File size: 3,646 Bytes
94992a3
35b4c57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94992a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---

language:
- en
license: [mit]
annotations_creators:
- no-annotation
language_creators:
- machine-generated
pretty_name: GridTallyBench
size_categories:
- n<1k
source_datasets:
- original
task_categories:
- image-classification
- object-detection
task_ids:
- multi-class-image-classification
- object-counting
dataset_info:
  features:
  - name: block_pixel
    dtype: int32
  - name: grid_size
    dtype: int32
  - name: first_block
    dtype: string
  - name: image
    dtype: image
  splits:
  - name: test
    num_examples: 960
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
---


# GridTallyBench: Checkerboard Image Dataset for MLLM Benchmarking

## Overview

GridTallyBench is a collection of synthetic checkerboard images designed to test and benchmark Multi-modal Large Language Models (MLLMs) on tasks involving visual pattern recognition and counting. This dataset offers a controlled environment for evaluating model performance on basic visual tasks, particularly useful for assessing an MLLM's ability to count and describe simple geometric patterns.

## Dataset Details

- **Name**: GridTallyBench
- **Version**: 1.0.0
- **Task**: Image classification and object counting
- **Size**: 960 images
- **Format**: Parquet file containing image data and metadata
- **License**: MIT

## Content

The dataset consists of checkerboard images with the following variations:

- **Block sizes**: 1x1 to 24x24 pixels
- **Grid sizes**: 1x1 to 20x20 blocks
- **Starting colors**: Black-first and white-first patterns

Each image in the dataset is accompanied by metadata including:

- `block_pixel`: Size of each square in pixels (1 to 24)
- `grid_size`: Number of squares in each row/column (1 to 20)
- `first_block`: Color of the top-left square ('black' or 'white')
- `image`: Binary data of the PNG image

## Use Cases

This dataset is particularly useful for:

1. Testing MLLM's ability to count objects in images
2. Evaluating pattern recognition capabilities
3. Assessing color differentiation in simple scenarios
4. Benchmarking performance on controlled, synthetic images

## Loading the Dataset

To load and use this dataset with the Hugging Face `datasets` library:

```python

from datasets import load_dataset



dataset = load_dataset("MoonTideF/GridTallyBench")



# Access the first item

first_item = dataset['test'][0]

print(f"Block size: {first_item['block_pixel']}x{first_item['block_pixel']} pixels")

print(f"Grid size: {first_item['grid_size']}x{first_item['grid_size']} blocks")

print(f"First block color: {first_item['first_block']}")

dataset['test'][0]['image'].show()

```

## Dataset Creation

This dataset was generated using a custom Python script. The images are synthetic and do not contain any real-world content or personal information.

## Limitations

- The dataset is limited to black and white colors only
- Images are synthetic and may not represent real-world complexity
- The largest image size is 480x480 pixels (20x20 grid with 24x24 pixel blocks)

## Citation

If you use this dataset in your research, please cite it as follows:

```

@misc{gridtallybench,

  author = {MoonTideF},

  title = {GridTallyBench: Checkerboard Image Dataset for MLLM Benchmarking},

  year = {2024},

  publisher = {Hugging Face},

  journal = {Hugging Face Datasets},

  howpublished = {\url{https://huggingface.co/datasets/MoonTideF/GridTallyBench}}

}

```

## Contact

For any questions or feedback regarding this dataset, please contact [Your Contact Information].

---