document_id
stringlengths
9
10
focus
stringlengths
8
65
qa_pair_id
stringclasses
10 values
question_id
stringlengths
11
12
question_type
stringclasses
12 values
question_text
stringlengths
24
120
answer_text
stringlengths
49
29k
0000015_1
Childhood Extracranial Germ Cell Tumors
1
0000015_1-1
information
What is (are) Childhood Extracranial Germ Cell Tumors ?
Key Points - Childhood extracranial germ cell tumors form from germ cells in parts of the body other than the brain. - Childhood extracranial germ cell tumors may be benign or malignant. - There are three types of extracranial germ cell tumors. - Mature Teratomas - Immature Teratomas - Malignant Germ Cell Tumors - Childhood extracranial germ cell tumors are grouped as gonadal or extragonadal. - Gonadal Germ Cell Tumors - Extragonadal Extracranial Germ Cell Tumors - The cause of most childhood extracranial germ cell tumors is unknown. - Having certain inherited disorders can increase the risk of an extracranial germ cell tumor. - Signs of childhood extracranial germ cell tumors depend on the type of tumor and where it is in the body. - Imaging studies and blood tests are used to detect (find) and diagnose childhood extracranial germ cell tumors. - Certain factors affect prognosis (chance of recovery) and treatment options. Childhood extracranial germ cell tumors form from germ cells in parts of the body other than the brain. A germ cell is a type of cell that forms as a fetus (unborn baby) develops. These cells later become sperm in the testicles or eggs in the ovaries. Sometimes while the fetus is forming, germ cells travel to parts of the body where they should not be and grow into a germ cell tumor. The tumor may form before or after birth. This summary is about germ cell tumors that form in parts of the body that are extracranial (outside the brain). Extracranial germ cell tumors usually form in the following areas of the body: - Testicles. - Ovaries. - Sacrum or coccyx (bottom part of the spine). - Retroperitoneum (the back wall of the abdomen). - Mediastinum (area between the lungs). Extracranial germ cell tumors are most common in adolescents 15 to 19 years of age. See the PDQ summary on Childhood Central Nervous System Germ Cell Tumors Treatment for information on intracranial (inside the brain) germ cell tumors. Childhood extracranial germ cell tumors may be benign or malignant. Extracranial germ cell tumors may be benign (noncancer) or malignant (cancer). There are three types of extracranial germ cell tumors. Extracranial germ cell tumors are grouped into mature teratomas, immature teratomas, and malignant germ cell tumors: Mature Teratomas Mature teratomas are the most common type of extracranial germ cell tumor. Mature teratomas are benign tumors and not likely to become cancer. They usually occur in the sacrum or coccyx (bottom part of the spine) in newborns or in the ovaries of girls at the start of puberty. The cells of mature teratomas look almost like normal cells under a microscope. Some mature teratomas release enzymes or hormones that cause signs and symptoms of disease. Immature Teratomas Immature teratomas also usually occur in the sacrum or coccyx (bottom part of the spine) in newborns or the ovaries of girls at the start of puberty. Immature teratomas have cells that look very different from normal cells under a microscope. Immature teratomas may be cancer. They often have several different types of tissue in them, such as hair, muscle, and bone. Some immature teratomas release enzymes or hormones that cause signs and symptoms of disease. Malignant Germ Cell Tumors Malignant germ cell tumors are cancer. There are two main types of malignant germ cell tumors: - Germinomas: Tumors that make a hormone called beta-human chorionic gonadotropin (-hCG). There are three types of germinomas. - Dysgerminomas form in the ovary in girls. - Seminomas form in the testicle in boys. - Germinomas form in areas of the body that are not the ovary or testicle. - Nongerminomas: There are four types of nongerminomas. - Yolk sac tumors make a hormone called alpha-fetoprotein (AFP). They can form in the ovary, testicle, or other areas of the body. - Choriocarcinomas make a hormone called beta-human chorionic gonadotropin (-hCG). They can form in the ovary, testicle, or other areas of the body. - Embryonal carcinomas may make a hormone called -hCG and/or a hormone called AFP. They can form in the testicle or other parts of the body, but not in the ovary. - Mixed germ cell tumors are made up of both malignant germ cell tumor and teratoma. They can form in the ovary, testicle, or other areas of the body. Childhood extracranial germ cell tumors are grouped as gonadal or extragonadal. Malignant extracranial germ cell tumors are gonadal or extragonadal. Gonadal Germ Cell Tumors Gonadal germ cell tumors form in the testicles in boys or ovaries in girls. Testicular Germ Cell Tumors Testicular germ cell tumors are divided into two main types, seminoma and nonseminoma. - Seminomas make a hormone called beta-human chorionic gonadotropin (-hCG). - Nonseminomas are usually large and cause signs or symptoms. They tend to grow and spread more quickly than seminomas. Testicular germ cell tumors usually occur before the age of 4 years or in adolescents and young adults. Testicular germ cell tumors in adolescents and young adults are different from those that form in early childhood. Boys older than 14 years with testicular germ cell tumors are treated in pediatric cancer centers, but the treatment is much like the treatment used in adults. (See the PDQ summary on Testicular Cancer Treatment for more information.) Ovarian Germ Cell Tumors Ovarian germ cell tumors are more common in adolescent girls and young women. Most ovarian germ cell tumors are benign teratomas. Sometimes immature teratomas, dysgerminomas, yolk sac tumors, and mixed germ cell tumors (cancer) occur. (See the PDQ summary on Ovarian Germ Cell Tumors Treatment for more information.) Extragonadal Extracranial Germ Cell Tumors Extragonadal extracranial germ cell tumors form in areas other than the brain, testicles, or ovaries. Most extragonadal extracranial germ cell tumors form along the midline of the body. This includes the following: - Sacrum (the large, triangle-shaped bone in the lower spine that forms part of the pelvis). - Coccyx (the small bone at the bottom of the spine, also called the tailbone). - Mediastinum (the area between the lungs). - Back of the abdomen. - Neck. In younger children, extragonadal extracranial germ cell tumors usually occur at birth or in early childhood. Most of these tumors are teratomas in the sacrum or coccyx. In older children, adolescents, and young adults, extragonadal extracranial germ cell tumors are often in the mediastinum.
0000015_1
Childhood Extracranial Germ Cell Tumors
2
0000015_1-2
causes
What causes Childhood Extracranial Germ Cell Tumors ?
The cause of most childhood extracranial germ cell tumors is unknown.
0000015_1
Childhood Extracranial Germ Cell Tumors
3
0000015_1-3
susceptibility
Who is at risk for Childhood Extracranial Germ Cell Tumors? ?
Having certain inherited disorders can increase the risk of an extracranial germ cell tumor. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your childs doctor if you think your child may be at risk. Possible risk factors for extracranial germ cell tumors include the following: - Having certain genetic syndromes: - Klinefelter syndrome may increase the risk of germ cell tumors in the mediastinum. - Swyer syndrome may increase the risk of germ cell tumors in the testicles or ovaries. - Turner syndrome may increase the risk of germ cell tumors in the ovaries. - Having an undescended testicle may increase the risk of developing a testicular germ cell tumor.
0000015_1
Childhood Extracranial Germ Cell Tumors
4
0000015_1-4
symptoms
What are the symptoms of Childhood Extracranial Germ Cell Tumors ?
Signs of childhood extracranial germ cell tumors depend on the type of tumor and where it is in the body. Different tumors may cause the following signs and symptoms. Other conditions may cause these same signs and symptoms. Check with a doctor if your child has any of the following: - A lump in the abdomen or lower back. - A painless lump in the testicle. - Pain in the abdomen. - Fever. - Constipation. - In females, no menstrual periods. - In females, unusual vaginal bleeding.
0000015_1
Childhood Extracranial Germ Cell Tumors
5
0000015_1-5
exams and tests
How to diagnose Childhood Extracranial Germ Cell Tumors ?
Imaging studies and blood tests are used to detect (find) and diagnose childhood extracranial germ cell tumors. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. The testicles may be checked for lumps, swelling, or pain. A history of the patient's health habits and past illnesses and treatments will also be taken. - Serum tumor marker test : A procedure in which a sample of blood is checked to measure the amounts of certain substances released into the blood by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the blood. These are called tumor markers. Most malignant germ cell tumors release tumor markers. The following tumor markers are used to detect extracranial germ cell tumors: - Alpha-fetoprotein (AFP). - Beta-human chorionic gonadotropin (-hCG). For testicular germ cell tumors, blood levels of the tumor markers help show if the tumor is a seminoma or nonseminoma. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. In some cases, the tumor is removed during surgery and then a biopsy is done. The following tests may be done on the sample of tissue that is removed: - Cytogenetic analysis : A laboratory test in which cells in a sample of tissue are viewed under a microscope to look for certain changes in the chromosomes. - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer.
0000015_1
Childhood Extracranial Germ Cell Tumors
6
0000015_1-6
outlook
What is the outlook for Childhood Extracranial Germ Cell Tumors ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The type of germ cell tumor. - Where the tumor first began to grow. - The stage of the cancer (whether it has spread to nearby areas or to other places in the body). - How well the tumor responds to treatment (lower AFP and -hCG levels). - Whether the tumor can be completely removed by surgery. - The patient's age and general health. - Whether the cancer has just been diagnosed or has recurred (come back). The prognosis for childhood extracranial germ cell tumors, especially ovarian germ cell tumors, is good.
0000015_1
Childhood Extracranial Germ Cell Tumors
7
0000015_1-7
stages
What are the stages of Childhood Extracranial Germ Cell Tumors ?
Key Points - After a childhood extracranial germ cell tumor has been diagnosed, tests are done to find out if cancer cells have spread from where the tumor started to nearby areas or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - Stages are used to describe the different types of extracranial germ cell tumors. - Childhood nonseminoma testicular germ cell tumors - Childhood ovarian germ cell tumors - Childhood extragonadal extracranial germ cell tumors After a childhood extracranial germ cell tumor has been diagnosed, tests are done to find out if cancer cells have spread from where the tumor started to nearby areas or to other parts of the body. The process used to find out if cancer has spread from where the tumor started to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. In some cases, staging may follow surgery to remove the tumor. The following procedures may be used: - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the lymph nodes. This procedure is also called nuclear magnetic resonance imaging. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the chest or lymph nodes, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones with cancer and is detected by a scanner. - Thoracentesis : The removal of fluid from the space between the lining of the chest and the lung, using a needle. A pathologist views the fluid under a microscope to look for cancer cells. - Paracentesis : The removal of fluid from the space between the lining of the abdomen and the organs in the abdomen, using a needle. A pathologist views the fluid under a microscope to look for cancer cells. The results from tests and procedures used to detect and diagnose childhood extracranial germ cell tumors may also be used in staging. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if an extracranial germ cell tumor spreads to the liver, the cancer cells in the liver are actually cancerous germ cells. The disease is metastatic extracranial germ cell tumor, not liver cancer. Stages are used to describe the different types of extracranial germ cell tumors. Childhood nonseminoma testicular germ cell tumors - Stage I: In stage I, the cancer is found in the testicle only and is completely removed by surgery. - Stage II: In stage II, the cancer is removed by surgery and some cancer cells remain in the scrotum or cancer that can be seen with a microscope only has spread to the scrotum or spermatic cord. Tumor marker levels do not return to normal after surgery or the tumor marker levels increase. - Stage III: In stage III, the cancer has spread to one or more lymph nodes in the abdomen and is not completely removed by surgery. The cancer that remains after surgery can be seen without a microscope. - Stage IV: In stage IV, the cancer has spread to distant parts of the body such as the liver, brain, bone, or lung. Childhood ovarian germ cell tumors There are two types of stages used for childhood ovarian germ cell tumors. The following stages are from the Children's Oncology Group: - Stage I: In stage I, the cancer is in the ovary and can be completely removed by surgery and the capsule (outer covering) of the ovary has not ruptured (broken open). - Stage II: In stage II, one of the following is true: - The cancer is not completely removed by surgery. The remaining cancer can be seen with a microscope only. - The cancer has spread to the lymph nodes and can be seen with a microscope only. - The cancer has spread to the capsule (outer covering) of the ovary. - Stage III: In stage III, one of the following is true: - The cancer is not completely removed by surgery. The remaining cancer can be seen without a microscope. - The cancer has spread to lymph nodes and the lymph nodes are 2 centimeters or larger. Cancer in the lymph nodes can be seen without a microscope. - The cancer is found in fluid in the abdomen. - Stage IV: In stage IV, the cancer has spread to the lung, liver, brain, or bone. The following stages are from the International Federation of Gynecology and Obstetrics (FIGO): - Stage I: In stage I, cancer is found in one or both of the ovaries and has not spread. Stage I is divided into stage IA, stage IB, and stage IC. - Stage IA: Cancer is found in one ovary. - Stage IB: Cancer is found in both ovaries. - Stage IC: Cancer is found in one or both ovaries and one of the following is true: - cancer is found on the outside surface of one or both ovaries; or - the capsule (outer covering) of the tumor has ruptured (broken open); or - cancer cells are found in fluid that has collected in the abdomen; or - cancer cells are found in washings of the peritoneal cavity (the body cavity that contains most of the organs in the abdomen). - Stage II: In stage II, cancer is found in one or both ovaries and has spread into other areas of the pelvis. Stage II is divided into stage IIA, stage IIB, and stage IIC. - Stage IIA: Cancer has spread to the uterus and/or the fallopian tubes (the long slender tubes through which eggs pass from the ovaries to the uterus). - Stage IIB: Cancer has spread to other tissue within the pelvis such as the bladder, rectum, or vagina. - Stage IIC: Cancer has spread to the uterus and/or fallopian tubes and/or other tissue within the pelvis and one of the following is true: - cancer is found on the outside surface of one or both ovaries; or - the capsule (outer covering) of the tumor has ruptured (broken open); or - cancer cells are found in fluid that has collected in the abdomen; or - cancer cells are found in washings of the peritoneal cavity (the body cavity that contains most of the organs in the abdomen). - Stage III: In stage III, cancer is found in one or both ovaries and has spread to other parts of the abdomen. Cancer that has spread to the surface of the liver is also stage III disease. Stage III is divided into stage IIIA, stage IIIB, and stage IIIC: - Stage IIIA: The tumor is found in the pelvis only, but cancer cells that can only be seen with a microscope have spread to the surface of the peritoneum (tissue that lines the abdominal wall and covers most of the organs in the abdomen) or to the small bowel. - Stage IIIB: Cancer has spread to the peritoneum and is 2 centimeters or smaller in diameter. - Stage IIIC: Cancer has spread to the peritoneum and is larger than 2 centimeters in diameter and/or has spread to lymph nodes in the abdomen. - Stage IV: In stage IV, cancer is found in one or both ovaries and has metastasized (spread) beyond the abdomen to other parts of the body. Cancer that has spread to tissues in the liver is also stage IV disease. Childhood extragonadal extracranial germ cell tumors - Stage I: In stage I, the cancer is in one place and can be completely removed by surgery. For tumors in the sacrum or coccyx (bottom part of the spine), the sacrum and coccyx are completely removed by surgery. Tumor marker levels return to normal after surgery. - Stage II: In stage II, the cancer has spread to the capsule (outer covering) and/or lymph nodes. The cancer is not completely removed by surgery and the cancer remaining after surgery can be seen with a microscope only. Tumor marker levels do not return to normal after surgery or increase. - Stage III: In stage III, one of the following is true: - The cancer is not completely removed by surgery. The cancer remaining after surgery can be seen without a microscope. - The cancer has spread to lymph nodes and is larger than 2 centimeters in diameter. - Stage IV: In stage IV, the cancer has spread to distant parts of the body, including the liver, brain, bone, or lung.
