11626925319433212,
-0.000446302758064121,
0.0001681931025814265,
0.010106475092470646,
-0.02537630870938301,
-0.01620272547006607,
0.03011174127459526,
-0.025678066536784172,
0.009560570120811462,
0.12464600056409836,
0.008068745024502277,
-0.05617860332131386,
0.02001839689910412,
0.009402267634868622,
-0.0006552597624249756,
0.006862406153231859,
-0.012365982867777348,
-0.02582355961203575,
-0.012267278507351875,
0.026181094348430634,
-0.06817307323217392,
-0.007901044562458992,
-0.03488108143210411,
0.030209064483642578,
0.023723436519503593,
-0.019964054226875305,
0.033481013029813766,
0.04197925329208374,
-0.055011022835969925,
-0.020159682258963585,
-0.031703706830739975,
-0.014793775975704193,
-0.013533255085349083,
0.009038290940225124,
-0.03591238707304001,
0.08777935802936554,
0.049451276659965515,
-0.021938739344477654,
0.07151618599891663,
-0.0004528409626800567,
0.004416350740939379,
-0.044514235109090805,
-0.01958833448588848,
0.053701214492321014,
-0.016086403280496597,
-0.045814212411642075,
0.0017444832483306527,
0.04444851353764534,
-0.008413175120949745,
-0.02667918987572193,
0.010184001177549362,
0.03773147985339165,
0.05973866209387779,
0.07287388294935226,
0.06052544713020325,
0.012237186543643475,
-0.07641100883483887,
-0.059206120669841766,
-0.26471149921417236,
0.047151949256658554,
0.012631760910153389,
0.024394938722252846,
0.007899155840277672,
-0.03870692476630211,
0.031157132238149643,
-0.0015800405526533723,
-0.011701727285981178,
0.050116512924432755,
0.09358939528465271,
-0.003302271943539381,
0.019997382536530495,
0.03656250610947609,
-0.04813184589147568,
0.09738987684249878,
0.027124017477035522,
0.02820887789130211,
-0.049718648195266724,
0.010896943509578705,
0.0016343187307938933,
-0.040448129177093506,
-0.03120804950594902,
-0.046570613980293274,
0.02044377289712429,
-0.008080515079200268,
0.21009837090969086,
0.030917804688215256,
0.014089347794651985,
-0.037967417389154434,
0.057418130338191986,
0.0006253693136386573,
-0.05349896103143692,
-0.16502685844898224,
0.043369412422180176,
0.01475643552839756,
0.03130682185292244,
0.031602200120687485,
-0.007707306649535894,
-0.008564557880163193,
-0.01575656607747078,
0.0635744035243988,
0.022207563742995262,
-0.06006631627678871,
-0.0008791969739831984,
-0.010432761162519455,
-0.006109639536589384,
0.014603903517127037,
-0.04878796637058258,
0.003401470370590687,
-0.014676383696496487,
0.06169265881180763,
0.037882283329963684,
0.009758520871400833,
-0.05181322246789932,
-0.042255375534296036,
-0.05960896238684654,
0.05437743291258812,
-0.04360531270503998,
0.06585961580276489,
-0.001477845711633563,
-0.030430911108851433,
0.01376193668693304,
-0.046872176229953766,
0.034510210156440735,
-0.034113917499780655,
0.015801722183823586,
-0.04153694212436676,
0.07619735598564148,
0.000020132440113229677,
0.0017330539412796497,
0.058716464787721634,
-0.028866777196526527,
0.021762380376458168,
0.04087795689702034,
0.032005585730075836,
0.03359174728393555,
0.002535360399633646,
-0.020758207887411118,
-0.013901393860578537,
0.04447624459862709,
-0.015154246240854263,
0.018983226269483566,
0.07909330725669861,
0.029733842238783836,
0.010725858621299267,
0.0024254166055470705,
-0.022070450708270073,
0.015456169843673706,
-0.030483515933156013,
-0.008910548873245716,
-0.019312875345349312,
-0.03151111677289009,
0.007626102771610022,
0.04069484770298004,
0.022358328104019165,
-0.28226232528686523,
0.048170849680900574,
-0.0355905182659626,
0.001187349553219974,
-0.010610598139464855,
-0.01269663218408823,
0.04400460049510002,
0.01332246046513319,
-0.06585784256458282,
0.017313094809651375,
0.057644378393888474,
0.0032653342932462692,
0.03349395841360092,
-0.0023322398774325848,
0.01736762560904026,
0.037510037422180176,
0.05336102098226547,
-0.03220933675765991,
0.023100417107343674,
-0.03177874907851219,
0.011231214739382267,
0.01641424186527729,
0.20502106845378876,
0.0020130446646362543,
0.05525399371981621,
0.05276491865515709,
0.019283009693026543,
0.05496591329574585,
0.03406469151377678,
-0.002940765116363764,
-0.003358167130500078,
-0.012991528958082199,
0.05716872215270996,
-0.05701932683587074,
0.04245372861623764,
0.03632082790136337,
-0.04047275707125664,
-0.005006798077374697,
0.06605106592178345,
-0.03942197933793068,
-0.021371159702539444,
0.010311201214790344,
-0.042970478534698486,
-0.018146177753806114,
0.1078413724899292,
-0.02349650301039219,
-0.021004125475883484,
-0.09360058605670929,
-0.00863882526755333,
0.016292916610836983,
-0.056188274174928665,
-0.03042747639119625,
-0.01595243811607361,
-0.027679771184921265,
0.01248205453157425,
0.021932965144515038,
-0.004530849400907755,
-0.004905289970338345,
-0.018417401239275932,
-0.029617933556437492,
0.03300416097044945,
-0.1744406819343567,
0.04396974667906761,
0.03653866797685623,
-0.002223973162472248
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | ```
import pymongo
import os
from pymongo import MongoClient
MONGO_CONN_STRING = os.environ.get("MONGODB_CONNECTION_STRING")
client = MongoClient(MONGO_CONN_STRING)
```
## Creating a time-series collection
Next, we are going to create a new database and a collection in our cluster to store the time-series data. We will call this database “stock_data” and the collection “stocks”.
```
# Let's create a new database called "stock data"
db = client.stock_data
# Let's create a new time-series collection in the "stock data" database called "stocks"
collection = db.create_collection('stocks', timeseries={
timeField: "timestamp",
metaField: "metadata",
granularity: "hours" | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.03470398485660553,
0.02037637121975422,
0.020632611587643623,
-0.02892887033522129,
0.04226795956492424,
-0.013874098658561707,
0.0049956198781728745,
-0.0023642193991690874,
0.028369830921292305,
0.006251920945942402,
-0.016853084787726402,
-0.10466556996107101,
0.022274671122431755,
0.03753227740526199,
-0.02028103731572628,
0.00017605711764190346,
-0.03530487045645714,
-0.010688620619475842,
-0.05609818547964096,
0.024922676384449005,
0.0015449970960617065,
-0.01928243786096573,
-0.044826313853263855,
-0.035957757383584976,
0.04733896255493164,
0.07953178137540817,
0.007452444173395634,
0.00976825226098299,
-0.04657363519072533,
-0.21030215919017792,
-0.022357143461704254,
-0.062364883720874786,
0.022450165823101997,
-0.035384345799684525,
0.018565181642770767,
-0.009648672305047512,
-0.0049777342937886715,
0.059401948004961014,
-0.03045704774558544,
0.08334317803382874,
0.05656225234270096,
0.003489677095785737,
-0.0542093925178051,
-0.06277082860469818,
-0.02293512038886547,
-0.06532587110996246,
-0.020508088171482086,
-0.042354606091976166,
0.015367942862212658,
-0.020748140290379524,
-0.03851047158241272,
-0.016011547297239304,
-0.0406845398247242,
0.00782789383083582,
0.010732599534094334,
0.0429825522005558,
0.03764364868402481,
0.021212134510278702,
0.027433374896645546,
-0.01333952322602272,
0.0665864571928978,
0.030743902549147606,
-0.1807079166173935,
0.10391774028539658,
0.017536846920847893,
0.04823342710733414,
-0.010529122315347195,
0.011208334937691689,
0.04392756149172783,
0.026695476844906807,
-0.042356401681900024,
0.015095503069460392,
0.017442069947719574,
0.027904953807592392,
0.00739722466096282,
-0.035890307277441025,
-0.016001494601368904,
-0.0707196593284607,
0.006206438411027193,
0.031246980652213097,
-0.04562946781516075,
-0.03771016746759415,
-0.023957157507538795,
0.003974501043558121,
-0.00956068467348814,
-0.017986061051487923,
0.03492516651749611,
-0.03406403213739395,
0.008526491932570934,
0.01613607443869114,
-0.017591798678040504,
-0.0151975704357028,
0.015056450851261616,
0.029168713837862015,
-0.08177469670772552,
0.004686867352575064,
0.016635507345199585,
0.03431214392185211,
-0.015174242667853832,
0.2274160087108612,
-0.05138794705271721,
0.06060216575860977,
0.005620039068162441,
-0.02970591001212597,
0.022442065179347992,
-0.04768338054418564,
-0.0055174510926008224,
-0.07239745557308197,
-0.013466558419167995,
0.00754897017031908,
-0.00010903523798333481,
-0.01989196240901947,
0.016819894313812256,
-0.09106310456991196,
0.023683274164795876,
0.01714594103395939,
-0.042287733405828476,
0.0336771123111248,
-0.039749350398778915,
0.035142578184604645,
0.008285770192742348,
0.02372225560247898,
0.0301812794059515,
-0.01919412426650524,
0.03222393989562988,
0.00417819619178772,
0.05655509978532791,
0.09473659098148346,
-0.0019885210786014795,
0.04083704575896263,
0.020756138488650322,
-0.0021438084077090025,
-0.08007578551769257,
0.015304602682590485,
0.02116255834698677,
-0.007130719255656004,
-0.002468828111886978,
0.007312638685107231,
0.0566876158118248,
0.009450088255107403,
-0.039516981691122055,
-0.08352499455213547,
-0.021702362224459648,
-0.08373580873012543,
-0.02099885419011116,
0.12246790528297424,
-0.00855528935790062,
0.08359984308481216,
-0.060174647718667984,
-0.0182449072599411,
-0.039633553475141525,
0.01690032333135605,
-0.03201912343502045,
-0.04714967682957649,
0.013646305538713932,
0.005922590382397175,
0.0651666447520256,
0.04102787747979164,
-0.0031396530102938414,
-0.020872989669442177,
-0.06304362416267395,
-0.006991159170866013,
-0.024554571136832237,
0.09673070162534714,
-0.005569151137024164,
-0.10919418931007385,
0.010066711343824863,
0.0383029542863369,
0.0034128171391785145,
-0.05376642569899559,
0.001169520546682179,
0.023923397064208984,
-0.06257908046245575,
0.017437690868973732,
0.12856845557689667,
0.02790965512394905,
-0.025763051584362984,
-0.026166576892137527,
0.027721771970391273,
-0.01741228997707367,
0.00379810924641788,
-0.016789428889751434,
-0.01830766163766384,
0.019984737038612366,
-0.0003191713767591864,
-0.057277269661426544,
-0.01003952044993639,
-0.040022559463977814,
0.009479139000177383,
0.044920943677425385,
0.0004732479283120483,
-0.0011679374147206545,
0.0197792686522007,
0.0024511574301868677,
-0.033850133419036865,
-0.05614202469587326,
-0.010430515743792057,
-0.019926272332668304,
-0.004412917420268059,
-0.047246161848306656,
0.06588683277368546,
0.04066360369324684,
-0.008812437765300274,
0.04321976378560066,
0.0030421351548284292,
0.024648062884807587,
-0.04193578660488129,
-0.0193487536162138,
0.05828550457954407,
-0.021697605028748512,
-0.03382176533341408,
0.008206936530768871,
0.04801226034760475,
0.00561031699180603,
-0.03407669812440872,
0.0138397840783,
0.02354400046169758,
0.022213231772184372,
0.0579058863222599,
0.037317223846912384,
0.007619322743266821,
-0.05321961268782616,
-0.04550844430923462,
-0.27324178814888,
0.040997035801410675,
-0.022556576877832413,
0.021010013297200203,
0.008010859601199627,
-0.025298116728663445,
0.0043077971786260605,
-0.00019195729692000896,
-0.008566850796341896,
0.0634927898645401,
0.09227167814970016,
0.01073190476745367,
0.013405303470790386,
0.020538322627544403,
-0.03043242357671261,
0.06818787753582001,
0.012836551293730736,
0.013879671692848206,
-0.042514368891716,
0.014498092234134674,
-0.025794247165322304,
-0.015071161091327667,
-0.03456608206033707,
-0.08612179011106491,
0.033725615590810776,
0.02554304525256157,
0.1882147192955017,
0.030286753550171852,
-0.0019269436597824097,
-0.04606027528643608,
0.07749832421541214,
-0.0179720651358366,
-0.04586152732372284,
-0.1067039743065834,
0.01601535454392433,
0.024457987397909164,
0.030554769560694695,
0.06592096388339996,
-0.009820706211030483,
-0.029533371329307556,
-0.042926009744405746,
0.04697105661034584,
0.03527272492647171,
-0.03242545574903488,
-0.026921629905700684,
-0.012785341590642929,
-0.03628762811422348,
0.01985808275640011,
-0.04297418147325516,
0.009136080741882324,
0.00720237148925662,
0.0223053190857172,
0.05667952075600624,
0.007416009437292814,
-0.03429712727665901,
-0.054688140749931335,
-0.07121358811855316,
0.03656848147511482,
-0.02206679992377758,
0.05586827173829079,
0.00014880731760058552,
-0.018579918891191483,
0.028790706768631935,
-0.028028568252921104,
0.05695360526442528,
-0.014835928566753864,
-0.0020188509952276945,
-0.03707471489906311,
0.012171969749033451,
-0.04393372684717178,
0.00778968445956707,
0.0819990411400795,
-0.03465643152594566,
0.03563159704208374,
0.04139167070388794,
0.0419854037463665,
0.009159596636891365,
-0.005564413499087095,
-0.05223815143108368,
-0.013812038116157055,
0.046115659177303314,
-0.018461821600794792,
0.03523288667201996,
0.11685431003570557,
0.0545022152364254,
0.011472928337752819,
0.04380296543240547,
-0.013592946343123913,
0.02174549363553524,
-0.03804554045200348,
-0.028431318700313568,
-0.026223307475447655,
-0.05703837797045708,
-0.0017016638303175569,
0.030594883486628532,
0.01646047830581665,
-0.3161085844039917,
0.055242132395505905,
-0.014302571304142475,
0.009887986816465855,
-0.002306154929101467,
0.001989947631955147,
0.004544047173112631,
0.03985323756933212,
-0.028317073360085487,
0.018076488748192787,
0.021855559200048447,
0.02068399079144001,
0.0308174267411232,
0.013125837780535221,
-0.01114202942699194,
0.06761611998081207,
0.03569495305418968,
-0.04737464711070061,
0.07184088975191116,
-0.009156676940619946,
0.046008411794900894,
0.038656335324048996,
0.215647354722023,
-0.005142033100128174,
0.05279228836297989,
0.058547571301460266,
0.005697001703083515,
0.026950065046548843,
0.05706271529197693,
0.02491503767669201,
0.012455970980226994,
-0.011704731732606888,
0.09150377660989761,
-0.033564552664756775,
0.04242948442697525,
0.04053979367017746,
-0.052903417497873306,
0.02003350667655468,
0.03038812056183815,
-0.03778872266411781,
-0.06265665590763092,
-0.0017641889862716198,
-0.02000107429921627,
-0.0031489368993788958,
0.11402627825737,
-0.041392143815755844,
-0.047704730182886124,
-0.11060207337141037,
0.005710687022656202,
0.00991995818912983,
-0.10725820809602737,
-0.03571580722928047,
-0.015913579612970352,
-0.0039154402911663055,
0.014182512648403645,
0.03264838829636574,
0.0009793585631996393,
0.02630319632589817,
0.005018799565732479,
-0.02734312415122986,
0.021122777834534645,
-0.11706556379795074,
0.0012032410595566034,
0.0005363746895454824,
0.01337939128279686
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | timeField: "timestamp",
metaField: "metadata",
granularity: "hours"
})
```
Here, we used the db.create_collection() method to create a time-series collection called “stock”. In the example above, “timeField”, “metaField”, and “granularity” are reserved fields (for more information on what these are, visit our documentation). The “timeField” option specifies the name of the field in your collection that will contain the date in each time-series document.
