Datasets:
block_pixel
int32 1
24
| grid_size
int32 1
20
| first_block
stringclasses 2
values | image
imagewidth (px) 1
480
|
---|---|---|---|
10 | 1 | black | |
10 | 10 | black | |
10 | 11 | black | |
10 | 12 | black | |
10 | 13 | black | |
10 | 14 | black | |
10 | 15 | black | |
10 | 16 | black | |
10 | 17 | black | |
10 | 18 | black | |
10 | 19 | black | |
10 | 2 | black | |
10 | 20 | black | |
10 | 3 | black | |
10 | 4 | black | |
10 | 5 | black | |
10 | 6 | black | |
10 | 7 | black | |
10 | 8 | black | |
10 | 9 | black | |
11 | 1 | black | |
11 | 10 | black | |
11 | 11 | black | |
11 | 12 | black | |
11 | 13 | black | |
11 | 14 | black | |
11 | 15 | black | |
11 | 16 | black | |
11 | 17 | black | |
11 | 18 | black | |
11 | 19 | black | |
11 | 2 | black | |
11 | 20 | black | |
11 | 3 | black | |
11 | 4 | black | |
11 | 5 | black | |
11 | 6 | black | |
11 | 7 | black | |
11 | 8 | black | |
11 | 9 | black | |
12 | 1 | black | |
12 | 10 | black | |
12 | 11 | black | |
12 | 12 | black | |
12 | 13 | black | |
12 | 14 | black | |
12 | 15 | black | |
12 | 16 | black | |
12 | 17 | black | |
12 | 18 | black | |
12 | 19 | black | |
12 | 2 | black | |
12 | 20 | black | |
12 | 3 | black | |
12 | 4 | black | |
12 | 5 | black | |
12 | 6 | black | |
12 | 7 | black | |
12 | 8 | black | |
12 | 9 | black | |
13 | 1 | black | |
13 | 10 | black | |
13 | 11 | black | |
13 | 12 | black | |
13 | 13 | black | |
13 | 14 | black | |
13 | 15 | black | |
13 | 16 | black | |
13 | 17 | black | |
13 | 18 | black | |
13 | 19 | black | |
13 | 2 | black | |
13 | 20 | black | |
13 | 3 | black | |
13 | 4 | black | |
13 | 5 | black | |
13 | 6 | black | |
13 | 7 | black | |
13 | 8 | black | |
13 | 9 | black | |
14 | 1 | black | |
14 | 10 | black | |
14 | 11 | black | |
14 | 12 | black | |
14 | 13 | black | |
14 | 14 | black | |
14 | 15 | black | |
14 | 16 | black | |
14 | 17 | black | |
14 | 18 | black | |
14 | 19 | black | |
14 | 2 | black | |
14 | 20 | black | |
14 | 3 | black | |
14 | 4 | black | |
14 | 5 | black | |
14 | 6 | black | |
14 | 7 | black | |
14 | 8 | black | |
14 | 9 | black |
GridTallyBench: Checkerboard Image Dataset for MLLM Benchmarking
Overview
GridTallyBench is a collection of synthetic checkerboard images designed to test and benchmark Multi-modal Large Language Models (MLLMs) on tasks involving visual pattern recognition and counting. This dataset offers a controlled environment for evaluating model performance on basic visual tasks, particularly useful for assessing an MLLM's ability to count and describe simple geometric patterns.
Dataset Details
- Name: GridTallyBench
- Version: 1.0.0
- Task: Image classification and object counting
- Size: 960 images
- Format: Parquet file containing image data and metadata
- License: MIT
Content
The dataset consists of checkerboard images with the following variations:
- Block sizes: 1x1 to 24x24 pixels
- Grid sizes: 1x1 to 20x20 blocks
- Starting colors: Black-first and white-first patterns
Each image in the dataset is accompanied by metadata including:
block_pixel
: Size of each square in pixels (1 to 24)grid_size
: Number of squares in each row/column (1 to 20)first_block
: Color of the top-left square ('black' or 'white')image
: Binary data of the PNG image
Use Cases
This dataset is particularly useful for:
- Testing MLLM's ability to count objects in images
- Evaluating pattern recognition capabilities
- Assessing color differentiation in simple scenarios
- Benchmarking performance on controlled, synthetic images
Loading the Dataset
To load and use this dataset with the Hugging Face datasets
library:
from datasets import load_dataset
dataset = load_dataset("MoonTideF/GridTallyBench")
# Access the first item
first_item = dataset['test'][0]
print(f"Block size: {first_item['block_pixel']}x{first_item['block_pixel']} pixels")
print(f"Grid size: {first_item['grid_size']}x{first_item['grid_size']} blocks")
print(f"First block color: {first_item['first_block']}")
dataset['test'][0]['image'].show()
Dataset Creation
This dataset was generated using a custom Python script. The images are synthetic and do not contain any real-world content or personal information.
Limitations
- The dataset is limited to black and white colors only
- Images are synthetic and may not represent real-world complexity
- The largest image size is 480x480 pixels (20x20 grid with 24x24 pixel blocks)
Citation
If you use this dataset in your research, please cite it as follows:
@misc{gridtallybench,
author = {MoonTideF},
title = {GridTallyBench: Checkerboard Image Dataset for MLLM Benchmarking},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face Datasets},
howpublished = {\url{https://huggingface.co/datasets/MoonTideF/GridTallyBench}}
}
Contact
For any questions or feedback regarding this dataset, please contact [Your Contact Information].
- Downloads last month
- 37