0000015_1
Childhood Extracranial Germ Cell Tumors
8
0000015_1-8
treatment
What are the treatments for Childhood Extracranial Germ Cell Tumors ?
Key Points - There are different types of treatment for children with extracranial germ cell tumors. - Children with extracranial germ cell tumors should have their treatment planned by a team of health care providers who are experts in treating cancer in children. - Some cancer treatments cause side effects months or years after treatment has ended. - Three types of standard treatment are used: - Surgery - Observation - Chemotherapy - New types of treatment are being tested in clinical trials. - High-dose chemotherapy with stem cell transplant - Radiation therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for children with extracranial germ cell tumors. Different types of treatments are available for children with extracranial germ cell tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Children with extracranial germ cell tumors should have their treatment planned by a team of health care providers who are experts in treating cancer in children. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other health care providers who are experts in treating children with extracranial germ cell tumors and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Pediatric surgeon. - Pediatric hematologist. - Radiation oncologist. - Endocrinologist. - Pediatric nurse specialist. - Rehabilitation specialist. - Child life professional. - Psychologist. - Social worker. - Geneticist. Some cancer treatments cause side effects months or years after treatment has ended. Side effects from cancer treatment that begin during or after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). For example, late effects of surgery to remove tumors in the sacrum or coccyx include constipation, loss of bowel and bladder control, and scars. Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information). Three types of standard treatment are used: Surgery Surgery to completely remove the tumor is done whenever possible. If the tumor is very large, chemotherapy may be given first, to make the tumor smaller and decrease the amount of tissue that needs to be removed during surgery. A goal of surgery is to keep reproductive function. The following types of surgery may be used: - Resection: Surgery to remove tissue or part or all of an organ. - Radical inguinal orchiectomy: Surgery to remove one or both testicles through an incision (cut) in the groin. - Unilateral salpingo-oophorectomy: Surgery to remove one ovary and one fallopian tube on the same side. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Observation Observation is closely monitoring a patients condition without giving any treatment until signs or symptoms appear or change. For childhood extracranial germ cell tumors, this includes physical exams, imaging tests, and tumor marker tests. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on the type and stage of the cancer being treated. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of cancer and whether it has come back. External radiation therapy is being studied for the treatment of childhood extracranial germ cell tumors that have come back. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For childhood extracranial germ cell tumors, alpha-fetoprotein (AFP) tests and beta-human chorionic gonadotropin (-hCG) tests are done to see if treatment is working. Continued high levels of AFP or -hCG may mean the cancer is still growing. For at least 3 years after surgery, follow-up will include regular physical exams, imaging tests, and tumor marker tests. Treatment Options for Childhood Extracranial Germ Cell Tumors Mature and Immature Teratomas Treatment of mature teratomas that are not in the sacrum or coccyx (bottom part of the spine) includes the following: - Surgery to remove the tumor followed by observation. Treatment of immature teratomas that are not in the sacrum or coccyx includes the following: - Surgery to remove the tumor followed by observation for stage I tumors. - Surgery to remove the tumor for stage IIIV tumors. Treatment of immature teratomas that are in the sacrum or coccyx includes the following: - Surgery (removal of the sacrum and coccyx) followed by observation. Sometimes a mature or immature teratoma also has malignant cells. The teratoma and malignant cells may need to be treated differently. Regular follow-up exams with imaging tests and the alpha-fetoprotein (AFP) tumor marker test will be done for at least 3 years. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood teratoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Malignant Gonadal Germ Cell Tumors Malignant Testicular Germ Cell Tumors Treatment of malignant testicular germ cell tumors may include the following: For boys younger than 15 years: - Surgery (radical inguinal orchiectomy) followed by observation for stage I tumors. - Surgery (radical inguinal orchiectomy) followed by combination chemotherapy for stage II-IV tumors. A second surgery may be done to remove any tumor remaining after chemotherapy. For boys 15 years and older: Malignant testicular germ cell tumors in boys 15 years and older are treated differently than they are in young boys. Surgery may include removal of lymph nodes in the abdomen. (See the PDQ summary on Testicular Cancer Treatment for more information.) Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood malignant testicular germ cell tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Malignant Ovarian Germ Cell Tumors Dysgerminomas Treatment of stage I dysgerminomas in young girls may include the following: - Surgery (unilateral salpingo-oophorectomy) followed by observation. Combination chemotherapy may be given if the tumor comes back. Treatment of stages IIIV dysgerminomas in young girls may include the following: - Surgery (unilateral salpingo-oophorectomy) followed by combination chemotherapy. - Combination chemotherapy to shrink the tumor, followed by surgery (unilateral salpingo-oophorectomy). Nongerminomas Treatment of stage I nongerminomas in young girls may include the following: - Surgery followed by observation. - Surgery followed by combination chemotherapy. Treatment of stages IIIV nongerminomas in young girls may include the following: - Surgery followed by combination chemotherapy. A second surgery may be done to remove any remaining cancer. - Biopsy followed by combination chemotherapy to shrink the tumor and sometimes surgery for tumors that cannot be removed by surgery when cancer is diagnosed. The treatment for adolescents and young adults with ovarian germ cell tumor is much like the treatment for adults. (See the PDQ treatment summary on Ovarian Germ Cell Tumors for more information.) Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood malignant ovarian germ cell tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Malignant Extragonadal Extracranial Germ Cell Tumors Treatment of childhood malignant extragonadal extracranial germ cell tumors may include the following: - Combination chemotherapy to shrink the tumor followed by surgery to remove the sacrum and coccyx (bottom part of the spine) for tumors that are in the sacrum or coccyx. - Combination chemotherapy to shrink the tumor followed by surgery to remove tumors that are in the mediastinum. - Biopsy followed by combination chemotherapy to shrink the tumor and surgery to remove tumors that are in the abdomen. - Surgery to remove the tumor followed by combination chemotherapy for tumors of the head and neck. Treatment of malignant extragonadal extracranial germ cell tumors in places not already described includes the following: - Surgery followed by combination chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood extragonadal germ cell tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Recurrent Childhood Malignant Extracranial Germ Cell Tumors There is no standard treatment for recurrent childhood malignant extracranial germ cell tumors. Treatment depends on the following: - The type of treatment given when the cancer was diagnosed. - How the tumor responded to the initial treatment. Treatment is usually within a clinical trial and may include the following: - Surgery. - Surgery followed by combination chemotherapy, for most malignant extracranial germ cell tumors including immature teratomas, malignant testicular germ cell tumors, and malignant ovarian germ cell tumors. - Surgery for tumors that come back in the sacrum or coccyx (bottom part of the spine), if surgery to remove the sacrum and coccyx was not done when the cancer was diagnosed. Chemotherapy may be given before surgery, to shrink the tumor. If any tumor remains after surgery, radiation therapy may also be given. - Combination chemotherapy for stage I malignant testicular germ cell tumors and stage I ovarian dysgerminomas. - High-dose chemotherapy and stem cell transplant. - Radiation therapy followed by surgery to remove the tumor in the brain for cancer that has spread to the brain. - A clinical trial of combination chemotherapy alone compared with high-dose chemotherapy followed by stem cell transplant. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent childhood malignant germ cell tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
0000015_1
Childhood Extracranial Germ Cell Tumors
9
0000015_1-9
research
what research (or clinical trials) is being done for Childhood Extracranial Germ Cell Tumors ?
New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of cancer and whether it has come back. External radiation therapy is being studied for the treatment of childhood extracranial germ cell tumors that have come back. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
0000004_4
Mycosis Fungoides and the Szary Syndrome
1
0000004_4-1
information
What is (are) Mycosis Fungoides and the Szary Syndrome ?
Key Points - Mycosis fungoides and the Szary syndrome are diseases in which lymphocytes (a type of white blood cell) become malignant (cancerous) and affect the skin. - Mycosis fungoides and the Szary syndrome are types of cutaneous T-cell lymphoma. - A sign of mycosis fungoides is a red rash on the skin. - In the Szary syndrome, cancerous T-cells are found in the blood. - Tests that examine the skin and blood are used to detect (find) and diagnose mycosis fungoides and the Szary syndrome. - Certain factors affect prognosis (chance of recovery) and treatment options. Mycosis fungoides and the Szary syndrome are diseases in which lymphocytes (a type of white blood cell) become malignant (cancerous) and affect the skin. Normally, the bone marrow makes blood stem cells (immature cells) that become mature blood stem cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A myeloid stem cell becomes a red blood cell, white blood cell, or platelet. A lymphoid stem cell becomes a lymphoblast and then one of three types of lymphocytes (white blood cells): - B-cell lymphocytes that make antibodies to help fight infection. - T-cell lymphocytes that help B-lymphocytes make the antibodies that help fight infection. - Natural killer cells that attack cancer cells and viruses. In mycosis fungoides, T-cell lymphocytes become cancerous and affect the skin. In the Szary syndrome, cancerous T-cell lymphocytes affect the skin and are in the blood. Mycosis fungoides and the Szary syndrome are types of cutaneous T-cell lymphoma. Mycosis fungoides and the Szary syndrome are the two most common types of cutaneous T-cell lymphoma (a type of non-Hodgkin lymphoma). For information about other types of skin cancer or non-Hodgkin lymphoma, see the following PDQ summaries: - Adult Non-Hodgkin Lymphoma Treatment - Skin Cancer Treatment - Melanoma Treatment - Kaposi Sarcoma Treatment In the Szary syndrome, cancerous T-cells are found in the blood. Also, skin all over the body is reddened, itchy, peeling, and painful. There may also be patches, plaques, or tumors on the skin. It is not known if the Szary syndrome is an advanced form of mycosis fungoides or a separate disease.
0000004_4
Mycosis Fungoides and the Szary Syndrome
2
0000004_4-2
symptoms
What are the symptoms of Mycosis Fungoides and the Szary Syndrome ?
A sign of mycosis fungoides is a red rash on the skin. Mycosis fungoides may go through the following phases: - Premycotic phase: A scaly, red rash in areas of the body that usually are not exposed to the sun. This rash does not cause symptoms and may last for months or years. It is hard to diagnose the rash as mycosis fungoides during this phase. - Patch phase: Thin, reddened, eczema -like rash. - Plaque phase: Small raised bumps (papules) or hardened lesions on the skin, which may be reddened. - Tumor phase: Tumors form on the skin. These tumors may develop ulcers and the skin may get infected. Check with your doctor if you have any of these signs.
0000004_4
Mycosis Fungoides and the Szary Syndrome
3
0000004_4-3
exams and tests
How to diagnose Mycosis Fungoides and the Szary Syndrome ?
Tests that examine the skin and blood are used to detect (find) and diagnose mycosis fungoides and the Szary syndrome. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps, the number and type of skin lesions, or anything else that seems unusual. Pictures of the skin and a history of the patients health habits and past illnesses and treatments will also be taken. - Complete blood count with differential : A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells and platelets. - The number and type of white blood cells. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the blood sample made up of red blood cells. - Peripheral blood smear : A procedure in which a sample of blood is viewed under a microscope to count different circulating blood cells (red blood cells, white blood cells, platelets, etc.) and see whether the cells look normal. - Skin biopsy : The removal of cells or tissues so they can be viewed under a microscope to check for signs of cancer. The doctor may remove a growth from the skin, which will be examined by a pathologist. More than one skin biopsy may be needed to diagnose mycosis fungoides. - Immunophenotyping : A process used to identify cells, based on the types of antigens or markers on the surface of the cell. This process may include special staining of the blood cells. It is used to diagnose specific types of leukemia and lymphoma by comparing the cancer cells to normal cells of the immune system. - T-cell receptor (TCR) gene rearrangement test: A laboratory test in which cells in a sample of tissue are checked to see if there is a certain change in the genes. This gene change can lead to too many of one kind of T-cells (white blood cells that fight infection) to be made. - Flow cytometry : A laboratory test that measures the number of cells in a sample of blood, the percentage of live cells in a sample, and certain characteristics of cells, such as size, shape, and the presence of tumor markers on the cell surface. The cells are stained with a light-sensitive dye, placed in a fluid, and passed in a stream before a laser or other type of light. The measurements are based on how the light-sensitive dye reacts to the light.
0000004_4
Mycosis Fungoides and the Szary Syndrome
4
0000004_4-4
outlook
What is the outlook for Mycosis Fungoides and the Szary Syndrome ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer. - The type of lesion (patches, plaques, or tumors). Mycosis fungoides and the Szary syndrome are hard to cure. Treatment is usually palliative, to relieve symptoms and improve the quality of life. Patients with early stage disease may live many years.
0000004_4
Mycosis Fungoides and the Szary Syndrome
5
0000004_4-5
research
what research (or clinical trials) is being done for Mycosis Fungoides and the Szary Syndrome ?
Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
0000004_4
Mycosis Fungoides and the Szary Syndrome
6
0000004_4-6
stages
What are the stages of Mycosis Fungoides and the Szary Syndrome ?
Key Points - After mycosis fungoides and the Szary syndrome have been diagnosed, tests are done to find out if cancer cells have spread from the skin to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for mycosis fungoides and the Szary syndrome: - Stage I Mycosis Fungoides - Stage II Mycosis Fungoides - Stage III Mycosis Fungoides - Stage IV Mycosis Fungoides - Stage IV Szary Syndrome After mycosis fungoides and the Szary syndrome have been diagnosed, tests are done to find out if cancer cells have spread from the skin to other parts of the body. The process used to find out if cancer has spread from the skin to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following procedures may be used in the staging process: - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the lymph nodes, chest, abdomen, and pelvis, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - Lymph node biopsy : The removal of all or part of a lymph node. A pathologist views the tissue under a microscope to look for cancer cells. - Bone marrow aspiration and biopsy : The removal of bone marrow and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow and bone under a microscope to look for signs of cancer. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if mycosis fungoides spreads to the liver, the cancer cells in the liver are actually mycosis fungoides cells. The disease is metastatic mycosis fungoides, not liver cancer. The following stages are used for mycosis fungoides and the Szary syndrome: Stage I Mycosis Fungoides Stage I is divided into stage IA and stage IB as follows: - Stage IA: Less than 10% of the skin surface is covered with patches, papules, and/or plaques. - Stage IB: Ten percent or more of the skin surface is covered with patches, papules, and/or plaques. There may be abnormal lymphocytes in the blood but they are not cancerous. Stage II Mycosis Fungoides Stage II is divided into stage IIA and stage IIB as follows: - Stage IIA: Any amount of the skin surface is covered with patches, papules, and/or plaques. Lymph nodes are enlarged but cancer has not spread to them. - Stage IIB: One or more tumors that are 1 centimeter or larger are found on the skin. Lymph nodes may be enlarged but cancer has not spread to them. There may be abnormal lymphocytes in the blood but they are not cancerous. Stage III Mycosis Fungoides In stage III, nearly all of the skin is reddened and may have patches, papules, plaques, or tumors. Lymph nodes may be enlarged but cancer has not spread to them. There may be abnormal lymphocytes in the blood but they are not cancerous. Stage IV Mycosis Fungoides Stage IV is divided into stage IVA and stage IVB as follows: - Stage IVA: Most of the skin is reddened and any amount of the skin surface is covered with patches, papules, plaques, or tumors, and either: - cancer has spread to lymph nodes and there may be cancerous lymphocytes in the blood; or - there are cancerous lymphocytes in the blood and lymph nodes may be enlarged, but cancer has not spread to them. - Stage IVB: Most of the skin is reddened and any amount of the skin surface is covered with patches, papules, plaques, or tumors. Cancer has spread to other organs in the body. Lymph nodes may be enlarged and cancer may have spread to them. There may be cancerous lymphocytes in the blood. Stage IV Szary Syndrome In stage IV: - Most of the skin is reddened and covered with patches, papules, plaques, or tumors; and - There is a high level of cancerous lymphocytes in the blood; and - Lymph nodes may be enlarged and cancer may have spread to them.
0000004_4
Mycosis Fungoides and the Szary Syndrome
7
0000004_4-7
treatment
What are the treatments for Mycosis Fungoides and the Szary Syndrome ?
Key Points - There are different types of treatment for patients with mycosis fungoides and the Szary syndrome cancer. - Six types of standard treatment are used: - Photodynamic therapy - Radiation therapy - Chemotherapy - Other drug therapy - Biologic therapy - Targeted therapy - New types of treatment are being tested in clinical trials. - High-dose chemotherapy and radiation therapy with stem cell transplant - Treatment for mycosis fungoides and the Szary syndrome may cause side effects. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with mycosis fungoides and the Szary syndrome cancer. Different types of treatment are available for patients with mycosis fungoides and the Szary syndrome. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Six types of standard treatment are used: Photodynamic therapy Photodynamic therapy is a cancer treatment that uses a drug and a certain type of laser light to kill cancer cells. A drug that is not active until it is exposed to light is injected into a vein. The drug collects more in cancer cells than in normal cells. For skin cancer, laser light is shined onto the skin and the drug becomes active and kills the cancer cells. Photodynamic therapy causes little damage to healthy tissue. Patients undergoing photodynamic therapy will need to limit the amount of time spent in sunlight. In one type of photodynamic therapy, called psoralen and ultraviolet A (PUVA) therapy, the patient receives a drug called psoralen and then ultraviolet radiation is directed to the skin. In another type of photodynamic therapy, called extracorporeal photochemotherapy, the patient is given drugs and then some blood cells are taken from the body, put under a special ultraviolet A light, and put back into the body. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat mycosis fungoides and the Szary syndrome, and may also be used as palliative therapy to relieve symptoms and improve quality of life. Sometimes, total skin electron beam (TSEB) radiation therapy is used to treat mycosis fungoides and the Szary syndrome. This is a type of external radiation treatment in which a radiation therapy machine aims electrons (tiny, invisible particles) at the skin covering the whole body. Ultraviolet B (UVB) radiation therapy uses a special lamp or laser that directs UVB radiation at the skin. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Sometimes the chemotherapy is topical (put on the skin in a cream, lotion, or ointment). The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Non-Hodgkin Lymphoma for more information. (Mycosis fungoides and the Szary syndrome are types of non-Hodgkin lymphoma.) Other drug therapy Topical corticosteroids are used to relieve red, swollen, and inflamed skin. They are a type of steroid. Topical corticosteroids may be in a cream, lotion, or ointment. Retinoids, such as bexarotene, are drugs related to vitamin A that can slow the growth of certain types of cancer cells. The retinoids may be taken by mouth or put on the skin. See Drugs Approved for Non-Hodgkin Lymphoma for more information. (Mycosis fungoides and the Szary syndrome are types of non-Hodgkin lymphoma.) Biologic therapy Biologic therapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Interferon is a type of biologic therapy used to treat mycosis fungoides and the Szary syndrome. It interferes with the division of cancer cells and can slow tumor growth. See Drugs Approved for Non-Hodgkin Lymphoma for more information. (Mycosis fungoides and the Szary syndrome are types of non-Hodgkin lymphoma.) Targeted therapy Targeted therapy is a treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibody therapy and other types of targeted therapies are used to treat mycosis fungoides and the Szary syndrome. Alemtuzumab is a monoclonal antibody used to treat mycosis fungoides and the Szary syndrome. Monoclonal antibody therapy uses antibodies made in the laboratory, from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Other types of monoclonal antibody therapy are being studied in clinical trials to treat mycosis fungoides and the Szary syndrome. Vorinostat and romidepsin are two of the histone deacetylase (HDAC) inhibitors used to treat mycosis fungoides and the Szary syndrome. HDAC inhibitors cause a chemical change that stops tumor cells from dividing. Pralatrexate is a dihydrofolate reductase (DHFR) inhibitor used to treat mycosis fungoides and the Szary syndrome. It builds up in cancer cells and stops them from using folate, a nutrient needed for cells to divide. Pralatrexate may slow the growth of tumors and kill cancer cells. See Drugs Approved for Non-Hodgkin Lymphoma for more information. (Mycosis fungoides and the Szary syndrome are types of non-Hodgkin lymphoma.) New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy and radiation therapy with stem cell transplant This treatment is a method of giving high doses of chemotherapy and radiation therapy and replacing blood-forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the bone marrow or blood of the patient or a donor and are frozen and stored. After therapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Treatment for mycosis fungoides and the Szary syndrome may cause side effects. For information about side effects caused by treatment for cancer, see our Side Effects page. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Stage I Mycosis Fungoides Treatment of stage I mycosis fungoides may include the following: - PUVA therapy. Biologic therapy may also be given. - Radiation therapy. In some cases, radiation therapy is given to skin lesions, as palliative therapy to reduce tumor size or relieve symptoms and improve quality of life. - Topical corticosteroid therapy. - Retinoid therapy. - Topical or systemic chemotherapy. - Biologic therapy. Topical chemotherapy may also be given. - Targeted therapy. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I mycosis fungoides/Sezary syndrome. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage II Mycosis Fungoides Treatment of stage II mycosis fungoides is palliative (to relieve symptoms and improve the quality of life) and may include the following: - PUVA therapy. Biologic therapy may also be given. - Radiation therapy. - Topical corticosteroid therapy. - Retinoid therapy. - Topical or systemic chemotherapy. - Biologic therapy. Topical chemotherapy may also be given. - Targeted therapy. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II mycosis fungoides/Sezary syndrome. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage III Mycosis Fungoides Treatment of stage III mycosis fungoides is palliative (to relieve symptoms and improve the quality of life) and may include the following: - PUVA therapy. Systemic chemotherapy or biologic therapy may also be given. - Extracorporeal photochemotherapy. - Radiation therapy. - Topical corticosteroid therapy. - Retinoid therapy. - Systemic chemotherapy with one or more drugs. Topical chemotherapy or radiation therapy may also be given. - Topical chemotherapy. - Biologic therapy. Topical chemotherapy may also be given. - Targeted therapy. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III mycosis fungoides/Sezary syndrome. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IV Mycosis Fungoides and the Szary Syndrome Treatment of stage IV mycosis fungoides and stage IV Szary syndrome is palliative (to relieve symptoms and improve the quality of life) and may include the following: - PUVA therapy. Systemic chemotherapy or biologic therapy may also be given. - Extracorporeal photochemotherapy. Radiation therapy may also be given. - Radiation therapy. - Topical corticosteroid therapy. - Retinoid therapy. - Systemic chemotherapy with one or more drugs, or topical chemotherapy. - Biologic therapy. Topical chemotherapy may also be given. - Targeted therapy. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IV mycosis fungoides/Sezary syndrome. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
0000024_2
Laryngeal Cancer
1
0000024_2-1
information
What is (are) Laryngeal Cancer ?
Key Points - Laryngeal cancer is a disease in which malignant (cancer) cells form in the tissues of the larynx. - Use of tobacco products and drinking too much alcohol can affect the risk of laryngeal cancer. - Signs and symptoms of laryngeal cancer include a sore throat and ear pain. - Tests that examine the throat and neck are used to help detect (find), diagnose, and stage laryngeal cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Laryngeal cancer is a disease in which malignant (cancer) cells form in the tissues of the larynx. The larynx is a part of the throat, between the base of the tongue and the trachea. The larynx contains the vocal cords, which vibrate and make sound when air is directed against them. The sound echoes through the pharynx, mouth, and nose to make a person's voice. There are three main parts of the larynx: - Supraglottis: The upper part of the larynx above the vocal cords, including the epiglottis. - Glottis: The middle part of the larynx where the vocal cords are located. - Subglottis: The lower part of the larynx between the vocal cords and the trachea (windpipe). Most laryngeal cancers form in squamous cells, the thin, flat cells lining the inside of the larynx. Laryngeal cancer is a type of head and neck cancer.
0000024_2
Laryngeal Cancer
2
0000024_2-2
susceptibility
Who is at risk for Laryngeal Cancer? ?
Use of tobacco products and drinking too much alcohol can affect the risk of laryngeal cancer.Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk.
0000024_2
Laryngeal Cancer
3
0000024_2-3
symptoms
What are the symptoms of Laryngeal Cancer ?
Signs and symptoms of laryngeal cancer include a sore throat and ear pain. These and other signs and symptoms may be caused by laryngeal cancer or by other conditions. Check with your doctor if you have any of the following: - A sore throat or cough that does not go away. - Trouble or pain when swallowing. - Ear pain. - A lump in the neck or throat. - A change or hoarseness in the voice.
0000024_2
Laryngeal Cancer
4
0000024_2-4
exams and tests
How to diagnose Laryngeal Cancer ?
Tests that examine the throat and neck are used to help detect (find), diagnose, and stage laryngeal cancer.The following tests and procedures may be used: - Physical exam of the throat and neck: An exam to check the throat and neck for abnormal areas. The doctor will feel the inside of the mouth with a gloved finger and examine the mouth and throat with a small long-handled mirror and light. This will include checking the insides of the cheeks and lips; the gums; the back, roof, and floor of the mouth; the top, bottom, and sides of the tongue; and the throat. The neck will be felt for swollen lymph nodes. A history of the patients health habits and past illnesses and medical treatments will also be taken. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. The sample of tissue may be removed during one of the following procedures: - Laryngoscopy : A procedure to look at the larynx (voice box) for abnormal areas. A mirror or a laryngoscope (a thin, tube-like instrument with a light and a lens for viewing) is inserted through the mouth to see the larynx. A special tool on the laryngoscope may be used to remove samples of tissue. - Endoscopy : A procedure to look at organs and tissues inside the body, such as the throat, esophagus, and trachea to check for abnormal areas. An endoscope (a thin, lighted tube with a light and a lens for viewing) is inserted through an opening in the body, such as the mouth. A special tool on the endoscope may be used to remove samples of tissue. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones and is detected by a scanner. - Barium swallow : A series of x-rays of the esophagus and stomach. The patient drinks a liquid that contains barium (a silver-white metallic compound). The liquid coats the esophagus and stomach, and x-rays are taken. This procedure is also called an upper GI series.
0000024_2
Laryngeal Cancer
5
0000024_2-5
outlook
What is the outlook for Laryngeal Cancer ?
Certain factors affect prognosis (chance of recovery) and treatment options. Prognosis (chance of recovery) depends on the following: - The stage of the disease. - The location and size of the tumor. - The grade of the tumor. - The patient's age, gender, and general health, including whether the patient is anemic. Treatment options depend on the following: - The stage of the disease. - The location and size of the tumor. - Keeping the patient's ability to talk, eat, and breathe as normal as possible. - Whether the cancer has come back (recurred). Smoking tobacco and drinking alcohol decrease the effectiveness of treatment for laryngeal cancer. Patients with laryngeal cancer who continue to smoke and drink are less likely to be cured and more likely to develop a second tumor. After treatment for laryngeal cancer, frequent and careful follow-up is important.
0000024_2
Laryngeal Cancer
6
0000024_2-6
stages
What are the stages of Laryngeal Cancer ?