The “metaField” option specifies the name of the field in your collection that will contain the metadata in each time-series document.
Finally, the “granularity” option specifies how frequently data will be ingested in your time-series collection.
Now, let’s insert some stock-related information into our collection. We are interested in storing and analyzing the stock of a specific company called “XYZ” which trades its stock on “NASDAQ”. | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.007283143233507872,
-0.0360238179564476,
0.018067574128508568,
-0.0043113501742482185,
0.053505368530750275,
-0.00604756036773324,
0.04005758464336395,
-0.019382478669285774,
0.050368763506412506,
-0.00763551564887166,
-0.002951798029243946,
-0.03941888362169266,
0.01129188109189272,
0.026950741186738014,
-0.022877225652337074,
0.0026891049928963184,
-0.0378134623169899,
-0.023407207801938057,
-0.05040810629725456,
0.013422095216810703,
0.07452978938817978,
-0.027570614591240883,
-0.017444932833313942,
-0.03789621591567993,
0.03727869689464569,
0.04695089906454086,
-0.037702664732933044,
0.010032531805336475,
-0.08545280992984772,
-0.2183505743741989,
0.027909282594919205,
-0.03627965599298477,
0.022867748513817787,
-0.01583750732243061,
0.022627590224146843,
-0.026919394731521606,
-0.021808624267578125,
0.07060828059911728,
-0.030700545758008957,
0.05866406112909317,
0.025647222995758057,
0.02610182575881481,
-0.022760719060897827,
-0.06322814524173737,
-0.05574384704232216,
-0.05359970033168793,
-0.02211027964949608,
-0.00599076971411705,
0.005509059876203537,
0.021337874233722687,
-0.014253096655011177,
-0.00040027237264439464,
-0.022301845252513885,
0.007654803339391947,
0.019243905320763588,
0.05868062004446983,
0.09718473255634308,
0.021527180448174477,
0.04152299463748932,
-0.011642780154943466,
0.06855382025241852,
0.02770346775650978,
-0.17308948934078217,
0.07628501206636429,
0.029440410435199738,
0.0536205992102623,
-0.009905033744871616,
-0.010967808775603771,
0.020451661199331284,
0.014641103334724903,
-0.025864403694868088,
-0.01937594823539257,
-0.03565765917301178,
0.05854877084493637,
0.018009932711720467,
-0.009540244936943054,
-0.036904480308294296,
-0.07242763042449951,
-0.027804328128695488,
0.02801334671676159,
-0.01650845818221569,
-0.012977884151041508,
-0.03875809907913208,
0.009544405154883862,
-0.023252349346876144,
0.004042070358991623,
0.03986353799700737,
-0.07999537885189056,
0.03099522925913334,
0.028215400874614716,
-0.008837834931910038,
-0.034638289362192154,
-0.016690343618392944,
0.007816825993359089,
-0.08066709339618683,
-0.03595881536602974,
0.00019037122547160834,
0.05313907563686371,
-0.014024236239492893,
0.2133488655090332,
-0.03190525621175766,
0.04103633761405945,
0.025725390762090683,
-0.005378697067499161,
-0.0010834101121872663,
-0.05625678226351738,
-0.05113475024700165,
-0.03050152026116848,
-0.014210428111255169,
0.009902825579047203,
0.0033112382516264915,
0.003051480744034052,
0.021686801686882973,
-0.10949908196926117,
0.012135697528719902,
0.008651516400277615,
0.014687989838421345,
0.02378947101533413,
-0.012332986108958721,
-0.003598439507186413,
0.011150579899549484,
0.03625670075416565,
0.02267347276210785,
-0.02323334291577339,
-0.0026573603972792625,
-0.045843638479709625,
0.0601997934281826,
0.11222931742668152,
0.0161049235612154,
0.002714956644922495,
0.04718510061502457,
-0.010225814767181873,
-0.08696606755256653,
-0.026926713064312935,
0.026398539543151855,
0.004559212829917669,
-0.011114656925201416,
0.025834564119577408,
0.022051306441426277,
0.0060172006487846375,
-0.06290923058986664,
-0.0973581001162529,
-0.013753620907664299,
-0.06508075445890427,
-0.05394216999411583,
0.170070081949234,
-0.023415153846144676,
0.027956681326031685,
-0.04399581626057625,
0.01717665046453476,
-0.08365711569786072,
0.030984003096818924,
-0.04755864664912224,
-0.04563383385539055,
0.02430678717792034,
0.018355417996644974,
0.05943979322910309,
0.03251200169324875,
-0.03145812079310417,
-0.031168285757303238,
-0.07367797940969467,
-0.054151684045791626,
-0.019292358309030533,
0.14798963069915771,
0.0044624158181250095,
-0.1030382290482521,
-0.06566699594259262,
0.037237219512462616,
0.0039804051630198956,
-0.035564277321100235,
0.03399433195590973,
0.01849442906677723,
-0.03423108160495758,
0.031055964529514313,
0.09643802791833878,
0.024663925170898438,
-0.017253557220101357,
-0.010001207701861858,
0.03826048597693443,
-0.001973554026335478,
0.05977892875671387,
-0.03639083355665207,
-0.024695806205272675,
0.05546311289072037,
0.004092541988939047,
-0.042127158492803574,
-0.013898174278438091,
-0.049490537494421005,
0.01831238716840744,
0.04815661534667015,
-0.011607619933784008,
0.021454578265547752,
-0.006157581694424152,
0.016017070040106773,
-0.03758188337087631,
-0.022955846041440964,
-0.006115421652793884,
0.010996033437550068,
0.023298462852835655,
-0.037751227617263794,
0.02581259049475193,
0.029212674126029015,
-0.03233018517494202,
0.05602508410811424,
0.03606950491666794,
-0.0034356724936515093,
-0.03280026838183403,
-0.0214749313890934,
0.030991701409220695,
-0.0014084629947319627,
-0.05775707960128784,
0.02388213761150837,
0.026303621008992195,
0.024246588349342346,
-0.015673071146011353,
0.04356226697564125,
0.013238090090453625,
0.009064086712896824,
0.0018088462529703975,
0.061450663954019547,
0.011278840713202953,
-0.05709763243794441,
-0.028783215209841728,
-0.2447766810655594,
0.017927417531609535,
-0.03139004111289978,
0.000844389374833554,
0.013534216210246086,
-0.05615011602640152,
0.0017365111270919442,
-0.04925069212913513,
0.017369097098708153,
0.05874962732195854,
0.07599518448114395,
-0.02317187376320362,
-0.0036905966699123383,
-0.03338555619120598,
-0.029380662366747856,
0.06689874827861786,
-0.011405901983380318,
0.012934578582644463,
-0.05476608872413635,
0.014886635355651379,
-0.005226439796388149,
0.012252125889062881,
-0.027081338688731194,
-0.053994808346033096,
0.05912353843450546,
0.029294690117239952,
0.19804340600967407,
0.035748668015003204,
-0.01291984785348177,
-0.036133334040641785,
0.07659687846899033,
0.013985707424581051,
-0.012549512088298798,
-0.07764416933059692,
0.008621005341410637,
-0.003771614283323288,
0.002578043146058917,
-0.007286562584340572,
-0.0685538649559021,
-0.011992157436907291,
-0.0708409920334816,
0.01917976140975952,
0.029337024316191673,
-0.08374367654323578,
-0.027551015838980675,
-0.006865954492241144,
-0.027291418984532356,
0.002887745387852192,
-0.04575255140662193,
0.04239320009946823,
0.03477945551276207,
-0.03685940429568291,
0.035047173500061035,
0.033991288393735886,
0.034713830798864365,
-0.04824592173099518,
-0.05740495026111603,
0.03160984441637993,
-0.0036691944114863873,
0.08011604100465775,
0.0002011457399930805,
0.007633042987436056,
0.03095225617289543,
-0.03825121745467186,
0.027034049853682518,
-0.029991788789629936,
-0.039540477097034454,
-0.05810520425438881,
-0.02969704382121563,
-0.08109384775161743,
-0.0016239158576354384,
0.09948460012674332,
-0.037018220871686935,
0.023724472150206566,
0.061670634895563126,
-0.005582095589488745,
0.002671654336154461,
0.009362464770674706,
-0.014677712693810463,
-0.0071353185921907425,
0.029423018917441368,
0.012362048029899597,
0.07749661803245544,
0.08227790892124176,
0.05952074006199837,
0.003261658363044262,
0.06285866349935532,
-0.039809051901102066,
0.020195001736283302,
-0.012821225449442863,
-0.028615806251764297,
0.0006516457651741803,
-0.028497759252786636,
-0.034888021647930145,
0.04238440841436386,
-0.012737593613564968,
-0.30006304383277893,
0.0927196741104126,
0.01859874837100506,
0.01830923557281494,
-0.009744808077812195,
0.013841022737324238,
0.005749181844294071,
0.07115297019481659,
-0.03335244953632355,
-0.0019471138948574662,
0.0018346864962950349,
0.03746625781059265,
0.038557782769203186,
-0.006125518586486578,
0.01048562116920948,
0.044730376452207565,
0.06509706377983093,
-0.04099161550402641,
0.053786881268024445,
-0.03369084745645523,
0.05745943263173103,
0.011945109814405441,
0.23668040335178375,
0.020842961966991425,
0.0258845966309309,
0.019077692180871964,
0.0005187183269299567,
0.016838058829307556,
0.02753291092813015,
0.030447043478488922,
0.04858260974287987,
-0.006656238809227943,
0.13063690066337585,
-0.005501298233866692,
0.002045778091996908,
0.03018789552152157,
-0.0454166978597641,
0.061525385826826096,
0.014151319861412048,
-0.022995611652731895,
-0.06113939732313156,
0.008148140273988247,
-0.0713864341378212,
-0.0013872060226276517,
0.07948408275842667,
-0.0491076335310936,
-0.017819251865148544,
-0.06904831528663635,
-0.003723815316334367,
0.01586063578724861,
-0.08583280444145203,
0.0151533093303442,
-0.0214115921407938,
0.0011411341838538647,
0.012159457430243492,
0.02005678042769432,
-0.0019460543990135193,
-0.00003569148248061538,
-0.00036055539385415614,
0.009639516472816467,
-0.025508012622594833,
-0.06439118087291718,
0.00028089593979530036,
-0.009845019318163395,
0.028317566961050034
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | We are storing some price metrics of this stock at an hourly interval and for each time interval, we are storing the following information:
* **open:** the opening price at which the stock traded when the market opened
* **close:** the final price at which the stock traded when the trading period ended
* **high:** the highest price at which the stock traded during the trading period
* **low:** the lowest price at which the stock traded during the trading period
* **volume:** the total number of shares traded during the trading period
Now that we have become an expert on stock trading and terminology (sarcasm), we will now insert some documents into our time-series collection. Here we have four sample documents. The data points are captured at an interval of one hour.