Key Points - After laryngeal cancer has been diagnosed, tests are done to find out if cancer cells have spread within the larynx or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for laryngeal cancer: - Stage 0 (Carcinoma in Situ) - Stage I - Stage II - Stage III - Stage IV After laryngeal cancer has been diagnosed, tests are done to find out if cancer cells have spread within the larynx or to other parts of the body. The process used to find out if cancer has spread within the larynx or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage of the disease in order to plan treatment. The results of some of the tests used to diagnose laryngeal cancer are often also used to stage the disease. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if laryngeal cancer spreads to the lung, the cancer cells in the lung are actually laryngeal cancer cells. The disease is metastatic laryngeal cancer, not lung cancer. The following stages are used for laryngeal cancer: Stage 0 (Carcinoma in Situ) In stage 0, abnormal cells are found in the lining of the larynx. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. Stage I In stage I, cancer has formed. Stage I laryngeal cancer depends on where cancer began in the larynx: - Supraglottis: Cancer is in one area of the supraglottis only and the vocal cords can move normally. - Glottis: Cancer is in one or both vocal cords and the vocal cords can move normally. - Subglottis: Cancer is in the subglottis only. Stage II In stage II, cancer is in the larynx only. Stage II laryngeal cancer depends on where cancer began in the larynx: - Supraglottis: Cancer is in more than one area of the supraglottis or surrounding tissues. - Glottis: Cancer has spread to the supraglottis and/or the subglottis and/or the vocal cords cannot move normally. - Subglottis: Cancer has spread to one or both vocal cords, which may not move normally. Stage III Stage III laryngeal cancer depends on whether cancer has spread from the supraglottis, glottis, or subglottis. In stage III cancer of the supraglottis: - cancer is in the larynx only and the vocal cords cannot move, and/or cancer is in tissues next to the larynx. Cancer may have spread to one lymph node on the same side of the neck as the original tumor and the lymph node is 3 centimeters or smaller; or - cancer is in one area of the supraglottis and in one lymph node on the same side of the neck as the original tumor; the lymph node is 3 centimeters or smaller and the vocal cords can move normally; or - cancer is in more than one area of the supraglottis or surrounding tissues and in one lymph node on the same side of the neck as the original tumor; the lymph node is 3 centimeters or smaller. In stage III cancer of the glottis: - cancer is in the larynx only and the vocal cords cannot move, and/or cancer is in tissues next to the larynx; cancer may have spread to one lymph node on the same side of the neck as the original tumor and the lymph node is 3 centimeters or smaller; or - cancer is in one or both vocal cords and in one lymph node on the same side of the neck as the original tumor; the lymph node is 3 centimeters or smaller and the vocal cords can move normally; or - cancer has spread to the supraglottis and/or the subglottis and/or the vocal cords cannot move normally. Cancer has also spread to one lymph node on the same side of the neck as the original tumor and the lymph node is 3 centimeters or smaller. In stage III cancer of the subglottis: - cancer is in the larynx and the vocal cords cannot move; cancer may have spread to one lymph node on the same side of the neck as the original tumor and the lymph node is 3 centimeters or smaller; or - cancer is in the subglottis and in one lymph node on the same side of the neck as the original tumor; the lymph node is 3 centimeters or smaller; or - cancer has spread to one or both vocal cords, which may not move normally. Cancer has also spread to one lymph node on the same side of the neck as the original tumor and the lymph node is 3 centimeters or smaller. Stage IV Stage IV is divided into stage IVA, stage IVB, and stage IVC. Each substage is the same for cancer in the supraglottis, glottis, or subglottis. - In stage IVA: - cancer has spread through the thyroid cartilage and/or has spread to tissues beyond the larynx such as the neck, trachea, thyroid, or esophagus. Cancer may have spread to one lymph node on the same side of the neck as the original tumor and the lymph node is 3 centimeters or smaller; or - cancer has spread to one lymph node on the same side of the neck as the original tumor and the lymph node is larger than 3 centimeters but not larger than 6 centimeters, or has spread to more than one lymph node anywhere in the neck with none larger than 6 centimeters. Cancer may have spread to tissues beyond the larynx, such as the neck, trachea, thyroid, or esophagus. The vocal cords may not move normally. - In stage IVB: - cancer has spread to the space in front of the spinal column, surrounds the carotid artery, or has spread to parts of the chest. Cancer may have spread to one or more lymph nodes anywhere in the neck and the lymph nodes may be any size; or - cancer has spread to a lymph node that is larger than 6 centimeters and may have spread as far as the space in front of the spinal column, around the carotid artery, or to parts of the chest. The vocal cords may not move normally. - In stage IVC, cancer has spread to other parts of the body, such as the lungs, liver, or bone.
0000024_2
Laryngeal Cancer
7
0000024_2-7
treatment
What are the treatments for Laryngeal Cancer ?
Key Points - There are different types of treatment for patients with laryngeal cancer. - Three types of standard treatment are used: - Radiation therapy - Surgery - Chemotherapy - New types of treatment are being tested in clinical trials. - Chemoprevention - Radiosensitizers - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with laryngeal cancer. Different types of treatment are available for patients with laryngeal cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Three types of standard treatment are used: Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells. There are two types of radiation therapy. External radiation therapy uses a machine outside the body to send radiation toward the cancer. Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. Radiation therapy may work better in patients who have stopped smoking before beginning treatment. External radiation therapy to the thyroid or the pituitary gland may change the way the thyroid gland works. The doctor may test the thyroid gland before and after therapy to make sure it is working properly. Hyperfractionated radiation therapy and new types of radiation therapy are being studied in the treatment of laryngeal cancer. Surgery Surgery (removing the cancer in an operation) is a common treatment for all stages of laryngeal cancer. The following surgical procedures may be used: - Cordectomy: Surgery to remove the vocal cords only. - Supraglottic laryngectomy: Surgery to remove the supraglottis only. - Hemilaryngectomy: Surgery to remove half of the larynx (voice box). A hemilaryngectomy saves the voice. - Partial laryngectomy: Surgery to remove part of the larynx (voice box). A partial laryngectomy helps keep the patient's ability to talk. - Total laryngectomy: Surgery to remove the whole larynx. During this operation, a hole is made in the front of the neck to allow the patient to breathe. This is called a tracheostomy. - Thyroidectomy: The removal of all or part of the thyroid gland. - Laser surgery: A surgical procedure that uses a laser beam (a narrow beam of intense light) as a knife to make bloodless cuts in tissue or to remove a surface lesion such as a tumor Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Head and Neck Cancer for more information. (Laryngeal cancer is a type of head and neck cancer.) New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Chemoprevention Chemoprevention is the use of drugs, vitamins, or other substances to reduce the risk of developing cancer or to reduce the risk cancer will recur (come back). The drug isotretinoin is being studied to prevent the development of a second cancer in patients who have had cancer of the head or neck. Radiosensitizers Radiosensitizers are drugs that make tumor cells more sensitive to radiation therapy. Combining radiation therapy with radiosensitizers may kill more tumor cells. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Stage I Laryngeal Cancer Treatment of stage I laryngeal cancer depends on where cancer is found in the larynx. If cancer is in the supraglottis, treatment may include the following: - Radiation therapy. - Supraglottic laryngectomy. If cancer is in the glottis, treatment may include the following: - Radiation therapy. - Cordectomy. - Partial laryngectomy, hemilaryngectomy, or total laryngectomy. - Laser surgery. If cancer is in the subglottis, treatment may include the following: - Radiation therapy with or without surgery. - Surgery alone. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I laryngeal cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage II Laryngeal Cancer Treatment of stage II laryngeal cancer depends on where cancer is found in the larynx. If cancer is in the supraglottis, treatment may include the following: - Radiation therapy - Supraglottic laryngectomy or total laryngectomy with or without radiation therapy. - A clinical trial of radiation therapy. - A clinical trial of chemoprevention. If cancer is in the glottis, treatment may include the following: - Radiation therapy. - Partial laryngectomy, hemilaryngectomy, or total laryngectomy. - Laser surgery. - A clinical trial of radiation therapy. - A clinical trial of chemoprevention. If cancer is in the subglottis, treatment may include the following: - Radiation therapy with or without surgery. - Surgery alone. - A clinical trial of radiation therapy. - A clinical trial of chemoprevention. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II laryngeal cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage III Laryngeal Cancer Treatment of stage III laryngeal cancer depends on where cancer is found in the larynx. If cancer is in the supraglottis or glottis, treatment may include the following: - Chemotherapy and radiation therapy given together. - Chemotherapy followed by chemotherapy and radiation therapy given together. Laryngectomy may be done if cancer remains. - Radiation therapy for patients who cannot be treated with chemotherapy and surgery.For tumors that do not respond to radiation, total laryngectomy may be done. - Surgery, which may be followed by radiation therapy. - A clinical trial of radiation therapy. - A clinical trial of chemotherapy, radiosensitizers, or radiation therapy. - A clinical trial of chemoprevention. If cancer is in the subglottis, treatment may include the following: - Laryngectomy plus total thyroidectomy and removal of lymph nodes in the throat, usually followed by radiation therapy. - Radiation therapy with or without surgery. - A clinical trial of chemotherapy, radiosensitizers, or radiation therapy. - A clinical trial of chemoprevention. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III laryngeal cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IV Laryngeal Cancer Treatment of stage IV laryngeal cancer depends on where cancer is found in the larynx. If cancer is in the supraglottis or glottis, treatment may include the following: - Chemotherapy and radiation therapy given together. - Chemotherapy followed by chemotherapy and radiation therapy given together. Laryngectomy may be done if cancer remains. - Radiation therapy for patients who cannot be treated with chemotherapy and surgery. For tumors that do not respond to radiation, total laryngectomy may be done. - Surgery followed by radiation therapy. Chemotherapy may be given with the radiation therapy. - A clinical trial of radiation therapy. - A clinical trial of chemotherapy, radiosensitizers, or radiation therapy. - A clinical trial of chemoprevention. If cancer is in the subglottis, treatment may include the following: - Laryngectomy plus total thyroidectomy and removal of lymph nodes in the throat, usually with radiation therapy. - Radiation therapy. - A clinical trial of radiation therapy. - A clinical trial of chemotherapy, radiosensitizers, or radiation therapy. - A clinical trial of chemoprevention. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IV laryngeal cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
0000024_2
Laryngeal Cancer
8
0000024_2-8
research
what research (or clinical trials) is being done for Laryngeal Cancer ?
New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Chemoprevention Chemoprevention is the use of drugs, vitamins, or other substances to reduce the risk of developing cancer or to reduce the risk cancer will recur (come back). The drug isotretinoin is being studied to prevent the development of a second cancer in patients who have had cancer of the head or neck. Radiosensitizers Radiosensitizers are drugs that make tumor cells more sensitive to radiation therapy. Combining radiation therapy with radiosensitizers may kill more tumor cells. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
0000004_6
Childhood Hodgkin Lymphoma
1
0000004_6-1
information
What is (are) Childhood Hodgkin Lymphoma ?
Key Points - Childhood Hodgkin lymphoma is a disease in which malignant (cancer) cells form in the lymph system. - There are two types of childhood Hodgkin lymphoma. - Epstein-Barr virus infection increases the risk of childhood Hodgkin lymphoma. - Signs of childhood Hodgkin lymphoma include swollen lymph nodes, fever, night sweats, and weight loss. - Tests that examine the lymph system are used to detect (find) and diagnose childhood Hodgkin lymphoma. - Certain factors affect prognosis (chance of recovery) and treatment options. Childhood Hodgkin lymphoma is a disease in which malignant (cancer) cells form in the lymph system. Childhood Hodgkin lymphoma is a type of cancer that develops in the lymph system, which is part of the body's immune system. The immune system protects the body from foreign substances, infection, and diseases. The lymph system is made up of the following: - Lymph: Colorless, watery fluid that carries white blood cells called lymphocytes through the lymph system. Lymphocytes protect the body against infections and the growth of tumors. - Lymph vessels: A network of thin tubes that collect lymph from different parts of the body and return it to the bloodstream. - Lymph nodes: Small, bean-shaped structures that filter lymph and store white blood cells that help fight infection and disease. Lymph nodes are located along the network of lymph vessels found throughout the body. Clusters of lymph nodes are found in the neck, underarm, abdomen, pelvis, and groin. - Spleen: An organ that makes lymphocytes, filters the blood, stores blood cells, and destroys old blood cells. The spleen is on the left side of the abdomen near the stomach. - Thymus: An organ in which lymphocytes grow and multiply. The thymus is in the chest behind the breastbone. - Tonsils: Two small masses of lymph tissue at the back of the throat. The tonsils make lymphocytes. - Bone marrow: The soft, spongy tissue in the center of large bones. Bone marrow makes white blood cells, red blood cells, and platelets. Lymph tissue is also found in other parts of the body such as the stomach, thyroid gland, brain, and skin. There are two general types of lymphoma: Hodgkin lymphoma and non-Hodgkin lymphoma. (See the PDQ summary on Childhood Non-Hodgkin Lymphoma Treatment for more information.) Hodgkin lymphoma often occurs in adolescents 15 to 19 years of age. The treatment for children and adolescents is different than treatment for adults. (See the PDQ summary on Adult Hodgkin Lymphoma Treatment for more information.) There are two types of childhood Hodgkin lymphoma. The two types of childhood Hodgkin lymphoma are: - Classical Hodgkin lymphoma. - Nodular lymphocyte-predominant Hodgkin lymphoma. Classical Hodgkin lymphoma is divided into four subtypes, based on how the cancer cells look under a microscope: - Lymphocyte-rich classical Hodgkin lymphoma. - Nodular sclerosis Hodgkin lymphoma. - Mixed cellularity Hodgkin lymphoma. - Lymphocyte-depleted Hodgkin lymphoma.
0000004_6
Childhood Hodgkin Lymphoma
2
0000004_6-2
susceptibility
Who is at risk for Childhood Hodgkin Lymphoma? ?
Epstein-Barr virus infection increases the risk of childhood Hodgkin lymphoma. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your childs doctor if you think your child may be at risk. Risk factors for childhood Hodgkin lymphoma include the following: - Being infected with the Epstein-Barr virus. - Being infected with the human immunodeficiency virus (HIV). - Having certain diseases of the immune system. - Having a personal history of mononucleosis ("mono"). - Having a parent or sibling with a personal history of Hodgkin lymphoma. Being exposed to common infections in early childhood may decrease the risk of Hodgkin lymphoma in children because of the effect it has on the immune system.
0000004_6
Childhood Hodgkin Lymphoma
3
0000004_6-3
symptoms
What are the symptoms of Childhood Hodgkin Lymphoma ?
Signs of childhood Hodgkin lymphoma include swollen lymph nodes, fever, night sweats, and weight loss. These and other signs and symptoms may be caused by childhood Hodgkin lymphoma or by other conditions. Check with your child's doctor if your child has any of the following: - Painless, swollen lymph nodes near the collarbone or in the neck, chest, underarm, or groin. - Fever for no known reason. - Weight loss for no known reason. - Night sweats. - Fatigue. - Anorexia. - Itchy skin. - Pain in the lymph nodes after drinking alcohol. Fever, weight loss, and night sweats are called B symptoms.
0000004_6
Childhood Hodgkin Lymphoma
4
0000004_6-4
exams and tests
How to diagnose Childhood Hodgkin Lymphoma ?
Tests that examine the lymph system are used to detect (find) and diagnose childhood Hodgkin lymphoma. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patient's health habits and past illnesses and treatments will also be taken. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the neck, chest, abdomen, or pelvis, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. Sometimes a PET scan and a CT scan are done at the same time. If there is any cancer, this increases the chance that it will be found. - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - Complete blood count (CBC): A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells, white blood cells, and platelets. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the blood sample made up of red blood cells. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Sedimentation rate : A procedure in which a sample of blood is drawn and checked for the rate at which the red blood cells settle to the bottom of the test tube. The sedimentation rate is a measure of how much inflammation is in the body. A higher than normal sedimentation rate may be a sign of lymphoma. Also called erythrocyte sedimentation rate, sed rate, or ESR. - Lymph node biopsy : The removal of all or part of a lymph node. The lymph node may be removed during an image-guided CT scan or a thoracoscopy, mediastinoscopy, or laparoscopy. One of the following types of biopsies may be done: - Excisional biopsy : The removal of an entire lymph node. - Incisional biopsy : The removal of part of a lymph node. - Core biopsy : The removal of tissue from a lymph node using a wide needle. - Fine-needle aspiration (FNA) biopsy : The removal of tissue from a lymph node using a thin needle. A pathologist views the tissue under a microscope to look for cancer cells, especially Reed-Sternberg cells. Reed-Sternberg cells are common in classical Hodgkin lymphoma. The following test may be done on tissue that was removed: - Immunophenotyping : A laboratory test used to identify cells, based on the types of antigens or markers on the surface of the cell. This test is used to diagnose the specific type of lymphoma by comparing the cancer cells to normal cells of the immune system.
0000004_6
Childhood Hodgkin Lymphoma
5
0000004_6-5
outlook
What is the outlook for Childhood Hodgkin Lymphoma ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer. - The size of the tumor. - Whether there are B symptoms at diagnosis. - The type of Hodgkin lymphoma. - Certain features of the cancer cells. - Whether there are too many white blood cells or too few red blood cells at the time of diagnosis. - How well the tumor responds to initial treatment with chemotherapy. - Whether the cancer is newly diagnosed or has recurred (come back). The treatment options also depend on: - The child's age and gender. - The risk of long-term side effects. Most children and adolescents with newly diagnosed Hodgkin lymphoma can be cured.
0000004_6
Childhood Hodgkin Lymphoma
6
0000004_6-6
stages
What are the stages of Childhood Hodgkin Lymphoma ?
Key Points - After childhood Hodgkin lymphoma has been diagnosed, tests are done to find out if cancer cells have spread within the lymph system or to other parts of the body. - There are three ways that cancer spreads in the body. - Stages of childhood Hodgkin lymphoma may include A, B, E, and S. - The following stages are used for childhood Hodgkin lymphoma: - Stage I - Stage II - Stage III - Stage IV - Untreated Hodgkin lymphoma is divided into risk groups. After childhood Hodgkin lymphoma has been diagnosed, tests are done to find out if cancer cells have spread within the lymph system or to other parts of the body. The process used to find out if cancer has spread within the lymph system or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. Treatment is based on the stage and other factors that affect prognosis. The following tests and procedures may be used in the staging process: - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the neck, chest, abdomen, or pelvis, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. Sometimes a PET scan and a CT scan are done at the same time. If there is any cancer, this increases the chance that it will be found. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). An MRI of the abdomen and pelvis may be done. - Bone marrow aspiration and biopsy : The removal of bone marrow and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow and bone under a microscope to look for abnormal cells. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Stages of childhood Hodgkin lymphoma may include A, B, E, and S. Childhood Hodgkin lymphoma may be described as follows: - A: The patient does not have B symptoms (fever, weight loss, or night sweats). - B: The patient has B symptoms. - E: Cancer is found in an organ or tissue that is not part of the lymph system but which may be next to an area of the lymph system affected by the cancer. - S: Cancer is found in the spleen. The following stages are used for childhood Hodgkin lymphoma: Stage I Stage I is divided into stage I and stage IE. - Stage I: Cancer is found in one of the following places in the lymph system: - One or more lymph nodes in one lymph node group. - Waldeyer's ring. - Thymus. - Spleen. - Stage IE: Cancer is found outside the lymph system in one organ or area. Stage II Stage II is divided into stage II and stage IIE. - Stage II: Cancer is found in two or more lymph node groups either above or below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen). - Stage IIE: Cancer is found in one or more lymph node groups either above or below the diaphragm and outside the lymph nodes in a nearby organ or area. Stage III Stage III is divided into stage III, stage IIIE, stage IIIS, and stage IIIE,S. - Stage III: Cancer is found in lymph node groups above and below the diaphragm (the thin muscle below the lungs that helps breathing and separates the chest from the abdomen). - Stage IIIE: Cancer is found in lymph node groups above and below the diaphragm and outside the lymph nodes in a nearby organ or area. - Stage IIIS: Cancer is found in lymph node groups above and below the diaphragm, and in the spleen. - Stage IIIE,S: Cancer is found in lymph node groups above and below the diaphragm, outside the lymph nodes in a nearby organ or area, and in the spleen. Stage IV In stage IV, the cancer: - is found outside the lymph nodes throughout one or more organs, and may be in lymph nodes near those organs; or - is found outside the lymph nodes in one organ and has spread to areas far away from that organ; or - is found in the lung, liver, bone marrow, or cerebrospinal fluid (CSF). The cancer has not spread to the lung, liver, bone marrow, or CSF from nearby areas. Untreated Hodgkin lymphoma is divided into risk groups. Untreated childhood Hodgkin lymphoma is divided into risk groups based on the stage, size of the tumor, and whether the patient has B symptoms (fever, weight loss, or night sweats). The risk group is used to plan treatment. - Low-risk childhood Hodgkin lymphoma. - Intermediate-risk childhood Hodgkin lymphoma. - High-risk childhood Hodgkin lymphoma.
0000004_6
Childhood Hodgkin Lymphoma
7
0000004_6-7
research
what research (or clinical trials) is being done for Childhood Hodgkin Lymphoma ?
New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Proton beam radiation therapy Proton-beam therapy is a type of high-energy, external radiation therapy that uses streams of protons (small, positively-charged particles of matter) to make radiation. This type of radiation therapy may help lessen the damage to healthy tissue near the tumor. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
0000004_6
Childhood Hodgkin Lymphoma
8
0000004_6-8
treatment
What are the treatments for Childhood Hodgkin Lymphoma ?
Key Points - There are different types of treatment for children with Hodgkin lymphoma. - Children with Hodgkin lymphoma should have their treatment planned by a team of health care providers who are experts in treating childhood cancer. - Children and adolescents may have treatment-related side effects that appear months or years after treatment for Hodgkin lymphoma. - Five types of standard treatment are used: - Chemotherapy - Radiation therapy - Targeted therapy - Surgery - High-dose chemotherapy with stem cell transplant - New types of treatment are being tested in clinical trials. - Proton beam radiation therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for children with Hodgkin lymphoma. Different types of treatment are available for children with Hodgkin lymphoma. Some treatments are standard and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Children with Hodgkin lymphoma should have their treatment planned by a team of health care providers who are experts in treating childhood cancer. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with Hodgkin lymphoma and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Medical oncologist /hematologist. - Pediatric surgeon. - Radiation oncologist. - Endocrinologist. - Pediatric nurse specialist. - Rehabilitation specialist. - Psychologist. - Social worker. - Child-life specialist. The treatment of Hodgkin lymphoma in adolescents and young adults may be different than the treatment for children. Some adolescents and young adults are treated with an adult treatment regimen. Children and adolescents may have treatment-related side effects that appear months or years after treatment for Hodgkin lymphoma. Some cancer treatments cause side effects that continue or appear months or years after cancer treatment has ended. These are called late effects. Because late effects affect health and development, regular follow-up exams are important. Late effects of cancer treatment may include: - Physical problems that affect the following: - Development of sex and reproductive organs. - Fertility (ability to have children). - Bone and muscle growth and development. - Thyroid, heart, or lung function. - Teeth, gums, and salivary gland function. - Spleen function (increased risk of infection). - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). For female survivors of Hodgkin lymphoma, there is an increased risk of breast cancer. This risk depends on the amount of radiation therapy they received to the breast during treatment and the chemotherapy regimen used. The risk of breast cancer is decreased if these female survivors also received radiation therapy to the ovaries. It is suggested that female survivors who received radiation therapy to the breast have a mammogram once a year starting 8 years after treatment or at age 25 years, whichever is later. Female survivors of childhood Hodgkin lymphoma who have breast cancer have an increased risk of dying from the disease compared to patients with no history of Hodgkin lymphoma who have breast cancer. Some late effects may be treated or controlled. It is important to talk with your child's doctors about the possible late effects caused by some treatments. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information). Five types of standard treatment are used: Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on the risk group. For example, children with low-risk Hodgkin lymphoma receive fewer cycles of treatment, fewer anticancer drugs, and lower doses of anticancer drugs than children with high-risk lymphoma. See Drugs Approved for Hodgkin Lymphoma for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of external radiation therapy include the following: - Conformal radiation therapy: Conformal radiation therapy is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. - Intensity-modulated radiation therapy (IMRT): IMRT is a type of 3-dimensional (3-D) radiation therapy that uses a computer to make pictures of the size and shape of the tumor. Thin beams of radiation of different intensities (strengths) are aimed at the tumor from many angles. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. Radiation therapy may be given, based on the childs risk group and chemotherapy regimen. External radiation therapy is used to treat childhood Hodgkin lymphoma. The radiation is given only to the lymph nodes or other areas with cancer. Internal radiation therapy is not used to treat Hodgkin lymphoma. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibody therapy and proteasome inhibitor therapy are being used in the treatment of childhood Hodgkin lymphoma. Monoclonal antibody therapy is a cancer treatment that uses antibodies made in the laboratory from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. In children, rituximab may be used to treat refractory or recurrent Hodgkin lymphoma. Brentuximab, nivolumab, pembrolizumab, and atezolizumab are monoclonal antibodies being studied to treat children. Proteasome inhibitor therapy is a type of targeted therapy that blocks the action of proteasomes (proteins that remove other proteins the body no longer needs) in cancer cells and may prevent the growth of tumors. Bortezomib is a proteasome inhibitor used to treat refractory or recurrent childhood Hodgkin lymphoma. Surgery Surgery may be done to remove as much of the tumor as possible for localized nodular lymphocyte -predominant childhood Hodgkin lymphoma. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. See Drugs Approved for Hodgkin Lymphoma for more information. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Proton beam radiation therapy Proton-beam therapy is a type of high-energy, external radiation therapy that uses streams of protons (small, positively-charged particles of matter) to make radiation. This type of radiation therapy may help lessen the damage to healthy tissue near the tumor. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For patients who receive chemotherapy alone, a PET scan may be done 3 weeks or more after treatment ends. For patients who receive radiation therapy last, a PET scan should not be done until 8 to 12 weeks after treatment. Treatment Options for Children and Adolescents with Hodgkin Lymphoma Low-Risk Classical Childhood Hodgkin Lymphoma Treatment of low-risk classical childhood Hodgkin lymphoma may include the following: - Combination chemotherapy. - Radiation therapy may also be given to the areas with cancer. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I childhood Hodgkin lymphoma and stage II childhood Hodgkin lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Intermediate-Risk Classical Childhood Hodgkin Lymphoma Treatment of intermediate-risk classical childhood Hodgkin lymphoma may include the following: - Combination chemotherapy. - Radiation therapy may also be given to the areas with cancer. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I childhood Hodgkin lymphoma, stage II childhood Hodgkin lymphoma, stage III childhood Hodgkin lymphoma and stage IV childhood Hodgkin lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. High-Risk Classical Childhood Hodgkin Lymphoma Treatment of high-risk classical childhood Hodgkin lymphoma may include the following: - Higher dose combination chemotherapy. - Radiation therapy may also be given to the areas with cancer. - A clinical trial of targeted therapy and combination chemotherapy. Radiation therapy may also be given to the areas with cancer. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III childhood Hodgkin lymphoma and stage IV childhood Hodgkin lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Nodular Lymphocyte-Predominant Childhood Hodgkin Lymphoma Treatment of nodular lymphocyte-predominant childhood Hodgkin lymphoma may include the following: - Surgery, if the tumor can be completely removed. - Chemotherapy with or without low-dose external radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood nodular lymphocyte predominant Hodgkin lymphoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
0000013_2
Polycythemia Vera
1
0000013_2-1
information
What is (are) Polycythemia Vera ?
Key Points - Polycythemia vera is a disease in which too many red blood cells are made in the bone marrow. - Symptoms of polycythemia vera include headaches and a feeling of fullness below the ribs on the left side. - Special blood tests are used to diagnose polycythemia vera. Polycythemia vera is a disease in which too many red blood cells are made in the bone marrow. In polycythemia vera, the blood becomes thickened with too many red blood cells. The number of white blood cells and platelets may also increase. These extra blood cells may collect in the spleen and cause it to swell. The increased number of red blood cells, white blood cells, or platelets in the blood can cause bleeding problems and make clots form in blood vessels. This can increase the risk of stroke or heart attack. In patients who are older than 65 years or who have a history of blood clots, the risk of stroke or heart attack is higher. Patients also have an increased risk of acute myeloid leukemia or primary myelofibrosis.