```
# Create some sample data | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.0289372019469738,
-0.005756106227636337,
0.028133099898695946,
-0.006204315926879644,
0.047459352761507034,
0.020132794976234436,
0.03826991841197014,
0.02221592143177986,
0.05162712186574936,
-0.011748210527002811,
-0.00811641663312912,
-0.05436116084456444,
0.014850490726530552,
0.05203000456094742,
-0.009462469257414341,
0.007415982894599438,
0.005199449602514505,
-0.0366935171186924,
-0.06303047388792038,
0.05899021029472351,
0.054862480610609055,
-0.054261524230241776,
-0.0017459142254665494,
-0.02634465880692005,
0.0630006492137909,
0.013088595122098923,
-0.0038244565948843956,
-0.03738608956336975,
-0.06625476479530334,
-0.19909526407718658,
0.0056953770108520985,
-0.04603331536054611,
0.05162138491868973,
-0.03110024891793728,
0.002045602072030306,
0.011442133225500584,
-0.04645654186606407,
0.05394236370921135,
-0.01869443990290165,
0.04221465438604355,
0.025533130392432213,
0.003538462333381176,
-0.034486494958400726,
-0.032024648040533066,
-0.048072099685668945,
-0.06579386442899704,
-0.017487410455942154,
-0.005471708718687296,
-0.006426503881812096,
0.038484252989292145,
-0.03734729811549187,
-0.020953865721821785,
0.008424179628491402,
-0.000027753985705203377,
0.0021227679681032896,
0.05008479580283165,
0.0657762736082077,
-0.0020003668032586575,
0.04536712169647217,
0.02806924469769001,
0.08410104364156723,
0.026748141273856163,
-0.18716536462306976,
0.08619818836450577,
-0.025453925132751465,
0.011501778848469257,
-0.03926517441868782,
-0.0013269638875499368,
-0.005055360496044159,
0.028637414798140526,
-0.054839201271533966,
-0.0013407720252871513,
0.031240930780768394,
0.005335415247827768,
0.020682862028479576,
-0.0316997654736042,
-0.0006326371221803129,
-0.037090133875608444,
0.010459402576088905,
0.01726706512272358,
-0.009257440455257893,
-0.034883491694927216,
-0.016922112554311752,
-0.008445960469543934,
-0.03178522735834122,
-0.0304410420358181,
0.0775177851319313,
-0.045897677540779114,
0.030489522963762283,
0.029061265289783478,
-0.016076309606432915,
-0.0037248902954161167,
-0.04291248321533203,
0.024001168087124825,
-0.08721879869699478,
-0.03655701503157616,
0.057597558945417404,
0.04428733512759209,
-0.033198073506355286,
0.19352802634239197,
-0.033184029161930084,
0.011119341477751732,
0.01733406074345112,
-0.058316800743341446,
0.0018553633708506823,
-0.06034141406416893,
-0.054113298654556274,
-0.035852596163749695,
-0.008889851160347462,
-0.001610171515494585,
-0.04016037657856941,
-0.0212926734238863,
0.033329930156469345,
-0.04258030652999878,
0.026792846620082855,
0.005314517766237259,
0.025796426460146904,
-0.021450776606798172,
0.009269515983760357,
0.005439376924186945,
-0.004146566614508629,
0.03428083658218384,
0.024118918925523758,
-0.045307569205760956,
0.04407414048910141,
-0.05686434730887413,
0.09060176461935043,
0.10056649148464203,
0.018717562779784203,
0.011660801246762276,
0.055951494723558426,
0.005959346890449524,
-0.08734288811683655,
0.005934323184192181,
0.018493490293622017,
0.0210745669901371,
0.00046969199320301414,
0.010377506725490093,
0.03619314357638359,
-0.004819844383746386,
-0.07722257822751999,
-0.08854138851165771,
-0.0064294589683413506,
-0.09831834584474564,
-0.041684892028570175,
0.15359047055244446,
0.003938028588891029,
0.010975105687975883,
-0.046224843710660934,
-0.0296371728181839,
-0.05001145973801613,
0.001192852039821446,
-0.005051415413618088,
-0.05639483407139778,
-0.013020292855799198,
0.023063715547323227,
0.06415726989507675,
0.06654900312423706,
-0.022335851565003395,
-0.004837727639824152,
-0.07740169763565063,
-0.030278868973255157,
-0.01576850190758705,
0.1425001621246338,
0.02090793289244175,
-0.10819872468709946,
-0.031873125582933426,
0.014378555119037628,
0.011863922700285912,
-0.018843868747353554,
0.07020170986652374,
0.03107054904103279,
-0.0344950295984745,
0.03774857893586159,
0.11854395270347595,
0.0145622743293643,
-0.006972558330744505,
-0.0028742572758346796,
0.00976746715605259,
-0.004792964085936546,
0.06467518210411072,
-0.06510375440120697,
-0.05875297635793686,
0.026636727154254913,
0.008924871683120728,
-0.041094888001680374,
-0.04938415810465813,
-0.058322545140981674,
0.024793840944767,
0.08738014101982117,
-0.04444189369678497,
-0.007212452124804258,
-0.025175221264362335,
0.038442689925432205,
-0.08082934468984604,
-0.03651461377739906,
-0.029377665370702744,
-0.002617052523419261,
-0.010391540825366974,
-0.044231195002794266,
0.05190100893378258,
-0.014326277188956738,
-0.017257537692785263,
0.056432779878377914,
0.04386990889906883,
0.03122352994978428,
-0.006533932406455278,
0.035377081483602524,
0.08966958522796631,
-0.0005396893830038607,
-0.025222284719347954,
0.028640901669859886,
0.00903125386685133,
-0.015126383863389492,
-0.024713294580578804,
0.007160298991948366,
0.0014346783282235265,
0.06812603771686554,
0.0218496210873127,
0.05491224303841591,
0.014179360121488571,
-0.037602923810482025,
-0.02289406768977642,
-0.24152949452400208,
0.0025973913725465536,
0.011316929012537003,
0.00309058022685349,
0.08280200511217117,
-0.03209239989519119,
0.025256510823965073,
-0.009364930912852287,
0.050225306302309036,
0.06172355264425278,
0.0769856721162796,
-0.039946310222148895,
-0.01726844534277916,
-0.043164774775505066,
0.00238063745200634,
0.03132179006934166,
0.006408735178411007,
0.022125694900751114,
-0.05922555550932884,
0.028223736211657524,
-0.03735795244574547,
0.043649833649396896,
-0.043262071907520294,
-0.053784556686878204,
0.09160765260457993,
0.01765415258705616,
0.19417481124401093,
0.016600394621491432,
0.03048553504049778,
-0.0245733093470335,
0.05316028743982315,
-0.03140057250857353,
-0.024357153102755547,
-0.03665466979146004,
0.04309774190187454,
0.026138776913285255,
-0.000518159766215831,
0.01539460476487875,
-0.042780883610248566,
-0.029540853574872017,
-0.06754064559936523,
0.03054439276456833,
0.026421990245580673,
-0.032005246728658676,
-0.021124310791492462,
-0.022134650498628616,
-0.054894402623176575,
0.011156563647091389,
-0.03516172245144844,
0.03545496612787247,
0.012193994596600533,
-0.04747738316655159,
0.07316261529922485,
0.032250531017780304,
0.014236542396247387,
-0.09600041061639786,
-0.05980842560529709,
0.02772015891969204,
-0.01485220342874527,
0.033500563353300095,
-0.008011938072741032,
-0.03570781275629997,
0.05543287470936775,
-0.02325466088950634,
0.05904689058661461,
-0.011384721845388412,
0.00686635822057724,
-0.016855111345648766,
-0.01029085274785757,
-0.04840744659304619,
-0.04032966122031212,
0.11308784782886505,
-0.02661750465631485,
0.035826168954372406,
0.04866969585418701,
0.012983505614101887,
-0.006809035316109657,
-0.01160047110170126,
-0.049270376563072205,
0.006547277793288231,
0.066218800842762,
-0.03393424674868584,
0.03951888158917427,
0.0515170581638813,
0.05300362780690193,
0.030278466641902924,
0.07025767117738724,
-0.03427630290389061,
0.04780283942818642,
-0.017276987433433533,
0.008785467594861984,
0.02078084461390972,
-0.05119312182068825,
-0.022519389167428017,
0.03137246519327164,
-0.0005895450012758374,
-0.2900208532810211,
0.03755565732717514,
-0.011268425732851028,
0.020030420273542404,
0.0018923331517726183,
-0.008505089208483696,
-0.009309704415500164,
0.02419099770486355,
-0.026223663240671158,
-0.0042646946385502815,
0.0031153813470155,
0.04304751381278038,
0.04307487607002258,
-0.053824178874492645,
-0.013519477099180222,
0.012721914798021317,
0.0544733852148056,
-0.0437730997800827,
0.06728090345859528,
-0.02551231160759926,
-0.006223833654075861,
0.035588815808296204,
0.22199846804141998,
-0.008068566210567951,
-0.0013119004433974624,
0.03635761886835098,
-0.01980733871459961,
0.01290980912744999,
0.06021253392100334,
0.010942786931991577,
0.056901901960372925,
-0.011476507410407066,
0.08307361602783203,
-0.004689532332122326,
0.013580365106463432,
0.06471648812294006,
-0.05454517528414726,
0.04140545055270195,
0.012470055371522903,
0.009636796079576015,
-0.02989586815237999,
-0.0325237512588501,
-0.04722587391734123,
-0.030313124880194664,
0.09404563903808594,
-0.04127880185842514,
-0.03095420077443123,
-0.12108567357063293,
0.028428928926587105,
0.01880452409386635,
-0.09450265765190125,
-0.0014188060304149985,
-0.03246372193098068,
-0.0027591523248702288,
0.013101729564368725,
0.030642323195934296,
-0.02698049508035183,
-0.028709188103675842,
0.0026545021682977676,
-0.04823032394051552,
-0.02585460990667343,
-0.05785210058093071,
-0.01446482539176941,
-0.00864641647785902,
0.02969297207891941
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | ```
# Create some sample data
data =
{
"metadata": {
"stockSymbol": "ABC",
"exchange": "NASDAQ"
},
"timestamp": datetime(2023, 9, 12, 15, 19, 48),
"open": 54.80,
"high": 59.20,
"low": 52.60,
"close": 53.50,
"volume": 18000
},
{
"metadata": {
"stockSymbol": "ABC",
"exchange": "NASDAQ"
},
"timestamp": datetime(2023, 9, 12, 16, 19, 48),
"open": 51.00,
"high": 54.30,
"low": 50.50,
"close": 51.80,
"volume": 12000
}, | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.0354992114007473,
-0.036808136850595474,
0.031020941212773323,
-0.040119070559740067,
0.05749724432826042,
-0.008998892270028591,
0.0002972521760966629,
0.0015459489077329636,
0.0038688776548951864,
0.0030126727651804686,
-0.008437260054051876,
-0.07395680993795395,
0.004956609103828669,
0.02686334028840065,
0.007797849830240011,
-0.014418354257941246,
-0.05359054356813431,
0.001291609019972384,
-0.07207943499088287,
0.042147595435380936,
0.03043828345835209,
-0.02142716385424137,
-0.029476642608642578,
-0.07022080570459366,
0.04581308737397194,
0.054816704243421555,
0.001260898425243795,
-0.0035188463516533375,
-0.03987541422247887,
-0.2168162763118744,
-0.016730714589357376,
-0.05503036081790924,
0.057442229241132736,
-0.03397494927048683,
-0.0038619597908109426,
-0.011178521439433098,
-0.01710677519440651,
0.04428581893444061,
-0.04881608113646507,
0.0789254754781723,
0.03612848371267319,
-0.002925548003986478,
-0.022263167425990105,
-0.03446332737803459,
-0.056078389286994934,
-0.08188879489898682,
-0.04700906202197075,
-0.009057224728167057,
0.01247157622128725,
0.052192844450473785,
-0.0419916994869709,
-0.04882382974028587,
-0.017584627494215965,
-0.015345440246164799,
0.08034631609916687,
0.04712840914726257,
0.01678423024713993,
0.02956267073750496,
0.028441762551665306,
0.01793232560157776,
0.042729973793029785,
0.006655767094343901,
-0.17510057985782623,
0.0720849558711052,
0.06757517158985138,
0.04249867424368858,
0.008385810069739819,
-0.023854203522205353,
-0.009983867406845093,
-0.0005499701364897192,
-0.05467627942562103,
0.02080032415688038,
0.02747821994125843,
0.05353989452123642,
0.002926661167293787,
-0.03522071987390518,
-0.036710530519485474,
-0.0733952596783638,
0.02047937922179699,
0.04242607206106186,
-0.05073521286249161,
-0.048256609588861465,
0.0005315190646797419,
0.013108348473906517,
-0.030819222331047058,
-0.05593829229474068,
0.03875027969479561,
-0.06064711511135101,
0.05308675765991211,
0.020039435476064682,
-0.04790922626852989,
-0.018098045140504837,
-0.014872471801936626,
0.05660717934370041,
-0.0689675435423851,
0.002320732455700636,
0.05092860758304596,
0.03955245763063431,
-0.01822875812649727,
0.20215338468551636,
-0.0746283084154129,
0.04391578957438469,
0.010912882164120674,
-0.032147619873285294,
0.018314355984330177,
-0.0600864440202713,
-0.0345122255384922,
-0.025048507377505302,
0.01972401700913906,
0.002756995614618063,
-0.0025588292628526688,
0.011982479132711887,
0.017211470752954483,
-0.09082455933094025,
0.0008178562275134027,
0.0013462945353239775,
0.004225138109177351,
0.0009160398622043431,
-0.015213480219244957,
0.01266211923211813,
0.03675905242562294,
0.010295393876731396,
0.00881072599440813,
-0.006603509187698364,
0.03517811745405197,
0.01755722239613533,
0.04359576106071472,
0.1359252780675888,
0.01991683803498745,
0.04497377574443817,
0.05807684734463692,
-0.010955723002552986,
-0.047441817820072174,
-0.009905626997351646,
-0.017178181558847427,
0.00789849553257227,
-0.013040078803896904,
0.01507947314530611,
0.027012312784790993,
0.010690946131944656,
-0.05645666643977165,
-0.09484095126390457,
-0.061991337686777115,
-0.07658103853464127,
0.00988941453397274,
0.13717827200889587,
-0.021794088184833527,
0.06293515115976334,
-0.031060637906193733,
-0.03181525692343712,
-0.049735866487026215,
0.04294509440660477,
-0.038389306515455246,
-0.0338272750377655,
-0.0004502868396230042,
0.013472705148160458,
0.07967250049114227,
0.042895350605249405,
0.0014232988469302654,
-0.026768090203404427,
-0.050299812108278275,
-0.02266795188188553,
-0.037005577236413956,
0.10802402347326279,
0.0037823605816811323,
-0.09180346876382828,
-0.03775622323155403,
0.027962524443864822,
0.028562337160110474,
-0.03446229547262192,
0.03074132278561592,
-0.00224897637963295,
-0.06854021549224854,
0.004547208081930876,
0.1285574585199356,
0.008769470266997814,
0.001072841347195208,
-0.011761554516851902,
0.020511001348495483,
0.0045225974172353745,
0.019541215151548386,
-0.04729772359132767,
-0.040896859019994736,
0.03971979394555092,
0.005445412825793028,
-0.030545491725206375,
-0.009378526359796524,
0.0006633555167354643,
0.002061631763353944,
0.019157830625772476,
0.015988288447260857,
-0.018217751756310463,
-0.036060068756341934,
-0.003747686045244336,
-0.06532179564237595,
-0.04110647365450859,
0.00795148778706789,
-0.007613396272063255,
0.014432137832045555,
-0.022150063887238503,
0.08379211276769638,