0000013_2
Polycythemia Vera
2
0000013_2-2
symptoms
What are the symptoms of Polycythemia Vera ?
Symptoms of polycythemia vera include headaches and a feeling of fullness below the ribs on the left side. Polycythemia vera often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may occur as the number of blood cells increases. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: - A feeling of pressure or fullness below the ribs on the left side. - Headaches. - Double vision or seeing dark or blind spots that come and go. - Itching all over the body, especially after being in warm or hot water. - Reddened face that looks like a blush or sunburn. - Weakness. - Dizziness. - Weight loss for no known reason.
0000013_2
Polycythemia Vera
3
0000013_2-3
exams and tests
How to diagnose Polycythemia Vera ?
Special blood tests are used to diagnose polycythemia vera. In addition to a complete blood count, bone marrow aspiration and biopsy, and cytogenetic analysis, a serum erythropoietin test is used to diagnose polycythemia vera. In this test, a sample of blood is checked for the level of erythropoietin (a hormone that stimulates new red blood cells to be made). In polycythemia vera, the erythropoietin level would be lower than normal because the body does not need to make more red blood cells.
0000013_2
Polycythemia Vera
4
0000013_2-4
treatment
What are the treatments for Polycythemia Vera ?
The purpose of treatment for polycythemia vera is to reduce the number of extra blood cells. Treatment of polycythemia vera may include the following: - Phlebotomy. - Chemotherapy with or without phlebotomy. - Biologic therapy using interferon alfa or pegylated interferon alpha. - Low-dose aspirin. Check the list of NCI-supported cancer clinical trials that are now accepting patients with polycythemia vera. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
0000020_1
Gallbladder Cancer
1
0000020_1-1
information
What is (are) Gallbladder Cancer ?
Key Points - Gallbladder cancer is a disease in which malignant (cancer) cells form in the tissues of the gallbladder. - Being female can increase the risk of developing gallbladder cancer. - Signs and symptoms of gallbladder cancer include jaundice, fever, and pain. - Gallbladder cancer is difficult to detect (find) and diagnose early. - Tests that examine the gallbladder and nearby organs are used to detect (find), diagnose, and stage gallbladder cancer. - Certain factors affect the prognosis (chance of recovery) and treatment options. Gallbladder cancer is a disease in which malignant (cancer) cells form in the tissues of the gallbladder. Gallbladder cancer is a rare disease in which malignant (cancer) cells are found in the tissues of the gallbladder. The gallbladder is a pear-shaped organ that lies just under the liver in the upper abdomen. The gallbladder stores bile, a fluid made by the liver to digest fat. When food is being broken down in the stomach and intestines, bile is released from the gallbladder through a tube called the common bile duct, which connects the gallbladder and liver to the first part of the small intestine. The wall of the gallbladder has 3 main layers of tissue. - Mucosal (inner) layer. - Muscularis (middle, muscle) layer. - Serosal (outer) layer. Between these layers is supporting connective tissue. Primary gallbladder cancer starts in the inner layer and spreads through the outer layers as it grows. Gallbladder cancer is difficult to detect (find) and diagnose early. Gallbladder cancer is difficult to detect and diagnose for the following reasons: - There are no signs or symptoms in the early stages of gallbladder cancer. - The symptoms of gallbladder cancer, when present, are like the symptoms of many other illnesses. - The gallbladder is hidden behind the liver. Gallbladder cancer is sometimes found when the gallbladder is removed for other reasons. Patients with gallstones rarely develop gallbladder cancer.
0000020_1
Gallbladder Cancer
2
0000020_1-2
susceptibility
Who is at risk for Gallbladder Cancer? ?
Being female can increase the risk of developing gallbladder cancer. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for gallbladder cancer include the following: - Being female. - Being Native American.
0000020_1
Gallbladder Cancer
3
0000020_1-3
symptoms
What are the symptoms of Gallbladder Cancer ?
Signs and symptoms of gallbladder cancer include jaundice, fever, and pain. These and other signs and symptoms may be caused by gallbladder cancer or by other conditions. Check with your doctor if you have any of the following: - Jaundice (yellowing of the skin and whites of the eyes). - Pain above the stomach. - Fever. - Nausea and vomiting. - Bloating. - Lumps in the abdomen.
0000020_1
Gallbladder Cancer
4
0000020_1-4
exams and tests
How to diagnose Gallbladder Cancer ?
Tests that examine the gallbladder and nearby organs are used to detect (find), diagnose, and stage gallbladder cancer. Procedures that make pictures of the gallbladder and the area around it help diagnose gallbladder cancer and show how far the cancer has spread. The process used to find out if cancer cells have spread within and around the gallbladder is called staging. In order to plan treatment, it is important to know if the gallbladder cancer can be removed by surgery. Tests and procedures to detect, diagnose, and stage gallbladder cancer are usually done at the same time. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Liver function tests : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by the liver. A higher than normal amount of a substance can be a sign of liver disease that may be caused by gallbladder cancer. - Carcinoembryonic antigen (CEA) assay : A test that measures the level of CEA in the blood. CEA is released into the bloodstream from both cancer cells and normal cells. When found in higher than normal amounts, it can be a sign of gallbladder cancer or other conditions. - CA 19-9 assay : A test that measures the level of CA 19-9 in the blood. CA 19-9 is released into the bloodstream from both cancer cells and normal cells. When found in higher than normal amounts, it can be a sign of gallbladder cancer or other conditions. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the chest, abdomen, and pelvis, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. An abdominal ultrasound is done to diagnose gallbladder cancer. - PTC (percutaneous transhepatic cholangiography): A procedure used to x-ray the liver and bile ducts. A thin needle is inserted through the skin below the ribs and into the liver. Dye is injected into the liver or bile ducts and an x-ray is taken. If a blockage is found, a thin, flexible tube called a stent is sometimes left in the liver to drain bile into the small intestine or a collection bag outside the body. - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - ERCP (endoscopic retrograde cholangiopancreatography): A procedure used to x-ray the ducts (tubes) that carry bile from the liver to the gallbladder and from the gallbladder to the small intestine. Sometimes gallbladder cancer causes these ducts to narrow and block or slow the flow of bile, causing jaundice. An endoscope (a thin, lighted tube) is passed through the mouth, esophagus, and stomach into the first part of the small intestine. A catheter (a smaller tube) is then inserted through the endoscope into the bile ducts. A dye is injected through the catheter into the ducts and an x-ray is taken. If the ducts are blocked by a tumor, a fine tube may be inserted into the duct to unblock it. This tube (or stent) may be left in place to keep the duct open. Tissue samples may also be taken. - Laparoscopy : A surgical procedure to look at the organs inside the abdomen to check for signs of disease. Small incisions (cuts) are made in the wall of the abdomen and a laparoscope (a thin, lighted tube) is inserted into one of the incisions. Other instruments may be inserted through the same or other incisions to perform procedures such as removing organs or taking tissue samples for biopsy. The laparoscopy helps to find out if the cancer is within the gallbladder only or has spread to nearby tissues and if it can be removed by surgery. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. The biopsy may be done after surgery to remove the tumor. If the tumor clearly cannot be removed by surgery, the biopsy may be done using a fine needle to remove cells from the tumor.
0000020_1
Gallbladder Cancer
5
0000020_1-5
outlook
What is the outlook for Gallbladder Cancer ?
Certain factors affect the prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer (whether the cancer has spread from the gallbladder to other places in the body). - Whether the cancer can be completely removed by surgery. - The type of gallbladder cancer (how the cancer cell looks under a microscope). - Whether the cancer has just been diagnosed or has recurred (come back). Treatment may also depend on the age and general health of the patient and whether the cancer is causing signs or symptoms. Gallbladder cancer can be cured only if it is found before it has spread, when it can be removed by surgery. If the cancer has spread, palliative treatment can improve the patient's quality of life by controlling the symptoms and complications of this disease. Taking part in one of the clinical trials being done to improve treatment should be considered. Information about ongoing clinical trials is available from the NCI website.
0000020_1
Gallbladder Cancer
6
0000020_1-6
stages
What are the stages of Gallbladder Cancer ?
Key Points - Tests and procedures to stage gallbladder cancer are usually done at the same time as diagnosis. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for gallbladder cancer: - Stage 0 (Carcinoma in Situ) - Stage I - Stage II - Stage IIIA - Stage IIIB - Stage IVA - Stage IVB - For gallbladder cancer, stages are also grouped according to how the cancer may be treated. There are two treatment groups: - Localized (Stage I) - Unresectable, recurrent, or metastatic (Stage II, Stage III, and Stage IV) Tests and procedures to stage gallbladder cancer are usually done at the same time as diagnosis. See the General Information section for a description of tests and procedures used to detect, diagnose, and stage gallbladder cancer. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if gallbladder cancer spreads to the liver, the cancer cells in the liver are actually gallbladder cancer cells. The disease is metastatic gallbladder cancer, not liver cancer. The following stages are used for gallbladder cancer: Stage 0 (Carcinoma in Situ) In stage 0, abnormal cells are found in the inner (mucosal) layer of the gallbladder. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. Stage I In stage I, cancer has formed and has spread beyond the inner (mucosal) layer to a layer of tissue with blood vessels or to the muscle layer. Stage II In stage II, cancer has spread beyond the muscle layer to the connective tissue around the muscle. Stage IIIA In stage IIIA, cancer has spread through the thin layers of tissue that cover the gallbladder and/or to the liver and/or to one nearby organ (such as the stomach, small intestine, colon, pancreas, or bile ducts outside the liver). Stage IIIB In stage IIIB, cancer has spread to nearby lymph nodes and: - beyond the inner layer of the gallbladder to a layer of tissue with blood vessels or to the muscle layer; or - beyond the muscle layer to the connective tissue around the muscle; or - through the thin layers of tissue that cover the gallbladder and/or to the liver and/or to one nearby organ (such as the stomach, small intestine, colon, pancreas, or bile ducts outside the liver). Stage IVA In stage IVA, cancer has spread to a main blood vessel of the liver or to 2 or more nearby organs or areas other than the liver. Cancer may have spread to nearby lymph nodes. Stage IVB In stage IVB, cancer has spread to either: - lymph nodes along large arteries in the abdomen and/or near the lower part of the backbone; or - to organs or areas far away from the gallbladder. For gallbladder cancer, stages are also grouped according to how the cancer may be treated. There are two treatment groups: Localized (Stage I) Cancer is found in the wall of the gallbladder and can be completely removed by surgery. Unresectable, recurrent, or metastatic (Stage II, Stage III, and Stage IV) Unresectable cancer cannot be removed completely by surgery. Most patients with gallbladder cancer have unresectable cancer. Recurrent cancer is cancer that has recurred (come back) after it has been treated. Gallbladder cancer may come back in the gallbladder or in other parts of the body. Metastasis is the spread of cancer from the primary site (place where it started) to other places in the body. Metastatic gallbladder cancer may spread to surrounding tissues, organs, throughout the abdominal cavity, or to distant parts of the body.
0000020_1
Gallbladder Cancer
7
0000020_1-7
treatment
What are the treatments for Gallbladder Cancer ?
Key Points - There are different types of treatment for patients with gallbladder cancer. - Three types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - New types of treatment are being tested in clinical trials. - Radiation sensitizers - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with gallbladder cancer. Different types of treatments are available for patients with gallbladder cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Three types of standard treatment are used: Surgery Gallbladder cancer may be treated with a cholecystectomy, surgery to remove the gallbladder and some of the tissues around it. Nearby lymph nodes may be removed. A laparoscope is sometimes used to guide gallbladder surgery. The laparoscope is attached to a video camera and inserted through an incision (port) in the abdomen. Surgical instruments are inserted through other ports to perform the surgery. Because there is a risk that gallbladder cancer cells may spread to these ports, tissue surrounding the port sites may also be removed. If the cancer has spread and cannot be removed, the following types of palliative surgery may relieve symptoms: - Surgical biliary bypass: If the tumor is blocking the small intestine and bile is building up in the gallbladder, a biliary bypass may be done. During this operation, the gallbladder or bile duct will be cut and sewn to the small intestine to create a new pathway around the blocked area. - Endoscopic stent placement: If the tumor is blocking the bile duct, surgery may be done to put in a stent (a thin, flexible tube) to drain bile that has built up in the area. The stent may be placed through a catheter that drains to the outside of the body or the stent may go around the blocked area and drain the bile into the small intestine. - Percutaneous transhepatic biliary drainage: A procedure done to drain bile when there is a blockage and endoscopic stent placement is not possible. An x-ray of the liver and bile ducts is done to locate the blockage. Images made by ultrasound are used to guide placement of a stent, which is left in the liver to drain bile into the small intestine or a collection bag outside the body. This procedure may be done to relieve jaundice before surgery. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat gallbladder cancer. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Radiation sensitizers Clinical trials are studying ways to improve the effect of radiation therapy on tumor cells, including the following: - Hyperthermia therapy: A treatment in which body tissue is exposed to high temperatures to damage and kill cancer cells or to make cancer cells more sensitive to the effects of radiation therapy and certain anticancer drugs. - Radiosensitizers: Drugs that make tumor cells more sensitive to radiation therapy. Giving radiation therapy together with radiosensitizers may kill more tumor cells. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Gallbladder Cancer Localized Gallbladder Cancer Treatment of localized gallbladder cancer may include the following: - Surgery to remove the gallbladder and some of the tissue around it. Part of the liver and nearby lymph nodes may also be removed. Radiation therapy with or without chemotherapy may follow surgery. - Radiation therapy with or without chemotherapy. - A clinical trial of radiation therapy with radiosensitizers. Check the list of NCI-supported cancer clinical trials that are now accepting patients with localized gallbladder cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Unresectable, Recurrent, or Metastatic Gallbladder Cancer Treatment of unresectable, recurrent, or metastatic gallbladder cancer is usually within a clinical trial. Treatment may include the following: - Percutaneous transhepatic biliary drainage or the placement of stents to relieve symptoms caused by blocked bile ducts. This may be followed by radiation therapy as palliative treatment. - Surgery as palliative treatment to relieve symptoms caused by blocked bile ducts. - Chemotherapy. - A clinical trial of new ways to give palliative radiation therapy, such as giving it together with hyperthermia therapy, radiosensitizers, or chemotherapy. - A clinical trial of new drugs and drug combinations. Check the list of NCI-supported cancer clinical trials that are now accepting patients with unresectable gallbladder cancer, recurrent gallbladder cancer and metastatic gallbladder cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
0000020_1
Gallbladder Cancer
8
0000020_1-8
research
what research (or clinical trials) is being done for Gallbladder Cancer ?