-0.0077779884450137615,
-0.02495991252362728,
0.03311588242650032,
0.013012755662202835,
0.018117066472768784,
0.011705970391631126,
-0.01677120476961136,
0.05473151430487633,
-0.01758630946278572,
-0.025648124516010284,
0.012596994638442993,
0.040049150586128235,
-0.0023917716462165117,
-0.024005461484193802,
-0.01756466180086136,
0.010007030330598354,
0.009473889134824276,
0.03913529962301254,
0.06218499317765236,
-0.004427274223417044,
-0.10956788063049316,
-0.08670511096715927,
-0.2345418930053711,
0.00013007494271732867,
0.05391471087932587,
0.0024702067021280527,
0.02914103865623474,
-0.007036229595541954,
0.006715711206197739,
0.01054682582616806,
0.00551915168762207,
0.09323735535144806,
0.04457719251513481,
0.014618435874581337,
-0.0193245280534029,
0.01760261133313179,
-0.04273281246423721,
0.020237620919942856,
0.010880731977522373,
0.0031159797217696905,
-0.010372894816100597,
0.029311059042811394,
-0.04362701624631882,
0.01250185165554285,
-0.01720690168440342,
-0.06741607934236526,
0.06814166158437729,
-0.0016046747332438827,
0.2227221578359604,
0.02971755340695381,
-0.005310372449457645,
-0.051272738724946976,
0.09725641459226608,
-0.01749059557914734,
0.0012849688064306974,
-0.05645385757088661,
0.04174422845244408,
0.016572264954447746,
0.02843841351568699,
0.03148395195603371,
-0.004950689151883125,
-0.040454644709825516,
-0.0031634534243494272,
0.016169434413313866,
0.038564685732126236,
-0.0410187765955925,
-0.012931494042277336,
-0.06370734423398972,
-0.022577667608857155,
0.01042062509804964,
-0.024977318942546844,
0.03800686076283455,
0.06061201170086861,
-0.006697816774249077,
0.08000292629003525,
0.00011359903146512806,
-0.019576381891965866,
-0.03712350130081177,
-0.06509342789649963,
0.018655918538570404,
-0.03119797632098198,
0.03755739703774452,
0.01679833047091961,
-0.05700637400150299,
0.013848291710019112,
-0.009986309334635735,
0.03192755952477455,
-0.028844941407442093,
-0.011567655950784683,
-0.04576960951089859,
-0.04157274216413498,
-0.05724125728011131,
-0.03557903692126274,
0.09092617779970169,
-0.006161702796816826,
0.043601758778095245,
0.044773951172828674,
0.0397384837269783,
-0.03665986657142639,
0.0012936375569552183,
-0.02326536364853382,
0.026597369462251663,
0.03761368244886398,
-0.004397409036755562,
0.04089434817433357,
0.055330920964479446,
0.06933075189590454,
0.013235433958470821,
0.05435521900653839,
0.024550143629312515,
0.03130355849862099,
-0.05377664789557457,
-0.009331884793937206,
-0.05026329308748245,
-0.04871697723865509,
-0.015001832507550716,
0.017320595681667328,
0.005912757944315672,
-0.2753835618495941,
0.03246554732322693,
0.011849150992929935,
0.014301139861345291,
0.015355859883129597,
0.01645519956946373,
0.008629838936030865,
0.017035268247127533,
-0.024461356922984123,
0.020370332524180412,
-0.02729080431163311,
0.06621327251195908,
0.04885566234588623,
-0.017301445826888084,
0.0027308876160532236,
0.053754907101392746,
0.04951053857803345,
-0.0545058473944664,
0.038816187530756,
-0.04692806676030159,
0.043233856558799744,
0.03810654953122139,
0.2616024911403656,
-0.02817699685692787,
0.02615709789097309,
0.03986218199133873,
-0.018217407166957855,
0.01955091953277588,
0.08050522953271866,
-0.004186572507023811,
0.04790644720196724,
-0.01890384778380394,
0.10840391367673874,
0.010519132018089294,
0.012295165099203587,
0.0480937696993351,
-0.06495572626590729,
0.03799492493271828,
0.01637270487844944,
-0.03041667677462101,
-0.0334494486451149,
0.026119625195860863,
0.00785815343260765,
0.005343463271856308,
0.09075875580310822,
-0.07896993309259415,
-0.017099061980843544,
-0.11693836003541946,
0.039086632430553436,
0.004954067058861256,
-0.08157600462436676,
0.0007492722943425179,
-0.028668073937296867,
-0.012713398784399033,
0.01547633484005928,
0.020964885130524635,
-0.015343043953180313,
-0.011824176646769047,
0.0009776372462511063,
-0.01497060339897871,
-0.009536915458738804,
-0.08326151221990585,
-0.042410582304000854,
0.030266553163528442,
-0.0009690552251413465
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | {
"metadata": {
"stockSymbol": "ABC",
"exchange": "NASDAQ"
},
"timestamp":datetime(2023, 9, 12, 17, 19, 48),
"open": 52.00,
"high": 53.10,
"low": 50.50,
"close": 52.90,
"volume": 10000
},
{
"metadata": {
"stockSymbol": "ABC",
"exchange": "NASDAQ"
},
"timestamp":datetime(2023, 9, 12, 18, 19, 48),
"open": 52.80,
"high": 60.20,
"low": 52.60,
"close": 55.50,
"volume": 30000
}
]
# insert the data into our collection | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.014417673461139202,
-0.03532514348626137,
0.025073129683732986,
-0.04319912940263748,
0.0485931858420372,
0.010258624330163002,
0.006096469704061747,
-0.021421127021312714,
0.022261567413806915,
0.014352455735206604,
0.015364035032689571,
-0.0773848295211792,
0.006391161121428013,
0.02840600349009037,
0.024670256301760674,
0.00819668360054493,
-0.0498344786465168,
-0.018160011619329453,
-0.08979684114456177,
0.0576985664665699,
0.06439291685819626,
-0.02759021334350109,
-0.02277369238436222,
-0.054772354662418365,
0.05146981403231621,
0.05916699022054672,
-0.0221218541264534,
-0.011367020197212696,
-0.06118205934762955,
-0.21528476476669312,
-0.008165287785232067,
-0.05299894139170647,
0.0413888581097126,
-0.010514778085052967,
-0.005681966431438923,
0.010536160320043564,
-0.016928579658269882,
0.05448386073112488,
-0.03196246922016144,
0.04786413162946701,
0.038386911153793335,
0.007381837349385023,
-0.037141814827919006,
-0.03268732503056526,
-0.05062270164489746,
-0.07474622875452042,
-0.04192143678665161,
-0.01953578181564808,
0.01999509707093239,
0.016258371993899345,
-0.020447487011551857,
-0.04644748196005821,
-0.01399601623415947,
0.03087628073990345,
0.02855600230395794,
0.07332202792167664,
0.05715583637356758,
0.0013288261834532022,
0.019208192825317383,
0.00959605723619461,
0.05488157272338867,
0.017232699319720268,
-0.19489885866641998,
0.08339210599660873,
0.056652527302503586,
0.0499316081404686,
-0.011961665004491806,
-0.007642134092748165,
0.004853585734963417,
-0.005683119408786297,
-0.04698261618614197,
-0.010476029478013515,
0.03932837024331093,
0.02097749151289463,
0.01198791153728962,
-0.031034087762236595,
-0.02738688513636589,
-0.06041456386446953,
0.004573380574584007,
0.04033348336815834,
-0.04354080557823181,
-0.0602300763130188,
0.008414573967456818,
-0.00022254660143516958,
-0.012886140495538712,
-0.044891633093357086,
0.05724203959107399,
-0.07079461961984634,
0.015906458720564842,
0.02215510420501232,
-0.007246722001582384,
0.0015637363540008664,
-0.003769239643588662,
0.01843813806772232,
-0.0850362628698349,
-0.018856113776564598,
0.04395107179880142,
0.02019204944372177,
-0.05858464911580086,
0.2057334929704666,
-0.04143788665533066,
0.02361956238746643,
0.0007761768065392971,
-0.027101818472146988,
-0.0036895042285323143,
-0.05566529557108879,
-0.013884702697396278,
-0.021360786631703377,
0.025984743610024452,
0.019513195380568504,
0.0038611472118645906,
0.011106560938060284,
0.030379395931959152,
-0.058324433863162994,
0.027408240363001823,
0.004375699907541275,
0.02304711751639843,
0.0375901460647583,
-0.02816595509648323,
0.008765127509832382,
0.034525707364082336,
0.020797595381736755,
-0.006464893463999033,
-0.01515874546021223,
0.0016910393023863435,
-0.04755821451544762,
0.07156338542699814,
0.09809237718582153,
0.05154084414243698,
0.059884361922740936,
0.04923763871192932,
0.014320602640509605,
-0.07743805646896362,
-0.01492286752909422,
-0.0033694717567414045,
0.014250999316573143,
-0.005725261755287647,
0.00870961882174015,
0.040689874440431595,
0.0014256896683946252,
-0.04432899132370949,
-0.09088598191738129,
-0.07111602276563644,
-0.10489139705896378,
-0.011642837896943092,
0.15866000950336456,
-0.03324069827795029,
0.05853032320737839,
-0.05140472203493118,
-0.04639715328812599,
-0.049223076552152634,
0.05099720135331154,
-0.03374504670500755,
-0.0036581873428076506,
-0.002758426358923316,
-0.0057693962007761,
0.0615205243229866,
0.044448114931583405,
-0.009421003051102161,
-0.0014088315656408668,
-0.040584396570920944,
-0.036280229687690735,
-0.040296755731105804,
0.09790519624948502,
0.03210918605327606,
-0.08888401836156845,
-0.041861534118652344,
0.020290782675147057,
0.03706589341163635,
-0.043395500630140305,
0.01865941844880581,
0.045634374022483826,
-0.06234826147556305,
0.02959856204688549,
0.15079054236412048,
0.040329039096832275,
0.027165569365024567,
-0.02239270694553852,
0.00566428666934371,
-0.029320644214749336,
0.0065908171236515045,
-0.04299107566475868,
-0.03883494436740875,
0.04850416257977486,
0.02550629898905754,
-0.048113323748111725,
-0.010665437206625938,
-0.024537576362490654,
0.034978944808244705,
0.04657960310578346,
0.006520066875964403,
-0.017389889806509018,
-0.038125813007354736,
0.04894644021987915,
-0.05373649671673775,
-0.059506822377443314,
0.016641197726130486,
-0.00831659883260727,
0.017215296626091003,
-0.03453179821372032,
0.09452551603317261,
0.001432130578905344,
-0.0307987779378891,
0.03572632372379303,
0.04786643013358116,
0.015433276072144508,
-0.006780935451388359,
-0.02636958286166191,
0.03078082948923111,
-0.043387096375226974,
-0.038000598549842834,
0.020696941763162613,
0.04441319406032562,
0.00024788870359770954,
-0.00981355644762516,
0.004536430351436138,
0.03138791769742966,
0.034162942320108414,
0.07492998242378235,
0.06083186715841293,
-0.007589743472635746,
-0.08058611303567886,
-0.022748110815882683,
-0.2292277067899704,
0.021723249927163124,
0.01631969027221203,
0.00555937085300684,
-0.0014961996348574758,
-0.028382565826177597,
0.00830336194485426,
-0.02155563235282898,
-0.010145082138478756,
0.07620018720626831,
0.04047861695289612,
-0.0028956751339137554,
-0.018087921664118767,
0.009837158024311066,
-0.02519632689654827,
0.024916788563132286,
0.006442678160965443,
0.00695640966296196,
-0.028216075152158737,
0.037111036479473114,
-0.04106903821229935,
0.023172058165073395,
-0.05199567601084709,
-0.04430112987756729,
0.07815521955490112,
0.013381889089941978,
0.1972864270210266,
0.026187950745224953,
-0.04799332097172737,
-0.041076887398958206,
0.05195547640323639,
-0.004135266412049532,
-0.02685203030705452,
-0.04707813635468483,
0.02430851384997368,
0.007467841729521751,
0.04344585910439491,
0.01429166179150343,
-0.02543780766427517,
-0.041362058371305466,
-0.05338364467024803,
0.02932191826403141,
0.01790434494614601,
-0.06508303433656693,
0.008696561679244041,
-0.027778854593634605,
-0.03061799518764019,
0.012014636769890785,
-0.052893586456775665,
0.01536463387310505,
0.044868480414152145,
-0.00905932579189539,
0.06753823161125183,
0.018590301275253296,
-0.0073749530129134655,
-0.05809222534298897,
-0.06989393383264542,
0.049554336816072464,
-0.02639678120613098,
0.06156659498810768,
-0.015161496587097645,
-0.03480568900704384,
0.03839505463838577,
-0.03049171343445778,
0.03944374620914459,
-0.036119960248470306,
-0.003974078688770533,
-0.020380748435854912,
-0.020928140729665756,
-0.04824212193489075,
-0.02919379435479641,
0.04838862270116806,
-0.014128551818430424,
0.0768304392695427,
0.07633280754089355,
0.04899664595723152,
-0.03285985440015793,
0.015906203538179398,
-0.01053159311413765,
0.029355915263295174,
0.045233163982629776,
-0.026027703657746315,
0.06483477354049683,
0.07406578212976456,
0.07217755913734436,
0.0414532870054245,
0.06131332740187645,
0.0008616639534011483,
-0.0005382978706620634,
-0.025633830577135086,
-0.0049818772822618484,
-0.04286875203251839,
-0.05893383547663689,
-0.018963661044836044,
-0.012700303457677364,
0.005083386320620775,
-0.2805422246456146,
0.03700624406337738,
0.0027393181808292866,
-0.014807862229645252,
0.013637905940413475,
0.011076617054641247,
0.006697152275592089,
0.0019297554390504956,
-0.005747945047914982,
0.0215790756046772,
-0.0188264362514019,
0.057223040610551834,
0.024183064699172974,
-0.029765455052256584,
-0.006751004606485367,
0.03411365672945976,
0.031870972365140915,
-0.049574755132198334,
0.04267265647649765,
-0.048613958060741425,
0.02680063061416149,
0.045606452971696854,
0.27208173274993896,
0.009769232012331486,
-0.008187202736735344,
0.020496532320976257,
-0.004365830682218075,
0.0226401686668396,
0.0712447240948677,
-0.004552273079752922,
0.04448487609624863,
-0.006970233749598265,
0.09052026271820068,
0.029170837253332138,
0.01733005791902542,
0.001669848570600152,
-0.08663079142570496,
0.031027011573314667,
0.0366278737783432,
0.0021918772254139185,
-0.07532167434692383,
-0.010403551161289215,
-0.00941686611622572,
0.01575007103383541,
0.08676697313785553,
-0.08781091123819351,
-0.013943033292889595,
-0.08572254329919815,
0.030847948044538498,
0.015708671882748604,
-0.06238985434174538,
-0.034771233797073364,
-0.021718809381127357,
-0.006147859618067741,
0.00403647730126977,
0.016702571883797646,
-0.03218163549900055,
-0.0236933846026659,
-0.04482158273458481,
-0.013205744326114655,
-0.010341272689402103,
-0.0630510002374649,
-0.040543608367443085,
0.01386722456663847,
0.029976777732372284
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | # insert the data into our collection
collection.insert_many(data)
```
Now, let’s run a find query on our collection to retrieve data at a specific timestamp. Run this query in the Jupyter Notebook after the previous script.
```
collection.find_one({'timestamp': datetime(2023, 9, 12, 15, 19, 48)})
```
//OUTPUT
![Output of find_one() command
As you can see from the output, we were able to query our time-series collection and retrieve data points at a specific timestamp.
Similarly, you can run more powerful queries on your time-series collection by using the aggregation pipeline. For the scope of this tutorial, we won’t be covering that. But, if you want to learn more about it, here is where you can go: | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.025767987594008446,
-0.013252289965748787,
0.029701393097639084,
-0.05221915617585182,
0.0028829695656895638,
-0.00946586299687624,
0.009364370256662369,
-0.023838480934500694,
0.05999794602394104,
0.016339341178536415,
0.022351693361997604,
-0.08539100736379623,
0.02368733659386635,
0.02574850618839264,
-0.022210460156202316,
-0.011330022476613522,
-0.05863852798938751,
-0.016624804586172104,
-0.07031133770942688,
0.026663856580853462,
0.01167814526706934,
-0.024315522983670235,
-0.03799235820770264,
-0.06316853314638138,
0.04014581814408302,
0.04297740012407303,
-0.008026815950870514,
-0.0448111854493618,
-0.05508149042725563,
-0.24546398222446442,
0.02517629787325859,
-0.05785578489303589,
0.04470445588231087,
-0.010824980214238167,
0.0019285058369860053,
0.021182777360081673,
0.008011152036488056,
0.06964262574911118,
-0.020673681050539017,
0.07130356132984161,
0.05451780930161476,
-0.02924029715359211,
-0.05175233259797096,
-0.03556389361619949,
-0.058630675077438354,
-0.05291970819234848,
-0.015245899558067322,
-0.0375751331448555,
0.05016900971531868,
-0.03527069836854935,
-0.019878555089235306,
-0.016255317255854607,
0.011917981319129467,
0.015189861878752708,
0.009637920185923576,
0.040763236582279205,
0.09030097723007202,
0.028626205399632454,
0.009244539774954319,
-0.019717248156666756,
0.03782615810632706,
0.03144725784659386,
-0.18380877375602722,
0.0908500924706459,
0.025454604998230934,
0.045393332839012146,
0.004337511956691742,
-0.002160806441679597,
0.0186228659003973,
0.04250897467136383,
-0.044235266745090485,
-0.006223149131983519,
0.010790904052555561,
0.03966068476438522,
0.02140827849507332,
-0.0188544150441885,
-0.010889250785112381,
-0.04721689596772194,
0.0014338725013658404,
0.03946976736187935,
-0.05875431001186371,
-0.021611593663692474,
-0.007879025302827358,
-0.0003343445132486522,
-0.005860446952283382,
-0.042581669986248016,
0.05779249966144562,
-0.033183690160512924,
0.02877606824040413,
0.03205631300806999,
-0.029806412756443024,
0.0019153753528371453,
-0.01563958078622818,
0.07008714973926544,
-0.0737447440624237,
-0.03233062103390694,
0.06303086876869202,
0.04439191892743111,
-0.010232537053525448,
0.2141667753458023,
-0.05630606412887573,
0.04731899872422218,
0.0022439006716012955,
0.009937935508787632,
-0.010933225043118,
-0.06605655699968338,
-0.027435949072241783,
-0.05880241096019745,
-0.010634910315275192,
-0.005420721601694822,
0.007075900211930275,
-0.006403992418199778,
0.05693325772881508,
-0.07628878951072693,
0.04908617585897446,
0.007113664411008358,
0.03050820156931877,
0.005599671974778175,
-0.0421549528837204,
0.029262227937579155,
0.009396255016326904,
0.04127794876694679,
0.03720400109887123,
-0.007107372395694256,
0.013947437517344952,
0.00026060163509100676,
0.07020121812820435,
0.08805833756923676,
-0.0009442942100577056,
-0.0010414288844913244,
0.020962480455636978,
0.015628181397914886,
-0.11347533017396927,
0.005167249124497175,
0.0045045362785458565,
0.03098154440522194,
-0.015109365805983543,
0.0015299973310902715,
0.06883008033037186,
-0.055765967816114426,
-0.048322901129722595,
-0.0945008397102356,
-0.004653461277484894,
-0.09679190814495087,
-0.034600768238306046,
0.15490664541721344,
0.00994834303855896,
0.03272637352347374,
-0.07620972394943237,
-0.04616245999932289,
-0.08438995480537415,
0.027750873938202858,
-0.025817856192588806,
-0.013017036020755768,
0.02128668874502182,
0.05877504497766495,
0.084409199655056,
0.06892892718315125,
-0.034925442188978195,
0.008750011213123798,
-0.09056033939123154,
-0.029956689104437828,
-0.026882637292146683,
0.0957370400428772,
0.005863024387508631,
-0.15799610316753387,
-0.018325500190258026,
-0.007522383239120245,
0.0009901599260047078,
-0.04698757827281952,
0.048580486327409744,
0.01724705658853054,
-0.03561623394489288,
0.04162617772817612,
0.12220185995101929,
0.039207957684993744,
-0.034631598740816116,
0.028992589563131332,
0.020630575716495514,
-0.014255130663514137,
0.014750317670404911,
-0.009659653529524803,
0.015045310370624065,
0.03569509834051132,
0.034608785063028336,
-0.06241137161850929,
-0.0049365186132490635,
-0.038103703409433365,
0.02565830759704113,
0.04900645464658737,
-0.019134070724248886,
-0.011566568166017532,
-0.006237159948796034,
-0.013609196059405804,
-0.04039671644568443,
-0.04819342866539955,
-0.01439178641885519,
0.022283002734184265,
0.035085391253232956,
-0.03829842060804367,
0.0393097810447216,
-0.025242317467927933,
-0.0092856977134943,
0.03566834330558777,
0.012895752675831318,
0.0006729126907885075,
-0.031666722148656845,
-0.019006799906492233,
0.06179143115878105,
-0.05321020632982254,
-0.029180800542235374,
0.00848774891346693,
0.044897086918354034,
-0.027743853628635406,
-0.046467989683151245,
0.02522881142795086,
0.02409846894443035,
0.025901028886437416,
0.07135471701622009,
0.026541298255324364,
-0.01243850402534008,
-0.0884123146533966,
-0.003054201602935791,
-0.2325386106967926,
0.01118316687643528,
0.002601488260552287,
0.04104619845747948,
0.012064317241311073,
-0.0492735281586647,
0.01071165781468153,
-0.01335127092897892,
0.0015814665239304304,
0.06833051145076752,
0.036855604499578476,
-0.012446216307580471,
-0.01888328790664673,
-0.00416830787435174,
-0.03351517394185066,
0.0566464364528656,
-0.004064565524458885,
0.00716948788613081,
-0.0439370721578598,
0.02157892845571041,
-0.026792900636792183,
0.0039689261466264725,
-0.030382124707102776,
-0.045559659600257874,
0.05711330473423004,
-0.015233471058309078,
0.20488640666007996,
0.043031252920627594,
-0.027591455727815628,
-0.02773236483335495,
0.06202356517314911,
-0.011589175090193748,
-0.061916038393974304,
-0.07211832702159882,
0.021455418318510056,
0.01560620591044426,
0.044888317584991455,
0.010934400372207165,
-0.010800626128911972,
-0.049775950610637665,
-0.029459012672305107,
0.05154982954263687,
0.01553881261497736,
-0.06137453392148018,
-0.023000163957476616,
0.004395774565637112,
0.0020093603525310755,
-0.0217145849019289,
-0.05308648571372032,
0.025177977979183197,
0.03244413062930107,
-0.008333072066307068,
0.04888041689991951,
0.02918059565126896,
-0.017081933096051216,
-0.055542271584272385,
-0.05388341844081879,
0.06302472949028015,
-0.021272964775562286,
0.0857381820678711,
0.007500463631004095,
-0.009608928114175797,
0.03728479892015457,
-0.04801998659968376,
0.07099790871143341,
-0.06949835270643234,
-0.0030645483639091253,
-0.018322806805372238,
0.01382975373417139,
-0.0704110711812973,
-0.011885886080563068,
0.05707252770662308,
-0.04316844791173935,
0.02878502570092678,
0.04924575611948967,
0.027560321614146233,
0.002536719897761941,
0.008400325663387775,
-0.013513785786926746,
-0.024533240124583244,
0.03580697625875473,
-0.048842694610357285,
0.05654868111014366,
0.06597135961055756,
0.05166120082139969,
0.010128752328455448,
0.04235031083226204,
0.03327276557683945,
0.02949269860982895,
-0.02969779074192047,
-0.04416514188051224,
-0.04571405053138733,
-0.03000124916434288,
0.004186457954347134,
0.02356073260307312,
0.015085088089108467,
-0.2794421315193176,
0.05639040470123291,
-0.02802560105919838,
0.013486085459589958,
0.004914149641990662,
-0.0000713175832061097,
0.0033699627965688705,
0.0335785374045372,
-0.005610003136098385,
0.0022239035461097956,
0.02173289842903614,
0.05587797611951828,
0.02683187648653984,
-0.0032421026844531298,
-0.011786402203142643,
0.03274363651871681,
0.03905610367655754,
-0.04380546882748604,
0.01912342570722103,
-0.04396993666887283,
0.05828933045268059,
0.06837501376867294,
0.22607120871543884,
0.026946891099214554,
0.025178799405694008,
0.03021710366010666,
0.011398976668715477,
-0.02460099570453167,
0.021421516314148903,
0.006902758963406086,
0.018121786415576935,
-0.01882203482091427,
0.06914328783750534,
-0.018579749390482903,
0.007853335700929165,
0.04574989899992943,
-0.0641067624092102,
0.033603064715862274,
0.034214530140161514,
-0.025413768365979195,
-0.05615084990859032,
0.00997923593968153,
-0.05432241037487984,
-0.0038280123844742775,
0.08537998795509338,
-0.024350536987185478,
-0.05037793517112732,
-0.07387901842594147,
-0.025143111124634743,
0.03520089387893677,
-0.04620202258229256,
-0.0034938924945890903,
-0.0057850065641105175,
0.014380781911313534,
0.04782745987176895,
0.04905553534626961,
-0.023422176018357277,
0.017187602818012238,
0.0024596203584223986,
-0.019205346703529358,
-0.008352943696081638,
-0.05995035544037819,
0.017896758392453194,
-0.0017102847341448069,
0.027861259877681732
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | 1. MongoDB Aggregation Learning Byte
2. MongoDB Aggregation in Python Learning Byte
3. MongoDB Aggregation Documentation
4. Practical MongoDB Aggregation Book
## Analyzing the data with a pandas DataFrame
Now, let’s see how you can move your time-series data into pandas DataFrame to run some analytics operations.
MongoDB has built a tool just for this purpose called PyMongoArrow. PyMongoArrow is a Python library that lets you move data in and out of MongoDB into other data formats such as pandas DataFrame, Numpy array, and Arrow Table.
Let’s quickly install PyMongoArrow using the pip command in your terminal. We are assuming that you already have pandas installed on your system. If not, you can use the pip command to install it too.
```
pip install pymongoarrow
``` | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.04088534787297249,
-0.05206771939992905,
0.0020554903894662857,
-0.017960892990231514,
0.058068353682756424,
-0.021622950211167336,
0.0023880628868937492,
0.006660361308604479,
0.0019726513419300318,
0.034535232931375504,
0.017797740176320076,
-0.1180969774723053,
0.04280159994959831,
-0.0009599205222912133,
-0.023985302075743675,
-0.005183670204132795,
-0.034808285534381866,
0.0124112693592906,
-0.05763411521911621,
0.01964283362030983,
-0.008490155450999737,
-0.01935860887169838,
-0.056721050292253494,
-0.0326627716422081,
0.0508047454059124,
0.0721944272518158,
0.014849036000669003,
-0.04024214297533035,
-0.06086089089512825,
-0.2158876210451126,
-0.010029207915067673,
-0.03507274389266968,
0.044821761548519135,
-0.057577647268772125,
0.0324590764939785,
0.005523288622498512,
-0.0017945802537724376,
0.03479097783565521,
-0.01512196660041809,
0.051007356494665146,
0.03998634219169617,
-0.00432825880125165,
-0.041664812713861465,
-0.05884862691164017,
-0.04575057700276375,
-0.07743003964424133,
-0.004132475238293409,
-0.032806333154439926,
0.012988933362066746,
-0.03345557674765587,
-0.010786708444356918,
-0.014267295598983765,
0.0020907737780362368,
0.025234729051589966,
0.047268837690353394,
0.054525937885046005,
0.04127258434891701,
0.009557199664413929,
0.013680268079042435,
-0.010461144149303436,
0.06325893104076385,
0.006483846344053745,
-0.17696599662303925,
0.11795208603143692,
0.05634073168039322,
0.06541875004768372,
-0.016854193061590195,
-0.013282204046845436,
0.04479408264160156,
0.04842671379446983,
-0.047275129705667496,
-0.00046282538096420467,
0.011899096891283989,
0.040916807949543,
0.00670742429792881,
-0.03281620144844055,
-0.006864316761493683,
-0.06336194276809692,
0.002856109058484435,
0.03406490385532379,
-0.05958952754735947,
-0.020455026999115944,
-0.042934488505125046,
-0.0027118574362248182,
0.008244938217103481,
-0.030161738395690918,
0.030774828046560287,
-0.04340581223368645,
-0.00042369100265204906,
0.0014392576413229108,
0.0021163769997656345,
-0.013414474204182625,
-0.0002926487650256604,
0.054422520101070404,
-0.0443757139146328,
0.00012669755960814655,
0.05338294431567192,
0.04214869439601898,
0.029854850843548775,
0.23107506334781647,
-0.043485596776008606,
0.02726033702492714,
-0.03876711055636406,
-0.011810289695858955,
0.05290527641773224,
-0.057774387300014496,
0.007769154850393534,
-0.05907810851931572,
0.0070842113345861435,
-0.007997816428542137,
-0.017550254240632057,
-0.02006315253674984,
0.037360429763793945,
-0.08802302181720734,
0.04237396642565727,
0.0036004444118589163,
-0.021490678191184998,
0.03216385468840599,
-0.04904676601290703,
0.024871813133358955,
-0.005107933189719915,
0.011797199957072735,
0.06125727295875549,
-0.006181157194077969,
0.028881186619400978,
-0.03129925578832626,
0.02959098108112812,
0.1004733294248581,
0.014028796926140785,
0.013422000221908092,
0.02699851803481579,
-0.022040117532014847,
-0.09383265674114227,
-0.0209267009049654,
0.02578447386622429,
0.010858839377760887,
-0.00572972884401679,
0.014313086867332458,
0.030513685196638107,
0.026930471882224083,
-0.025202305987477303,
-0.07905266433954239,
-0.015170085243880749,
-0.07166805118322372,
-0.0374438613653183,
0.16224338114261627,
-0.01283958274871111,
0.09101095795631409,
-0.04230585694313049,
-0.02232278883457184,
-0.009281796403229237,
0.0333319790661335,
-0.02875635214149952,
-0.04343297705054283,
0.018453817814588547,
0.05080883204936981,
0.08017481863498688,
0.09637146443128586,
-0.033456068485975266,
-0.02939203381538391,
-0.0541197694838047,
-0.029676776379346848,
-0.022077133879065514,
0.07788814604282379,
-0.01064682099968195,
-0.13382461667060852,
-0.005657683592289686,
0.007492975331842899,
-0.010607275180518627,
-0.05334826558828354,
0.02253042906522751,
0.04071394354104996,
-0.06652230769395828,
0.04427371174097061,
0.10569963604211807,
-0.0003193065640516579,
-0.0282808318734169,
-0.004525013267993927,
0.06254029273986816,
-0.007425118237733841,
0.024584662169218063,
-0.038580942898988724,
-0.04332364350557327,
0.01089281216263771,
0.02553846314549446,
-0.04820069670677185,
-0.008780894801020622,
-0.02797154150903225,
0.028486289083957672,
0.03982008993625641,
-0.0015589797403663397,
0.0033536311239004135,
0.0010938706109300256,
0.012968852184712887,
-0.0233784019947052,
-0.05423813313245773,
-0.008434471674263477,
-0.0237253550440073,
0.00497464882209897,
-0.0558990053832531,
0.05301279202103615,
0.011999585665762424,
-0.015610946342349052,
0.018700353801250458,
0.03014855645596981,
0.008412466384470463,
-0.018323780968785286,
-0.001587622449733317,
0.06370314210653305,
-0.01512764673680067,
-0.019807610660791397,
-0.018207987770438194,
0.027639634907245636,
-0.026461435481905937,
-0.024308206513524055,
-0.018920207396149635,
0.01222161017358303,
0.02566935122013092,
0.012845681048929691,
0.04195328801870346,
0.0023325395304709673,
-0.08365624397993088,
-0.03707661107182503,
-0.24903711676597595,
0.004610261879861355,
0.026141436770558357,
0.027382705360651016,
0.027304934337735176,
-0.06527437269687653,
0.02403218112885952,
-0.008829696103930473,
-0.00531899044290185,
0.09054963290691376,
0.06704378873109818,
-0.01442280039191246,
0.004211418330669403,
-0.00149357202462852,
-0.03708091750741005,
0.07236653566360474,
-0.0015678826021030545,
0.0392192080616951,
-0.05479242280125618,
0.00827064923942089,
-0.012353984639048576,
0.01812932640314102,
-0.03875932842493057,
-0.051003918051719666,
0.02727099321782589,
0.015240264125168324,
0.18930676579475403,
0.010216452181339264,
0.010777254588901997,
-0.06353238224983215,
0.03656793385744095,
-0.005063263699412346,
-0.06833189725875854,
-0.10524963587522507,
0.06095798686146736,
0.015497936867177486,
0.032293323427438736,
0.0023364087101072073,
-0.04036179557442665,
-0.02702910080552101,
-0.022400006651878357,
0.034441594034433365,
0.04912569746375084,
-0.08222315460443497,
-0.012493825517594814,
-0.01676100306212902,
-0.014055635780096054,
0.005635051056742668,
-0.024639952927827835,
0.008744251914322376,
0.014913203194737434,
0.02071009948849678,
0.061041273176670074,
0.012867060489952564,
-0.012242920696735382,
-0.022652465850114822,
-0.07574150711297989,
0.059984855353832245,
-0.03851405903697014,
0.03737534210085869,
0.012509814463555813,
-0.05828382819890976,
0.03331400081515312,
-0.014570262283086777,
0.040248241275548935,
-0.01345005538314581,
-0.002935372991487384,
-0.015644237399101257,
0.030882304534316063,
-0.03794770687818527,
-0.026949280872941017,
0.10177528113126755,
-0.03185494244098663,
0.005271110218018293,
0.038284167647361755,
0.048730917274951935,
0.006225258577615023,
0.0036638998426496983,
-0.04958432540297508,
-0.03820374235510826,
0.06335631757974625,
-0.040766820311546326,
0.03195953741669655,
0.0573611706495285,
0.06351227313280106,
-0.009693329222500324,
0.05429205670952797,
-0.02388123981654644,
0.022975655272603035,
-0.029586564749479294,
-0.019564330577850342,
-0.011816280893981457,
-0.04921126365661621,
-0.02042377181351185,
0.016908472403883934,
0.0508023202419281,
-0.28773221373558044,
0.04768810048699379,
-0.04445357620716095,
0.017856290563941002,
0.03385221213102341,
0.011865590699017048,
0.04667532071471214,
0.012244017794728279,
-0.023753473535180092,
0.02866680547595024,
-0.008585016243159771,
0.0261120293289423,
0.04056696221232414,
-0.024196604266762733,
-0.00677303085103631,
0.05967563018202782,
0.06691128015518188,
-0.026356734335422516,
-0.0008905893773771822,
-0.020389540120959282,
0.037888601422309875,
0.03364703059196472,
0.24472860991954803,
0.005886928178369999,
0.019008757546544075,
0.003572855843231082,
-0.008290987461805344,
0.01618027128279209,
0.047103364020586014,
0.023107819259166718,
0.01994507946074009,
-0.022377843037247658,
0.06653803586959839,
-0.028331588953733444,
0.0336705707013607,
0.054966554045677185,
-0.06433901190757751,
0.025761645287275314,
0.01198827475309372,
-0.024597255513072014,
-0.014775272458791733,
-0.0023910696618258953,
-0.035581089556217194,
0.005748246796429157,
0.09711745381355286,
-0.016212590038776398,
-0.04044260457158089,
-0.1214839369058609,
0.016017135232686996,
0.03980398550629616,
-0.05684065818786621,
-0.016915664076805115,
-0.03823572397232056,
-0.002215989865362644,
0.022748876363039017,
0.049781255424022675,
-0.0006003340240567923,
-0.000048492340283701196,
0.0004584600683301687,
-0.04466705396771431,
0.03707192465662956,
-0.10862989723682404,
-0.00292462226934731,
0.03411155939102173,
0.015766283497214317
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | ```
pip install pymongoarrow
```
Now, let’s import all the necessary libraries. We are going to be using the same file or notebook (Jupyter Notebook) to run the codes below.