New types of treatment are being tested in clinical trials. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Radiation sensitizers Clinical trials are studying ways to improve the effect of radiation therapy on tumor cells, including the following: - Hyperthermia therapy: A treatment in which body tissue is exposed to high temperatures to damage and kill cancer cells or to make cancer cells more sensitive to the effects of radiation therapy and certain anticancer drugs. - Radiosensitizers: Drugs that make tumor cells more sensitive to radiation therapy. Giving radiation therapy together with radiosensitizers may kill more tumor cells. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
0000019_5
Ovarian, Fallopian Tube, and Primary Peritoneal Cancer
1
0000019_5-1
information
What is (are) Ovarian, Fallopian Tube, and Primary Peritoneal Cancer ?
Key Points - Ovarian, fallopian tube, and primary peritoneal cancers are diseases in which malignant (cancer) cells form in the ovaries, fallopian tubes, or peritoneum. - In the United States, ovarian cancer is the fifth leading cause of cancer death in women. - Different factors increase or decrease the risk of getting ovarian, fallopian tube, and primary peritoneal cancer. Ovarian, fallopian tube, and primary peritoneal cancers are diseases in which malignant (cancer) cells form in the ovaries, fallopian tubes, or peritoneum. The ovaries are a pair of organs in the female reproductive system. They are located in the pelvis, one on each side of the uterus (the hollow, pear-shaped organ where a fetus grows). Each ovary is about the size and shape of an almond. The ovaries produce eggs and female hormones (chemicals that control the way certain cells or organs function). The fallopian tubes are a pair of long, slender tubes, one on each side of the uterus. Eggs pass from the ovaries, through the fallopian tubes, to the uterus. Cancer sometimes begins at the end of the fallopian tube near the ovary and spreads to the ovary. The peritoneum is the tissue that lines the abdominal wall and covers organs in the abdomen. Primary peritoneal cancer is cancer that forms in the peritoneum and has not spread there from another part of the body. Cancer sometimes begins in the peritoneum and spreads to the ovary. Ovarian epithelial cancer, fallopian tube cancer, and primary peritoneal cancer form in the same type of tissue. Studies of screening tests look at these cancers together. See the following PDQ summaries for more information about ovarian, fallopian tube, and primary peritoneal cancers: - Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Prevention - Genetics of Breast and Gynecologic Cancers - Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment - Ovarian Germ Cell Tumors Treatment - Ovarian Low Malignant Potential Tumors Treatment In the United States, ovarian cancer is the fifth leading cause of cancer death in women. Ovarian cancer is also the leading cause of death from cancer of the female reproductive system. Over the last 20 years, the number of new cases of ovarian cancer has gone down slightly in white women and in black women. Since 2005, the number of deaths from ovarian cancer also decreased slightly in white and black women.
0000019_5
Ovarian, Fallopian Tube, and Primary Peritoneal Cancer
2
0000019_5-2
susceptibility
Who is at risk for Ovarian, Fallopian Tube, and Primary Peritoneal Cancer? ?
Different factors increase or decrease the risk of getting ovarian, fallopian tube, and primary peritoneal cancer. Anything that increases your chance of getting a disease is called a risk factor. Anything that decreases your chance of getting a disease is called a protective factor. For information about risk factors and protective factors for ovarian cancer, see the Ovarian, Fallopian Tube, and Primary Peritoneal Cancer Prevention summary. Talk to your doctor about your risk of ovarian cancer. Screening tests have risks. Decisions about screening tests can be difficult. Not all screening tests are helpful and most have risks. Before having any screening test, you may want to talk about the test with your doctor. It is important to know the risks of the test and whether it has been proven to reduce the risk of dying from cancer. The risks of ovarian, fallopian tube, and primary peritoneal cancer screening tests include the following: Finding ovarian, fallopian tube, and primary peritoneal cancer may not improve health or help a woman live longer. Screening may not improve your health or help you live longer if you have advanced ovarian cancer or if it has already spread to other places in your body. False-negative test results can occur. Screening test results may appear to be normal even though ovarian cancer is present. A woman who receives a false-negative test result (one that shows there is no cancer when there really is) may delay seeking medical care even if she has symptoms. False-positive test results can occur. Screening test results may appear to be abnormal even though no cancer is present. A false-positive test result (one that shows there is cancer when there really isn't) can cause anxiety and is usually followed by more tests (such as a laparoscopy or a laparotomy to see if cancer is present), which also have risks. Problems caused by tests used to diagnose ovarian cancer include infection, blood loss, bowel injury, and heart and blood vessel problems. A false-positive test result can also lead to an unneeded oophorectomy (removal of one or both ovaries).
0000013_2
Chronic Myelogenous Leukemia
1
0000013_2-1
information
What is (are) Chronic Myelogenous Leukemia ?
Chronic myelogenous leukemia is a disease in which too many white blood cells are made in the bone marrow. See the PDQ summary on Chronic Myelogenous Leukemia Treatment for information on diagnosis, staging, and treatment.
0000013_2
Chronic Myelogenous Leukemia
2
0000013_2-2
treatment
What are the treatments for Chronic Myelogenous Leukemia ?
See the PDQ summary about Chronic Myelogenous Leukemia Treatment for information.
0000014_4
Endometrial Cancer
1
0000014_4-1
information
What is (are) Endometrial Cancer ?
Key Points - Endometrial cancer is a disease in which malignant (cancer) cells form in the tissues of the endometrium. - In the United States, endometrial cancer is the most common invasive cancer of the female reproductive system. - Health history and certain medicines can affect the risk of developing endometrial cancer. Endometrial cancer is a disease in which malignant (cancer) cells form in the tissues of the endometrium. The endometrium is the innermost lining of the uterus. The uterus is a hollow, muscular organ in a woman's pelvis. The uterus is where a fetus grows. In most nonpregnant women, the uterus is about 3 inches long. Cancer of the endometrium is different from cancer of the muscle of the uterus, which is called uterine sarcoma. See the PDQ summary on Uterine Sarcoma Treatment for more information. See the following PDQ summaries for more information about endometrial cancer: - Endometrial Cancer Treatment - Endometrial Cancer Prevention In the United States, endometrial cancer is the most common invasive cancer of the female reproductive system. Endometrial cancer is diagnosed most often in postmenopausal women at an average age of 60 years. From 2004 to 2013, the number of new cases of endometrial cancer increased slightly in white and black women. From 2005 to 2014, the number of deaths from endometrial cancer increased slightly in white and black women. When endometrial cancer is diagnosed in black women, it is usually more advanced and less likely to be cured.
0000014_4
Endometrial Cancer
2
0000014_4-2
susceptibility
Who is at risk for Endometrial Cancer? ?
Health history and certain medicines can affect the risk of developing endometrial cancer. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. People who think they may be at risk should discuss this with their doctor. Risk factors for endometrial cancer include the following: - Taking tamoxifen for treatment or prevention of breast cancer. - Taking estrogen alone. (Taking estrogen in combination with progestin does not appear to increase the risk of endometrial cancer.) - Being overweight. - Eating a high-fat diet. - Never giving birth. - Beginning menstruation at an early age. - Reaching menopause at an older age. - Having the gene for hereditary non-polyposis colon cancer (HNPCC). - Being white.
0000032_2
Small Cell Lung Cancer
1
0000032_2-1
information
What is (are) Small Cell Lung Cancer ?
Key Points - Small cell lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. - There are two main types of small cell lung cancer. - Smoking is the major risk factor for small cell lung cancer. - Signs and symptoms of small cell lung cancer include coughing, shortness of breath, and chest pain. - Tests and procedures that examine the lungs are used to detect (find), diagnose, and stage small cell lung cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. - For most patients with small cell lung cancer, current treatments do not cure the cancer. Small cell lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The lungs are a pair of cone-shaped breathing organs that are found in the chest. The lungs bring oxygen into the body when you breathe in and take out carbon dioxide when you breathe out. Each lung has sections called lobes. The left lung has two lobes. The right lung, which is slightly larger, has three. A thin membrane called the pleura surrounds the lungs. Two tubes called bronchi lead from the trachea (windpipe) to the right and left lungs. The bronchi are sometimes also affected by lung cancer. Small tubes called bronchioles and tiny air sacs called alveoli make up the inside of the lungs. There are two types of lung cancer: small cell lung cancer and non-small cell lung cancer. This summary is about small cell lung cancer and its treatment. See the following PDQ summaries for more information about lung cancer: - Non-Small Cell Lung Cancer Treatment - Unusual Cancers of Childhood Treatment - Lung Cancer Prevention - Lung Cancer Screening There are two main types of small cell lung cancer. These two types include many different types of cells. The cancer cells of each type grow and spread in different ways. The types of small cell lung cancer are named for the kinds of cells found in the cancer and how the cells look when viewed under a microscope: - Small cell carcinoma (oat cell cancer). - Combined small cell carcinoma. For most patients with small cell lung cancer, current treatments do not cure the cancer. If lung cancer is found, patients should think about taking part in one of the many clinical trials being done to improve treatment. Clinical trials are taking place in most parts of the country for patients with all stages of small cell lung cancer. Information about ongoing clinical trials is available from the NCI website.
0000032_2
Small Cell Lung Cancer
2
0000032_2-2
susceptibility
Who is at risk for Small Cell Lung Cancer? ?
Smoking is the major risk factor for small cell lung cancer. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for lung cancer. Risk factors for lung cancer include the following: - Smoking cigarettes, pipes, or cigars, now or in the past. This is the most important risk factor for lung cancer. The earlier in life a person starts smoking, the more often a person smokes, and the more years a person smokes, the greater the risk of lung cancer. - Being exposed to secondhand smoke. - Being exposed to radiation from any of the following: - Radiation therapy to the breast or chest. - Radon in the home or workplace. - Imaging tests such as CT scans. - Atomic bomb radiation. - Being exposed to asbestos, chromium, nickel, beryllium, arsenic, soot, or tar in the workplace. - Living where there is air pollution. - Having a family history of lung cancer. - Being infected with the human immunodeficiency virus (HIV). - Taking beta carotene supplements and being a heavy smoker. Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. When smoking is combined with other risk factors, the risk of lung cancer is increased.
0000032_2
Small Cell Lung Cancer
3
0000032_2-3
symptoms
What are the symptoms of Small Cell Lung Cancer ?
Signs and symptoms of small cell lung cancer include coughing, shortness of breath, and chest pain. These and other signs and symptoms may be caused by small cell lung cancer or by other conditions. Check with your doctor if you have any of the following: - Chest discomfort or pain. - A cough that doesnt go away or gets worse over time. - Trouble breathing. - Wheezing. - Blood in sputum (mucus coughed up from the lungs). - Hoarseness. - Trouble swallowing. - Loss of appetite. - Weight loss for no known reason. - Feeling very tired. - Swelling in the face and/or veins in the neck.
0000032_2
Small Cell Lung Cancer
4
0000032_2-4
exams and tests
How to diagnose Small Cell Lung Cancer ?
Tests and procedures that examine the lungs are used to detect (find), diagnose, and stage small cell lung cancer. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits, including smoking, and past jobs, illnesses, and treatments will also be taken. - Laboratory tests : Medical procedures that test samples of tissue, blood, urine, or other substances in the body. These tests help to diagnose disease, plan and check treatment, or monitor the disease over time. - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan) of the brain, chest, and abdomen : A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Sputum cytology : A microscope is used to check for cancer cells in the sputum (mucus coughed up from the lungs). - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. The different ways a biopsy can be done include the following: - Fine-needle aspiration (FNA) biopsy of the lung: The removal of tissue or fluid from the lung, using a thin needle. A CT scan, ultrasound, or other imaging procedure is used to find the abnormal tissue or fluid in the lung. A small incision may be made in the skin where the biopsy needle is inserted into the abnormal tissue or fluid. A sample is removed with the needle and sent to the laboratory. A pathologist then views the sample under a microscope to look for cancer cells. A chest x-ray is done after the procedure to make sure no air is leaking from the lung into the chest. - Bronchoscopy : A procedure to look inside the trachea and large airways in the lung for abnormal areas. A bronchoscope is inserted through the nose or mouth into the trachea and lungs. A bronchoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue samples, which are checked under a microscope for signs of cancer. - Thoracoscopy : A surgical procedure to look at the organs inside the chest to check for abnormal areas. An incision (cut) is made between two ribs, and a thoracoscope is inserted into the chest. A thoracoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue or lymph node samples, which are checked under a microscope for signs of cancer. In some cases, this procedure is used to remove part of the esophagus or lung. If certain tissues, organs, or lymph nodes cant be reached, a thoracotomy may be done. In this procedure, a larger incision is made between the ribs and the chest is opened. - Thoracentesis : The removal of fluid from the space between the lining of the chest and the lung, using a needle. A pathologist views the fluid under a microscope to look for cancer cells. - Mediastinoscopy : A surgical procedure to look at the organs, tissues, and lymph nodes between the lungs for abnormal areas. An incision (cut) is made at the top of the breastbone and a mediastinoscope is inserted into the chest. A mediastinoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue or lymph node samples, which are checked under a microscope for signs of cancer. - Light and electron microscopy : A laboratory test in which cells in a sample of tissue are viewed under regular and high-powered microscopes to look for certain changes in the cells. - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer.
0000032_2
Small Cell Lung Cancer
6
0000032_2-6
stages
What are the stages of Small Cell Lung Cancer ?