```
import pymongoarrow
import pandas as pd
# pymongoarrow.monkey module provided an interface to patch pymongo, in place, and add pymongoarrow's functionality directly to collection instance.
from pymongoarrow.monkey import patch_all
patch_all()
# Let's use the pymongoarrow's find_pandas_all() function to read MongoDB query result sets into
df = collection.find_pandas_all({})
```
Now, we have read all of our stock data stored in the “stocks” collection into a pandas DataFrame ‘df’.
Let’s quickly print the value stored in the ‘df’ variable to verify it.
```
print(df)
print(type(df))
```
//OUTPUT | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.05467776581645012,
0.0006805703742429614,
0.017405429854989052,
-0.025892961770296097,
0.03629424050450325,
-0.02561277151107788,
-0.016510091722011566,
0.0070707653649151325,
-0.00209377845749259,
0.03828689083456993,
0.029631977900862694,
-0.10912544280290604,
0.040215276181697845,
-0.01818256266415119,
-0.017094068229198456,
0.006693254690617323,
-0.024727649986743927,
-0.0019454467110335827,
-0.07231132686138153,
0.003547936910763383,
-0.04248516634106636,
-0.030721668154001236,
-0.056614309549331665,
-0.022820692509412766,
0.042786624282598495,
0.07605257630348206,
0.014566863887012005,
-0.031290456652641296,
-0.025565728545188904,
-0.2275301218032837,
-0.010563654825091362,
-0.05943659693002701,
0.011642714031040668,
-0.023625101894140244,
0.03766094893217087,
0.0004403607454150915,
0.02006114460527897,
0.02512446790933609,
0.03309701383113861,
0.0492667555809021,
0.02117936871945858,
-0.013646377250552177,
-0.038460783660411835,
-0.06188228726387024,
-0.03835485875606537,
-0.06869906932115555,
-0.02082551270723343,
-0.023525794968008995,
0.03322635963559151,
-0.049187883734703064,
-0.011041383258998394,
-0.014999684877693653,
-0.009398902766406536,
0.0009386177407577634,
-0.01880977489054203,
0.03350139409303665,
0.05864182859659195,
0.0617235042154789,
0.013846349902451038,
-0.004126031417399645,
0.0453668087720871,
0.02776632271707058,
-0.206665500998497,
0.1107855811715126,
0.043123047798871994,
0.04082581773400307,
-0.038662802428007126,
-0.033297766000032425,
0.07658794522285461,
0.051910948008298874,
-0.06561455875635147,
0.02455737441778183,
0.017174607142806053,
0.03957787901163101,
-0.00428494717925787,
-0.03907516598701477,
-0.010728821158409119,
-0.04289279505610466,
0.0024468961637467146,
0.028789177536964417,
-0.04731205105781555,
-0.02175133116543293,
-0.031949613243341446,
-0.010616437532007694,
0.00963121373206377,
0.008528601378202438,
0.027021165937185287,
0.002023426815867424,
0.021903017535805702,
0.013764654286205769,
0.01965026557445526,
-0.013673483394086361,
0.02362360619008541,
0.04621684551239014,
-0.03224080055952072,
0.02416589856147766,
0.04638667404651642,
0.015069839544594288,
-0.004187615588307381,
0.23402133584022522,
-0.02095126174390316,
0.01999647170305252,
-0.03029133379459381,
0.005517291370779276,
0.041172802448272705,
-0.038418374955654144,
-0.01034538634121418,
-0.043742816895246506,
-0.003433570498600602,
-0.03804457187652588,
-0.010067456401884556,
-0.023303436115384102,
0.07406312972307205,
-0.06463344395160675,
0.027067767456173897,
-0.012690669856965542,
-0.03081115335226059,
0.006049336865544319,
-0.05135497823357582,
0.034965500235557556,
-0.009529868140816689,
-0.000146534715895541,
0.04248493164777756,
0.002639851998537779,
0.019672665745019913,
0.014555772766470909,
0.03054378740489483,
0.09777341783046722,
0.01754368096590042,
0.021508732810616493,
-0.0034377931151539087,
-0.03045564331114292,
-0.05156758427619934,
-0.03724990785121918,
0.0026343988720327616,
-0.0033596225548535585,
-0.0035800524055957794,
0.015109509229660034,
0.048204533755779266,
-0.010048127733170986,
-0.07722257077693939,
-0.08448675274848938,
-0.02889324352145195,
-0.04840004816651344,
-0.03423469141125679,
0.10584486275911331,
-0.022037925198674202,
0.08833417296409607,
-0.0609394796192646,
-0.001071420032531023,
0.004553445149213076,
0.024144621565937996,
-0.03324441611766815,
-0.024344036355614662,
0.02014935575425625,
0.019271571189165115,
0.08516097813844681,
0.0870341956615448,
-0.03212188184261322,
-0.038393665105104446,
-0.030340490862727165,
-0.03719346970319748,
-0.07639401406049728,
0.06070369482040405,
-0.019344575703144073,
-0.08888186514377594,
-0.011919397860765457,
-0.020729389041662216,
0.0020781010389328003,
-0.03927145525813103,
0.017497144639492035,
0.04069694131612778,
-0.0708874836564064,
0.030383655801415443,
0.06729798763990402,
0.005331008695065975,
-0.05185776948928833,
0.004946824163198471,
0.033229418098926544,
0.015263724140822887,
0.007419860456138849,
-0.032007452100515366,
-0.006848878227174282,
-0.030288996174931526,
0.024184681475162506,
-0.07541264593601227,
-0.007085174787789583,
-0.025162719190120697,
0.049763258546590805,
0.018153397366404533,
0.0332212969660759,
0.01743006519973278,
0.039030496031045914,
-0.047687046229839325,
-0.0440635122358799,
-0.04306968301534653,
-0.024429982528090477,
-0.013813585974276066,
-0.00041200098348781466,
-0.03056023269891739,
0.08018560707569122,
0.0281648188829422,
-0.020792776718735695,
0.007767201866954565,
-0.0036902788560837507,
0.01727851666510105,
-0.048728086054325104,
-0.034369103610515594,
0.07754720747470856,
-0.014621236361563206,
-0.04981362447142601,
0.022181373089551926,
0.05473106727004051,
0.0028017789591103792,
-0.029607122763991356,
0.00012149365647928789,
0.001492567011155188,
0.029778022319078445,
0.04552256315946579,
0.040599189698696136,
-0.002188613172620535,
-0.10043016821146011,
-0.04061863198876381,
-0.2451840043067932,
0.008694842457771301,
0.021964333951473236,
0.024335645139217377,
-0.003159558167681098,
-0.08050765097141266,
0.024641431868076324,
0.0026119828689843416,
-0.009152494370937347,
0.10158119350671768,
0.09428855776786804,
0.0011665781494230032,
0.008495721966028214,
0.04012081399559975,
-0.0070975953713059425,
0.04754819720983505,
0.041364412754774094,
0.041552431881427765,
-0.03366916626691818,
0.016340425238013268,
-0.020671896636486053,
0.005534728057682514,
-0.05051463469862938,
-0.04272431880235672,
0.031557440757751465,
-0.012158812023699284,
0.2204725444316864,
0.06713657081127167,
0.016872333362698555,
-0.03887798637151718,
0.0303787924349308,
-0.012545162811875343,
-0.057475924491882324,
-0.14265120029449463,
0.06210014224052429,
0.028105318546295166,
0.021485241129994392,
0.03894218057394028,
-0.02985025942325592,
0.009161005727946758,
-0.0037164990790188313,
0.053408779203891754,
0.019217031076550484,
-0.08128935843706131,
0.0034175333566963673,
-0.02924557775259018,
-0.027048252522945404,
-0.01384770032018423,
-0.04483574256300926,
0.019107487052679062,
0.028671231120824814,
0.034758634865283966,
0.05681643262505531,
0.0003936428693123162,
-0.011689865961670876,
-0.023697638884186745,
-0.04212420433759689,
0.05153165012598038,
-0.04977654665708542,
0.037329770624637604,
-0.005147876217961311,
-0.031190751120448112,
0.03507249429821968,
-0.016577253118157387,
0.006683484185487032,
-0.012727797031402588,
0.016738364472985268,
-0.04732935130596161,
0.08280468732118607,
0.002276917453855276,
-0.021397678181529045,
0.0632706880569458,
-0.02992282062768936,
0.0399322547018528,
0.01733381301164627,
0.04913945868611336,
0.010806984268128872,
0.004709589760750532,
-0.0412793830037117,
-0.028079209849238396,
0.10698582231998444,
-0.02742689475417137,
-0.0037789111956954002,
0.04985102638602257,
0.05547310784459114,
-0.008422046899795532,
0.035411953926086426,
-0.016033554449677467,
0.027632806450128555,
-0.013500903733074665,
-0.03051452338695526,
-0.02796279825270176,
-0.04796207323670387,
0.006573261693120003,
0.07092570513486862,
0.04928620532155037,
-0.29160451889038086,
0.023829011246562004,
-0.011553817428648472,
-0.021082796156406403,
0.008462744764983654,
0.010522517375648022,
0.0423484742641449,
0.013905570842325687,
-0.016981912776827812,
0.029223168268799782,
0.03438065946102142,
0.0003030558582395315,
0.0018650919664651155,
-0.004378850106149912,
-0.008902319706976414,
0.039238449186086655,
0.08323877304792404,
-0.021055757999420166,
0.03755766525864601,
-0.02233257330954075,
0.057852406054735184,
0.03084922954440117,
0.20800107717514038,
-0.03512054309248924,
0.0029068884905427694,
0.043342914432287216,
-0.0028345268219709396,
0.002697734395042062,
0.034062858670949936,
0.011422406882047653,
0.0271278265863657,
-0.04227123782038689,
0.04305288568139076,
-0.04704519361257553,
0.029032088816165924,
0.07764512300491333,
-0.06031627580523491,
0.029883647337555885,
0.04918494448065758,
-0.04305991530418396,
-0.023300303146243095,
0.014238529838621616,
-0.06063457950949669,
-0.03117048740386963,
0.08684840798377991,
-0.03001057729125023,
-0.0700085386633873,
-0.0928909033536911,
0.01215775404125452,
0.020595837384462357,
-0.04931739717721939,
-0.029815293848514557,
-0.013750380836427212,
-0.011712024919688702,
0.021984564140439034,
0.044149406254291534,
0.0030850996263325214,
0.0061529031954705715,
-0.0028124807868152857,
-0.04371275752782822,
0.05583692342042923,
-0.11720828711986542,
0.05350741371512413,
0.03395373374223709,
0.008045744150876999
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | ```
print(df)
print(type(df))
```
//OUTPUT
Hurray…congratulations! As you can see, we have successfully read our MongoDB data into pandas DataFrame.
Now, if you are a stock market trader, you would be interested in doing a lot of analysis on this data to get meaningful insights. But for this tutorial, we are just going to calculate the hourly percentage change in the closing prices of the stock. This will help us understand the daily price movements in terms of percentage gains or losses.
We will add a new column in our ‘df’ DataFrame called “daily_pct_change”.
```
df = df.sort_values('timestamp')
df'daily_pct_change'] = df['close'].pct_change() * 100
# print the dataframe to see the modified data
print(df)
```
//OUTPUT
![Output of modified DataFrame | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.035437993705272675,
-0.030191706493496895,
0.025402601808309555,
0.00815054401755333,
0.06877458840608597,
-0.014922619797289371,
0.02516753226518631,
0.02115354686975479,
0.03495802357792854,
0.0010031373240053654,
0.03473891317844391,
-0.07995058596134186,
0.023258473724126816,
0.03792057931423187,
-0.03266521543264389,
-0.00244585401378572,
-0.029275022447109222,
-0.019015002995729446,
-0.09722093492746353,
0.01912015676498413,
0.007813017815351486,
-0.04890530928969383,
-0.0536467581987381,
-0.058361370116472244,
0.06314017623662949,
0.06428002566099167,
-0.012577665969729424,
-0.01712304912507534,
-0.04519746080040932,
-0.20029029250144958,
0.019815480336546898,
-0.061501968652009964,
0.05051117390394211,
-0.07078132778406143,
0.00627151457592845,
-0.020215291529893875,
-0.03996630012989044,
0.017041580751538277,
0.006312485784292221,
0.025740083307027817,
0.029488155618309975,
-0.010022951290011406,
-0.02851596660912037,
-0.05354463681578636,
-0.061981018632650375,
-0.0613858737051487,
-0.05085225775837898,
0.0004213060310576111,
0.0018194674048572779,
-0.00022803973115514964,
-0.03474846109747887,
-0.0250700656324625,
-0.008593471720814705,
-0.005268577486276627,
0.04268750920891762,
0.027168525382876396,
0.07716532796621323,
0.02658631093800068,
0.038644593209028244,
-0.01669098623096943,
0.0606553815305233,
0.02170574851334095,
-0.21945731341838837,
0.08253747224807739,
0.0622808113694191,
0.009658417664468288,
-0.023930644616484642,
-0.0203543771058321,
0.04433015361428261,
0.0268886499106884,
-0.08202069997787476,
0.013480141758918762,
-0.015138345770537853,
0.017140915617346764,
0.05600065365433693,
-0.06697237491607666,
-0.003984960727393627,
-0.060691386461257935,
0.009749802760779858,
0.029008863493800163,
-0.06388255953788757,
0.0014044368872419,
-0.02220221981406212,
-0.02882111258804798,
-0.0032535705249756575,
0.030742648988962173,
0.07632508873939514,
-0.01604263111948967,
0.04586967080831528,
0.02475626766681671,
0.00032749486854299903,
0.022261248901486397,
-0.006663172971457243,
0.0597539059817791,
-0.07995136082172394,
0.026836436241865158,
0.07050878554582596,
0.047024790197610855,
0.010770605877041817,
0.19495391845703125,
-0.03871951624751091,
0.01348939910531044,
-0.028662918135523796,
-0.017360880970954895,
0.03654248267412186,
-0.043385621160268784,
-0.01892687939107418,
-0.0038757140282541513,
-0.006612447090446949,
0.004520758055150509,
-0.02905154600739479,
0.011507339775562286,
0.060943152755498886,
-0.06342431902885437,
0.03543061017990112,
0.03647525608539581,
-0.030272163450717926,
0.011547745205461979,
-0.004009599331766367,
0.053596869111061096,
-0.01829788275063038,
0.01727122999727726,
-0.0005385364056564867,
0.02280460111796856,
0.031300224363803864,
0.0029482420068234205,
0.06012151762843132,
0.1227133721113205,
0.026076626032590866,
0.03660174831748009,
0.04274250194430351,
-0.016171691939234734,
-0.10384296625852585,
-0.03980110213160515,
0.012839428149163723,
0.01165440771728754,
-0.0403435043990612,
0.02484079822897911,
0.010995667427778244,
0.011583469808101654,
-0.05939273536205292,
-0.09365925192832947,
-0.04143580049276352,
-0.08687503635883331,
0.005258813966065645,
0.15571187436580658,
-0.04151841998100281,
0.06826503574848175,
-0.028504107147455215,
0.00488804467022419,
-0.027009181678295135,
0.01624187082052231,
-0.06211991235613823,
-0.0292197298258543,
-0.023082107305526733,
0.02517399936914444,
0.06849353760480881,
0.05719068646430969,
-0.02871609292924404,
-0.04384041205048561,
-0.04697525501251221,
0.003584897378459573,
-0.08250103890895844,
0.054712969809770584,
0.024238349869847298,
-0.08964913338422775,
-0.03146592527627945,
0.020531723275780678,
-0.008483621291816235,
-0.07450579851865768,
0.02955816499888897,
0.04735124111175537,
-0.06981814652681351,
0.0004312399832997471,
0.10595551878213882,
0.013587107881903648,
-0.0339253768324852,
-0.01969161257147789,
0.07466021925210953,
0.01457784604281187,
0.04508645832538605,
-0.02891247719526291,
-0.04835570976138115,
0.026181649416685104,
-0.008101006038486958,
-0.07144319266080856,
-0.03472604602575302,
-0.032806336879730225,
0.03853684291243553,
0.024936925619840622,
0.028261616826057434,
-0.035339582711458206,
-0.044345565140247345,
0.016962355002760887,
-0.02965506911277771,
-0.05123729631304741,
-0.0015444192104041576,
-0.0047664945013821125,
-0.0015293011674657464,
-0.003509956644847989,
0.08700655400753021,
0.030113348737359047,
-0.02651926316320896,
0.044297534972429276,
0.0019662179984152317,
0.02006778120994568,
-0.01660121977329254,
-0.02115805819630623,
0.09748963266611099,
-0.018772181123495102,
0.0009636071044951677,
0.01840750128030777,
0.06149043142795563,
-0.0014067312004044652,
-0.03085084818303585,
0.012641146779060364,
0.01213693618774414,
0.045742712914943695,
0.011431196704506874,
0.02864701673388481,
0.057143859565258026,
-0.09899558126926422,
-0.027940338477492332,
-0.24103133380413055,
-0.02767813391983509,
0.046108491718769073,
-0.02949167974293232,
-0.003046175930649042,
-0.04291033372282982,
-0.0001527065905975178,
-0.014122800901532173,
0.0307054091244936,
0.08462736755609512,
0.07366936653852463,
-0.013070300221443176,
-0.0011241795727983117,
-0.03742900490760803,
0.003501534927636385,
0.022532833740115166,
0.029385339468717575,
0.0045976233668625355,
-0.017845915630459785,
-0.027131088078022003,
-0.016960622742772102,
-0.012954526580870152,
-0.032075367867946625,
-0.058248959481716156,
0.06292328238487244,
0.004123130347579718,
0.21351608633995056,
-0.002174901310354471,
0.02589230425655842,
-0.0373726561665535,
0.0008701067417860031,
-0.007293869741261005,
-0.023385224863886833,
-0.07844170928001404,
0.07905331254005432,
0.010413480922579765,
0.03185131400823593,
0.015562260523438454,
-0.049572866410017014,
-0.0104436120018363,
0.003778470680117607,
0.044660285115242004,
0.031176438555121422,
-0.0413174070417881,
-0.013013487681746483,
-0.034124601632356644,
-0.007396032568067312,
-0.004071591887623072,
-0.05395105108618736,
0.04299983009696007,
0.019593263044953346,
0.0004465837264433503,
0.0751514881849289,
0.022917259484529495,
0.008312082849442959,
-0.04102165624499321,
-0.06480884552001953,
0.02497181110084057,
-0.050042182207107544,
-0.008272073231637478,
-0.02054610848426819,
-0.06052820011973381,
0.0368071086704731,
-0.01635647751390934,
0.04330581799149513,
-0.05319720506668091,
-0.011840338818728924,
-0.03172245994210243,
0.0186874158680439,
-0.02033315971493721,
-0.008233522064983845,
0.08206123858690262,
-0.009084788151085377,
0.02502027526497841,
0.06587489694356918,
0.0473020039498806,
0.004030248150229454,
-0.0038584815338253975,
-0.053209565579891205,
-0.008103467524051666,
0.0873093530535698,
-0.01813119649887085,
0.020232606679201126,
0.029221370816230774,
0.07796891033649445,
-0.010538107715547085,
0.07642167806625366,
-0.04844319447875023,
0.0002863445843104273,
0.008558383211493492,
-0.034083008766174316,
-0.03508484736084938,
-0.05908409133553505,
0.01922205463051796,
0.01833721250295639,
0.024393180385231972,
-0.26392409205436707,
0.01446862518787384,
-0.0408339761197567,
0.02147809788584709,
0.012039926834404469,
0.035611797124147415,
0.01230083592236042,
0.03755607455968857,
-0.048634327948093414,
-0.004828814882785082,
-0.006329786032438278,
0.017001697793602943,
0.034999389201402664,
-0.01817728951573372,
-0.01725563406944275,
0.046560343354940414,
0.029137391597032547,
-0.03748372569680214,
0.010596959851682186,
-0.012851651757955551,
0.05152695253491402,
0.03102264367043972,
0.19472497701644897,
-0.00420513516291976,
0.024606075137853622,
0.008667968213558197,
-0.03426476940512657,
0.036042843014001846,
0.10584846884012222,
0.020962579175829887,
0.022378863766789436,
-0.020911481231451035,
0.06449107825756073,
-0.011308628134429455,
0.024256631731987,
0.06257200241088867,
-0.0539960078895092,
0.059785544872283936,
0.007007793057709932,
-0.06635647267103195,
0.021450845524668694,
0.006306705065071583,
-0.03858437016606331,
-0.03347507491707802,
0.11206155270338058,
-0.03650030493736267,
-0.0659194067120552,
-0.11068982630968094,
0.03402547165751457,
0.006338158156722784,
-0.048566605895757675,
0.0278299693018198,
0.008635352365672588,
-0.0074972109869122505,
0.018035942688584328,
0.004402873106300831,
-0.0019998853094875813,
0.018363265320658684,
0.013377171941101551,
-0.05532329902052879,
0.017388779670000076,
-0.0881514772772789,
0.00201659114100039,
0.00893574021756649,
0.02012445405125618
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | # print the dataframe to see the modified data
print(df)
```
//OUTPUT
![Output of modified DataFrame
As you can see, we have successfully added a new column to our DataFrame.
Now, we would like to persist the modified DataFrame data into a database so that we can run more analytics on it later. So, let’s write this data back to MongoDB using PyMongoArrow’s write function.
We will just create a new collection called “my_new_collection” in our database to write the modified DataFrame back into MongoDB, ensuring data persistence.
```
from pymongoarrow.api import write
coll = db.my_new_collection
# write data from pandas into MongoDB collection called 'coll'
write(coll, df)
# Now, let's verify that the modified data has been written into our collection
print(coll.find_one({}))
```
Congratulations on successfully completing this tutorial.
## Conclusion | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.078060083091259,
-0.0030512537341564894,
0.03153345361351967,
-0.017141783609986305,
0.04606259986758232,
-0.010908172465860844,
-0.011986853554844856,
0.022587735205888748,
0.01934535801410675,
0.016831642016768456,
0.016215167939662933,
-0.09327299892902374,
0.037156861275434494,
0.01418194267898798,
-0.05318249762058258,
-0.019073789939284325,
-0.042113520205020905,
-0.0026589492335915565,
-0.09198668599128723,
0.015232873149216175,
-0.0184970423579216,
-0.05999061465263367,
-0.04476022347807884,
-0.041502468287944794,
0.048727016896009445,
0.10065662860870361,
0.002680548932403326,
0.003105154726654291,
-0.03931501507759094,
-0.2166716456413269,
-0.00913972407579422,
-0.06707749515771866,
0.01104074064642191,
-0.055921636521816254,
0.02527739480137825,
-0.016536055132746696,
0.006995087023824453,
0.02397962473332882,
0.013590755872428417,
0.04911370202898979,
0.05170866474509239,
-0.007880720309913158,
-0.04935066029429436,
-0.05893883854150772,
-0.051662348210811615,
-0.0528118759393692,
-0.024137651547789574,
-0.03467444330453873,
0.017566610127687454,
-0.020485885441303253,
-0.03459015488624573,
-0.044140201061964035,
-0.04372972249984741,
0.004719327203929424,
0.05162923410534859,
0.06223771721124649,
0.06276726722717285,
0.01809338852763176,
0.02300029806792736,
-0.02835514023900032,
0.07449845224618912,
0.03141753003001213,
-0.18580950796604156,
0.09083031117916107,
0.04612279310822487,
0.05120634660124779,
-0.05653970316052437,
-0.03737637773156166,
0.0635254830121994,
0.03395975008606911,
-0.05939579755067825,
-0.008075648918747902,
-0.03370530903339386,
0.07965099811553955,
0.032033104449510574,
-0.03764928877353668,
-0.02708093635737896,
-0.06719230860471725,
-0.015736950561404228,
0.05933942645788193,
-0.06856807321310043,
-0.03361355885863304,
-0.008356960490345955,
0.008254951797425747,
-0.02322007529437542,
-0.021606899797916412,
0.033245354890823364,
-0.03353278711438179,
0.024892954155802727,
0.005485149100422859,
0.014338085427880287,
-0.001341304276138544,
0.03154734522104263,
0.05303044617176056,
-0.08906132727861404,
0.01747802086174488,
0.058327168226242065,
0.04479559510946274,
0.027805959805846214,
0.20839877426624298,
-0.05478345975279808,
0.025549041107296944,
-0.01780059188604355,
0.01828138530254364,
0.02574409730732441,
-0.06858231872320175,
0.016651472076773643,
-0.0292118601500988,
-0.012189358472824097,
0.0037497517187148333,
-0.019170356914401054,
-0.01055708434432745,
0.03486889228224754,
-0.08139228820800781,
0.053097859025001526,
0.010959846898913383,
-0.03639792278409004,
0.04083891585469246,
-0.060501616448163986,
0.03896495699882507,
-0.006569405551999807,
0.02815299667418003,
0.040475647896528244,
0.0031457606237381697,
0.04395157843828201,
-0.013372054323554039,
0.057712242007255554,
0.09867650270462036,
0.011832080781459808,
0.04608440771698952,
0.020171042531728745,
-0.011387525126338005,
-0.096161849796772,
-0.023146430030465126,
-0.0002949805639218539,
0.0012010710779577494,
-0.004757558461278677,
-0.003477333579212427,
0.07943299412727356,
0.00872541218996048,
-0.0034374049864709377,
-0.06078010052442551,
-0.030155185610055923,
-0.07369838654994965,
0.008805450983345509,
0.14608290791511536,
-0.01313393097370863,
0.08078726381063461,
-0.04360414296388626,
-0.01680934987962246,
0.0019567813724279404,
0.02171318046748638,
-0.03293405473232269,
-0.02727765589952469,
0.023096296936273575,
0.02219678834080696,
0.049031373113393784,
0.08011025935411453,
-0.03586452826857567,
-0.03452432528138161,
-0.015803825110197067,
-0.010488413274288177,
-0.046196844428777695,
0.06501201540231705,
-0.008968513458967209,
-0.11116985976696014,
0.0007682777941226959,
0.01776055619120598,
0.017393531277775764,
-0.0646921917796135,
0.011983733624219894,
0.02763669192790985,
-0.0812741369009018,
-0.007709022145718336,
0.05542004853487015,
0.0193331316113472,
-0.049032531678676605,
0.010278904810547829,
0.043691784143447876,
0.007013623137027025,
0.03450208902359009,
-0.014753553085029125,
-0.02673485316336155,
-0.013833868317306042,
0.02045164257287979,
-0.0828830674290657,
-0.034721601754426956,
-0.02164381928741932,
0.04949773848056793,
0.05013952776789665,
0.011015880852937698,
0.018370145931839943,
0.0122889569029212,
-0.02189451828598976,
-0.04729968681931496,
-0.05051732435822487,
0.0019324341556057334,
-0.03218802437186241,
0.0005343827069737017,
-0.04577578231692314,
0.056442659348249435,
0.04220566526055336,
-0.00407849857583642,
0.05993878096342087,
0.015261010266840458,
0.0009202908840961754,
-0.02732926420867443,
-0.013420761562883854,
0.07026055455207825,
-0.020807990804314613,
-0.024779576808214188,
0.011363803409039974,
0.037559736520051956,
0.004658593330532312,
-0.06765144318342209,
0.002689280780032277,
0.015274278819561005,
0.01982375979423523,
0.030996670946478844,
0.0036492100916802883,
0.03473345562815666,
-0.08999521285295486,
-0.007423626258969307,
-0.25889167189598083,
-0.004242610186338425,
0.016540542244911194,
0.008497404865920544,
-0.007768266834318638,
-0.06989538669586182,
0.024211905896663666,
0.0002609089424367994,
-0.011122508905827999,
0.049310971051454544,
0.06597953289747238,
0.000202074515982531,
0.012126346118748188,
0.010415520519018173,
-0.003200907725840807,
0.02586015686392784,
0.026701483875513077,
0.006650940980762243,
-0.023438766598701477,
-0.00912470556795597,
-0.05206627398729324,
0.0014894013293087482,
-0.01674445904791355,
-0.06591730564832687,
0.034633439034223557,
-0.0037003958132117987,
0.22295957803726196,
0.012649905867874622,
0.01133779063820839,
-0.030503595247864723,
0.008211834356188774,
-0.011578027158975601,
-0.03859858959913254,
-0.1294151097536087,
0.04689520224928856,
-0.00026762348716147244,
-0.004759214818477631,
0.07125471532344818,
-0.02490946836769581,
-0.06255784630775452,
0.028181301429867744,
0.037361595779657364,
0.003462038468569517,
-0.07884843647480011,
-0.0013598677469417453,
-0.014144780114293098,
-0.06394686549901962,
-0.032049402594566345,
-0.06276056915521622,
0.06844823062419891,
0.010399646125733852,
0.025732163339853287,
0.06396526843309402,
0.0102143669500947,
-0.02456550858914852,
-0.026609038934111595,
-0.06910611689090729,
0.0711553543806076,
-0.030156800523400307,
0.020302437245845795,
-0.006397663149982691,
-0.030174311250448227,
0.01587994210422039,
-0.008337579667568207,
0.0668218582868576,
-0.01637355051934719,
0.00979237724095583,
-0.04043230414390564,
0.028763867914676666,
-0.03910769149661064,
-0.014758596196770668,
0.06786943972110748,
-0.01762135699391365,
0.013441840186715126,
0.05972367897629738,
0.047123510390520096,
-0.01717127114534378,
-0.0032333864364773035,
-0.05172981321811676,
-0.03782152384519577,
0.0793878510594368,
-0.03915373980998993,
0.034465014934539795,
0.05619793012738228,
0.0678284764289856,
0.031524013727903366,
0.07082541286945343,
-0.00523981312289834,
-0.010759294964373112,
0.008121637627482414,
-0.011819564737379551,
-0.04519038647413254,
-0.03959520906209946,
-0.003298363648355007,
0.022179830819368362,
0.023829355835914612,
-0.2768873870372772,
0.01649363525211811,
-0.03934582322835922,
0.002513327170163393,
0.01914926804602146,
0.023417187854647636,
0.02075372077524662,
0.030643027275800705,
-0.04114515334367752,
0.04464564472436905,
0.019813312217593193,
0.012269265949726105,
0.03777744621038437,
0.01759577915072441,
-0.0076032779179513454,
0.05219939351081848,
0.05626952648162842,
-0.03268026188015938,
0.023843830451369286,
-0.02071177214384079,
0.052870430052280426,
0.04022349789738655,
0.19430822134017944,
-0.0010961642256006598,
0.03498369827866554,
0.02766592800617218,
0.023224875330924988,
0.040443744510412216,
0.06873578578233719,
0.028758099302649498,
0.00784253142774105,
-0.029923373833298683,
0.04184158891439438,
-0.01203032024204731,
0.024118604138493538,
0.0448165088891983,
-0.06627339869737625,
0.062000349164009094,
0.04277127608656883,
-0.06629973649978638,
-0.03653012588620186,
0.012348203919827938,
-0.02125256508588791,
-0.018862774595618248,
0.11324065923690796,
-0.01699024997651577,
-0.060742732137441635,
-0.08446837961673737,
-0.004610990174114704,
0.023389825597405434,
-0.04160907119512558,
-0.012566487304866314,
0.0044889491982758045,
-0.010835151188075542,
0.019960952922701836,
0.01980559527873993,
0.0031706022564321756,
0.02411573752760887,
0.009826104156672955,
-0.031104011461138725,
0.042681772261857986,
-0.08668282628059387,
0.01986418105661869,
-0.0023725812789052725,
-0.001343699754215777
] |
devcenter | https://www.mongodb.com/developer/products/mongodb/time-series-data-pymongoarrow | created | print(coll.find_one({}))
```
Congratulations on successfully completing this tutorial.
## Conclusion
In this tutorial, we covered how to work with time-series data using MongoDB and Python. We learned how to store stock market data in a MongoDB time-series collection, and then how to perform simple analytics using a pandas DataFrame. We also explored how PyMongoArrow makes it easy to move data between MongoDB and pandas. Finally, we saved our analyzed data back into MongoDB. This guide provides a straightforward way to manage, analyze, and store time-series data. Great job if you’ve followed along — you’re now ready to handle time-series data in your own projects.
If you want to learn more about PyMongoArrow, check out some of these additional resources:
1. Video tutorial on PyMongoArrow
2. PyMongoArrow article | md | {
"tags": [
"MongoDB"
],
"pageDescription": "Learn how to create and query a time-series collection in MongoDB, and analyze the data using PyMongoArrow and pandas.",
"contentType": "Tutorial"
} | Analyze Time-Series Data with Python and MongoDB Using PyMongoArrow and Pandas | 2024-05-20T17:32:23.500Z | [
-0.03109734132885933,
-0.01324787549674511,
0.01443619653582573,
-0.03006911650300026,
0.0570661723613739,
-0.013501067645847797,
0.013466478325426579,
0.016434788703918457,
0.03872418403625488,
0.020277461037039757,
-0.006421270314604044,
-0.0666084811091423,
0.022881804034113884,
0.009859305806457996,
-0.002677628304809332,
-0.008246077224612236,
-0.05349700525403023,
-0.002804310992360115,
-0.06331084668636322,
0.00523119093850255,
0.012512924149632454,
-0.035366881638765335,
-0.058305978775024414,
-0.05491843819618225,
0.06973765045404434,
0.05068785697221756,
0.024050265550613403,
-0.03108546882867813,
-0.031200161203742027,
-0.22472134232521057,
-0.0010547376004979014,
-0.06874160468578339,
0.059243183583021164,
-0.03904101997613907,
0.014082353562116623,
0.0004940584185533226,
-0.02106969803571701,
0.04159916937351227,
0.002037310041487217,
0.07361714541912079,
0.03155112266540527,
0.010901222005486488,
-0.03122848831117153,
-0.05935635790228844,
-0.052727822214365005,
-0.07108129560947418,
-0.03262763470411301,
-0.030033579096198082,
0.018308700993657112,
-0.015975581482052803,
-0.030428117141127586,
-0.0003274789487477392,
-0.008485645987093449,
0.011585990898311138,
0.036893174052238464,
0.036272644996643066,
0.07009763270616531,
0.034569837152957916,
0.012011229060590267,
-0.029697583988308907,
0.044187743216753006,
-0.004523416981101036,
-0.20787091553211212,
0.10840106755495071,
0.051362648606300354,
0.029730916023254395,
-0.006544892676174641,
-0.01779387891292572,
0.04566109925508499,
0.06585673987865448,
-0.0297101903706789,
-0.0012496276758611202,
0.008371228352189064,
0.02772901952266693,
0.031067345291376114,
-0.03918812423944473,
0.008327382616698742,
-0.06640816479921341,
0.009711378253996372,
0.02919921465218067,
-0.06433761119842529,
-0.006039987783879042,
-0.03588337451219559,
-0.005013434682041407,
-0.01634620502591133,
-0.0231556948274374,
0.02206532284617424,
-0.03582069277763367,
0.03701140359044075,
0.0014124743174761534,
0.005415021441876888,
-0.0011755633167922497,
-0.00967416912317276,
0.047845084220170975,
-0.07405399531126022,
0.006579933222383261,
0.05369306728243828,
0.054434340447187424,
0.008195187896490097,
0.21510018408298492,
-0.06837479025125504,
0.030315443873405457,
0.0012517278082668781,
-0.026261521503329277,
0.022549984976649284,
-0.06270378828048706,
-0.0010543561074882746,
-0.047876663506031036,
0.026198772713541985,
-0.00850162748247385,
-0.00416425708681345,
-0.02586027979850769,
0.03562282770872116,
-0.06855926662683487,
0.028345346450805664,
-0.010831364430487156,
-0.011991292238235474,
0.017845701426267624,
-0.018561270087957382,
0.04134223610162735,
0.005852395202964544,
-0.0036986726336181164,
0.05933798477053642,
-0.019060203805565834,
0.02695082500576973,
-0.02189577929675579,
0.07307315617799759,
0.12142112851142883,
0.029590141028165817,
0.027196718379855156,
0.033051371574401855,
-0.014379613101482391,
-0.08785948902368546,
-0.008882212452590466,
-0.005090760998427868,
0.006976875010877848,
-0.026215221732854843,
0.02269318327307701,
0.04500997066497803,
-0.003441162407398224,
-0.0428704209625721,
-0.08815597742795944,
-0.016042737290263176,
-0.08221777528524399,
-0.033504918217659,
0.13973483443260193,
-0.002713229274377227,
0.07471256703138351,
-0.054777275770902634,
-0.01771753467619419,
-0.04570142924785614,
0.04085640236735344,
-0.0559074804186821,
-0.036403484642505646,
0.02190161868929863,
0.03167828172445297,
0.08713308721780777,
0.056125011295080185,
-0.03064647503197193,
-0.013339263387024403,
-0.06699378043413162,
-0.025207271799445152,
-0.03969071805477142,
0.050202932208776474,
-0.0040615336038172245,
-0.13438984751701355,
-0.005839410703629255,
0.017781414091587067,
0.00759308272972703,
-0.07097811251878738,
0.034657906740903854,
0.04085656255483627,
-0.06809236854314804,
0.037286821752786636,
0.09014048427343369,
0.026788542047142982,
-0.020994538441300392,
0.01107250340282917,
0.04157056286931038,
0.01985257677733898,
0.008272852748632431,
-0.04690411686897278,
-0.02040131203830242,
0.0013680816628038883,
0.016997074708342552,
-0.06759865581989288,
-0.014375853352248669,
-0.030954977497458458,
0.010014841333031654,
0.03319941461086273,
0.01670689880847931,
-0.025149108842015266,
-0.0033977741841226816,
-0.005685423035174608,
-0.037452951073646545,
-0.034047503024339676,
-0.012257864698767662,
-0.03537212684750557,
0.01990930177271366,
-0.05032821372151375,
0.0671767145395279,
-0.005395745392888784,
-0.02175356261432171,
0.0356953889131546,
0.021240733563899994,
0.005570991430431604,
-0.022639010101556778,
0.006736344192177057,
0.07263955473899841,
-0.03825110197067261,
-0.013310059905052185,
0.037518471479415894,
0.02290204167366028,
-0.04157053306698799,
-0.02770864963531494,
-0.012640463188290596,
0.027237243950366974,
0.03972684219479561,
0.01350418571382761,
0.04415252432227135,
0.010752489790320396,
-0.10226192325353622,
-0.04142718389630318,
-0.24746477603912354,
-0.014612038619816303,
0.01697053574025631,
0.02490438148379326,
0.003051621373742819,
-0.05416061729192734,
0.01075802929699421,
-0.010420547798275948,
0.004918764811009169,
0.07377146184444427,
0.06506434828042984,
-0.008630586788058281,
-0.005419563502073288,
-0.014287658035755157,
-0.012289995327591896,
0.056995801627635956,
0.02811206877231598,
0.04929168522357941,
-0.04266800731420517,
0.020218512043356895,
-0.014609151519834995,
-0.004914604593068361,
-0.019688928499817848,
-0.07352694123983383,
0.03740683197975159,
0.0067376671358942986,
0.19344304502010345,
0.05234111472964287,
0.017430691048502922,
-0.02683289907872677,
0.0159767996519804,
-0.02852308563888073,
-0.05037617310881615,
-0.09080924093723297,
0.04829741641879082,
0.027069438248872757,
0.0373876579105854,
0.016920723021030426,
-0.0564219169318676,
-0.028823113068938255,
-0.0027833369094878435,
0.052227746695280075,
0.033642176538705826,
-0.02276080846786499,
-0.025606852024793625,
-0.03707291558384895,
-0.018540026620030403,
-0.027665935456752777,
-0.057529788464307785,
0.051039919257164,
0.015165667980909348,
0.018665149807929993,
0.08525774627923965,
0.002991840709000826,
-0.022106468677520752,
-0.043668460100889206,
-0.0604475736618042,
0.047731634229421616,
-0.03384130075573921,
0.03325377404689789,
-0.024323860183358192,
-0.052288055419921875,
0.04757116734981537,
-0.01638127863407135,
0.06374376267194748,
0.005597884301096201,
-0.02089351788163185,
-0.03222193568944931,
0.020612573251128197,
-0.030357474461197853,
-0.014153389260172844,
0.08451005816459656,
-0.037712566554546356,
0.03305785730481148,
0.0341624952852726,
0.03588235750794411,
0.01465357095003128,
-0.022428613156080246,
-0.05711648240685463,
-0.02139160968363285,
0.049428123980760574,
-0.034984126687049866,
0.031668324023485184,
0.044325392693281174,
0.058265723288059235,
0.010701034218072891,
0.0884629487991333,
-0.021644309163093567,
0.023570377379655838,
-0.021651623770594597,
-0.02723810449242592,
-0.01056947372853756,
-0.04779176786541939,
-0.005052921362221241,
0.013826953247189522,
0.05522893741726875,
-0.29917794466018677,
0.05252394452691078,
-0.017712585628032684,
0.02172098308801651,
0.02108917199075222,
0.014535223133862019,
0.03598915413022041,
0.01809760183095932,
-0.015879858285188675,
0.02409427799284458,
0.019297003746032715,
0.007411750964820385,
0.044197361916303635,
-0.009898428805172443,
-0.01807081326842308,
0.039918072521686554,
0.06318823993206024,
-0.05754382535815239,
0.022424468770623207,
-0.008552773855626583,
0.06929280608892441,
0.04720866680145264,
0.22320255637168884,
-0.021426910534501076,
0.01589374616742134,
0.017835823819041252,
0.0032307389192283154,
-0.02991933934390545,
0.07975093275308609,
0.006689458154141903,
0.013739068061113358,
-0.0067437817342579365,
0.05437305197119713,
-0.047520458698272705,
0.03621581941843033,
0.06988257169723511,
-0.057910989969968796,
0.03344104066491127,
0.02605871483683586,
-0.03805220499634743,
-0.005698624532669783,
0.009273494593799114,
-0.016642875969409943,
-0.016307778656482697,
0.09361521899700165,
-0.03883981332182884,
-0.04309486225247383,
-0.09968561679124832,
0.01707642152905464,
0.01150926947593689,
-0.08678998053073883,
-0.010501817800104618,
-0.04352860897779465,
0.007916548289358616,
0.014117158949375153,
0.053944095969200134,
-0.002714748028665781,
0.012501150369644165,
0.02157880738377571,
-0.0618087463080883,
0.014958055689930916,
-0.0916425958275795,
0.015075203031301498,
0.024886325001716614,
0.026690905913710594
] |