Key Points - After small cell lung cancer has been diagnosed, tests are done to find out if cancer cells have spread within the chest or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for small cell lung cancer: - Limited-Stage Small Cell Lung Cancer - Extensive-Stage Small Cell Lung Cancer After small cell lung cancer has been diagnosed, tests are done to find out if cancer cells have spread within the chest or to other parts of the body. The process used to find out if cancer has spread within the chest or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. Some of the tests used to diagnose small cell lung cancer are also used to stage the disease. (See the General Information section.) Other tests and procedures that may be used in the staging process include the following: - MRI (magnetic resonance imaging) of the brain: A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the brain, chest or upper abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. A PET scan and CT scan may be done at the same time. This is called a PET-CT. - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones and is detected by a scanner. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if small cell lung cancer spreads to the brain, the cancer cells in the brain are actually lung cancer cells. The disease is metastatic small cell lung cancer, not brain cancer. The following stages are used for small cell lung cancer: Limited-Stage Small Cell Lung Cancer In limited-stage, cancer is in the lung where it started and may have spread to the area between the lungs or to the lymph nodes above the collarbone. Extensive-Stage Small Cell Lung Cancer In extensive-stage, cancer has spread beyond the lung or the area between the lungs or the lymph nodes above the collarbone to other places in the body.
0000032_2
Small Cell Lung Cancer
7
0000032_2-7
treatment
What are the treatments for Small Cell Lung Cancer ?
Key Points - There are different types of treatment for patients with small cell lung cancer. - Five types of standard treatment are used: - Surgery - Chemotherapy - Radiation therapy - Laser therapy - Endoscopic stent placement - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with small cell lung cancer. Different types of treatment are available for patients with small cell lung cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Five types of standard treatment are used: Surgery Surgery may be used if the cancer is found in one lung and in nearby lymph nodes only. Because this type of lung cancer is usually found in both lungs, surgery alone is not often used. During surgery, the doctor will also remove lymph nodes to find out if they have cancer in them. Sometimes, surgery may be used to remove a sample of lung tissue to find out the exact type of lung cancer. Even if the doctor removes all the cancer that can be seen at the time of the operation, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Small Cell Lung Cancer for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat small cell lung cancer, and may also be used as palliative therapy to relieve symptoms and improve quality of life. Radiation therapy to the brain to lessen the risk that cancer will spread to the brain may also be given. Laser therapy Laser therapy is a cancer treatment that uses a laser beam (a narrow beam of intense light) to kill cancer cells. Endoscopic stent placement An endoscope is a thin, tube-like instrument used to look at tissues inside the body. An endoscope has a light and a lens for viewing and may be used to place a stent in a body structure to keep the structure open. An endoscopic stent can be used to open an airway blocked by abnormal tissue. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Limited-Stage Small Cell Lung Cancer Treatment of limited-stage small cell lung cancer may include the following: - Combination chemotherapy and radiation therapy to the chest. Radiation therapy to the brain may later be given to patients with complete responses. - Combination chemotherapy alone for patients who cannot be given radiation therapy. - Surgery followed by chemotherapy. - Surgery followed by chemotherapy and radiation therapy. - Radiation therapy to the brain may be given to patients who have had a complete response, to prevent the spread of cancer to the brain. - Clinical trials of new chemotherapy, surgery, and radiation treatments. Check the list of NCI-supported cancer clinical trials that are now accepting patients with limited stage small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Extensive-Stage Small Cell Lung Cancer Treatment of extensive-stage small cell lung cancer may include the following: - Combination chemotherapy. - Radiation therapy to the brain, spine, bone, or other parts of the body where the cancer has spread, as palliative therapy to relieve symptoms and improve quality of life. - Radiation therapy to the chest may be given to patients who respond to chemotherapy. - Radiation therapy to the brain may be given to patients who have had a complete response, to prevent the spread of cancer to the brain. - Clinical trials of new chemotherapy treatments. Check the list of NCI-supported cancer clinical trials that are now accepting patients with extensive stage small cell lung cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
0000032_2
Small Cell Lung Cancer
8
0000032_2-8
research
what research (or clinical trials) is being done for Small Cell Lung Cancer ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
0000028_1
Skin Cancer
1
0000028_1-1
information
What is (are) Skin Cancer ?
Key Points - Skin cancer is a disease in which malignant (cancer) cells form in the tissues of the skin. - There are different types of cancer that start in the skin. - Skin color and being exposed to sunlight can increase the risk of nonmelanoma skin cancer and actinic keratosis. - Nonmelanoma skin cancer and actinic keratosis often appear as a change in the skin. - Tests or procedures that examine the skin are used to detect (find) and diagnose nonmelanoma skin cancer and actinic keratosis. - Certain factors affect prognosis (chance of recovery) and treatment options. Skin cancer is a disease in which malignant (cancer) cells form in the tissues of the skin. The skin is the bodys largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). Skin cancer begins in the epidermis, which is made up of three kinds of cells: - Squamous cells: Thin, flat cells that form the top layer of the epidermis. - Basal cells: Round cells under the squamous cells. - Melanocytes: Cells that make melanin and are found in the lower part of the epidermis. Melanin is the pigment that gives skin its natural color. When skin is exposed to the sun, melanocytes make more pigment and cause the skin to darken. Skin cancer can occur anywhere on the body, but it is most common in skin that is often exposed to sunlight, such as the face, neck, hands, and arms. There are different types of cancer that start in the skin. The most common types are basal cell carcinoma and squamous cell carcinoma, which are nonmelanoma skin cancers. Nonmelanoma skin cancers rarely spread to other parts of the body. Melanoma is a much rarer type of skin cancer. It is more likely to invade nearby tissues and spread to other parts of the body. Actinic keratosis is a skin condition that sometimes becomes squamous cell carcinoma. This summary is about nonmelanoma skin cancer and actinic keratosis. See the following PDQ summaries for information on melanoma and other kinds of cancer that affect the skin: - Melanoma Treatment - Mycosis Fungoides and the Szary Syndrome Treatment - Kaposi Sarcoma Treatment - Merkel Cell Carcinoma Treatment - Unusual Cancers of Childhood Treatment - Genetics of Skin Cancer Nonmelanoma skin cancer and actinic keratosis often appear as a change in the skin. Not all changes in the skin are a sign of nonmelanoma skin cancer or actinic keratosis. Check with your doctor if you notice any changes in your skin. Signs of nonmelanoma skin cancer include the following: - A sore that does not heal. - Areas of the skin that are: - Raised, smooth, shiny, and look pearly. - Firm and look like a scar, and may be white, yellow, or waxy. - Raised, and red or reddish-brown. - Scaly, bleeding or crusty.
0000028_1
Skin Cancer
2
0000028_1-2
susceptibility
Who is at risk for Skin Cancer? ?
Skin color and being exposed to sunlight can increase the risk of nonmelanoma skin cancer and actinic keratosis. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for basal cell carcinoma and squamous cell carcinoma include the following: - Being exposed to natural sunlight or artificial sunlight (such as from tanning beds) over long periods of time. - Having a fair complexion, which includes the following: - Fair skin that freckles and burns easily, does not tan, or tans poorly. - Blue or green or other light-colored eyes. - Red or blond hair. - Having actinic keratosis. - Past treatment with radiation. - Having a weakened immune system. - Having certain changes in the genes that are linked to skin cancer. - Being exposed to arsenic.
0000028_1
Skin Cancer
3
0000028_1-3
exams and tests
How to diagnose Skin Cancer ?
Tests or procedures that examine the skin are used to detect (find) and diagnose nonmelanoma skin cancer and actinic keratosis. The following procedures may be used: - Skin exam: A doctor or nurse checks the skin for bumps or spots that look abnormal in color, size, shape, or texture. - Skin biopsy : All or part of the abnormal-looking growth is cut from the skin and viewed under a microscope by a pathologist to check for signs of cancer. There are four main types of skin biopsies: - Shave biopsy : A sterile razor blade is used to shave-off the abnormal-looking growth. - Punch biopsy : A special instrument called a punch or a trephine is used to remove a circle of tissue from the abnormal-looking growth. - Incisional biopsy : A scalpel is used to remove part of a growth. - Excisional biopsy : A scalpel is used to remove the entire growth.
0000028_1
Skin Cancer
4
0000028_1-4
outlook
What is the outlook for Skin Cancer ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) depends mostly on the stage of the cancer and the type of treatment used to remove the cancer. Treatment options depend on the following: - The stage of the cancer (whether it has spread deeper into the skin or to other places in the body). - The type of cancer. - The size of the tumor and what part of the body it affects. - The patients general health.
0000028_1
Skin Cancer
5
0000028_1-5
stages
What are the stages of Skin Cancer ?
Key Points - After nonmelanoma skin cancer has been diagnosed, tests are done to find out if cancer cells have spread within the skin or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - Staging of nonmelanoma skin cancer depends on whether the tumor has certain "high-risk" features and if the tumor is on the eyelid. - The following stages are used for nonmelanoma skin cancer that is not on the eyelid: - Stage 0 (Carcinoma in Situ) - Stage I Stage I nonmelanoma skin cancer. The tumor is no more than 2 centimeters. - Stage II Stage II nonmelanoma skin cancer. The tumor is more than 2 centimeters wide. - Stage III - Stage IV - The following stages are used for nonmelanoma skin cancer on the eyelid: - Stage 0 (Carcinoma in Situ) - Stage I - Stage II - Stage III - Stage IV - Treatment is based on the type of nonmelanoma skin cancer or other skin condition diagnosed: - Basal cell carcinoma - Squamous cell carcinoma - Actinic keratosis After nonmelanoma skin cancer has been diagnosed, tests are done to find out if cancer cells have spread within the skin or to other parts of the body. The process used to find out if cancer has spread within the skin or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Lymph node biopsy : For squamous cell carcinoma, the lymph nodes may be removed and checked to see if cancer has spread to them. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if skin cancer spreads to the lung, the cancer cells in the lung are actually skin cancer cells. The disease is metastatic skin cancer, not lung cancer. Staging of nonmelanoma skin cancer depends on whether the tumor has certain "high-risk" features and if the tumor is on the eyelid. Staging for nonmelanoma skin cancer that is on the eyelid is different from staging for nonmelanoma skin cancer that affects other parts of the body. The following are high-risk features for nonmelanoma skin cancer that is not on the eyelid: - The tumor is thicker than 2 millimeters. - The tumor is described as Clark level IV (has spread into the lower layer of the dermis) or Clark level V (has spread into the layer of fat below the skin). - The tumor has grown and spread along nerve pathways. - The tumor began on an ear or on a lip that has hair on it. - The tumor has cells that look very different from normal cells under a microscope. The following stages are used for nonmelanoma skin cancer that is not on the eyelid: Stage 0 (Carcinoma in Situ) In stage 0, abnormal cells are found in the squamous cell or basal cell layer of the epidermis (topmost layer of the skin). These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. Stage I In stage I, cancer has formed. The tumor is not larger than 2 centimeters at its widest point and may have one high-risk feature. Stage II In stage II, the tumor is either: - larger than 2 centimeters at its widest point; or - any size and has two or more high-risk features. Stage III In stage III: - The tumor has spread to the jaw, eye socket, or side of the skull. Cancer may have spread to one lymph node on the same side of the body as the tumor. The lymph node is not larger than 3 centimeters. or - Cancer has spread to one lymph node on the same side of the body as the tumor. The lymph node is not larger than 3 centimeters and one of the following is true: - the tumor is not larger than 2 centimeters at its widest point and may have one high-risk feature; or - the tumor is larger than 2 centimeters at its widest point; or - the tumor is any size and has two or more high-risk features. Stage IV In stage IV, one of the following is true: - The tumor is any size and may have spread to the jaw, eye socket, or side of the skull. Cancer has spread to one lymph node on the same side of the body as the tumor and the affected node is larger than 3 centimeters but not larger than 6 centimeters, or cancer has spread to more than one lymph node on one or both sides of the body and the affected nodes are not larger than 6 centimeters; or - The tumor is any size and may have spread to the jaw, eye socket, skull, spine, or ribs. Cancer has spread to one lymph node that is larger than 6 centimeters; or - The tumor is any size and has spread to the base of the skull, spine, or ribs. Cancer may have spread to the lymph nodes; or - Cancer has spread to other parts of the body, such as the lung. The following stages are used for nonmelanoma skin cancer on the eyelid: Stage 0 (Carcinoma in Situ) In stage 0, abnormal cells are found in the epidermis (topmost layer of the skin). These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. Stage I Stage I is divided into stages IA, IB, and IC. - Stage IA: The tumor is 5 millimeters or smaller and has not spread to the connective tissue of the eyelid or to the edge of the eyelid where the lashes are. - Stage IB: The tumor is larger than 5 millimeters but not larger than 10 millimeters or has spread to the connective tissue of the eyelid, or to the edge of the eyelid where the lashes are. - Stage IC: The tumor is larger than 10 millimeters but not larger than 20 millimeters or has spread through the full thickness of the eyelid. Stage II In stage II, one of the following is true: - The tumor is larger than 20 millimeters. - The tumor has spread to nearby parts of the eye or eye socket. - The tumor has spread to spaces around the nerves in the eyelid. Stage III Stage III is divided into stages IIIA, IIIB, and IIIC. - Stage IIIA: To remove all of the tumor, the whole eye and part of the optic nerve must be removed. The bone, muscles, fat, and connective tissue around the eye may also be removed. - Stage IIIB: The tumor may be anywhere in or near the eye and has spread to nearby lymph nodes. - Stage IIIC: The tumor has spread to structures around the eye or in the face, or to the brain, and cannot be removed in surgery. Stage IV The tumor has spread to distant parts of the body. Treatment is based on the type of nonmelanoma skin cancer or other skin condition diagnosed: Basal cell carcinoma Basal cell carcinoma is the most common type of skin cancer. It usually occurs on areas of the skin that have been in the sun, most often the nose. Often this cancer appears as a raised bump that looks smooth and pearly. Another type looks like a scar and is flat and firm and may be white, yellow, or waxy. Basal cell carcinoma may spread to tissues around the cancer, but it usually does not spread to other parts of the body. Squamous cell carcinoma Squamous cell carcinoma occurs on areas of the skin that have been in the sun, such as the ears, lower lip, and the back of the hands. Squamous cell carcinoma may also appear on areas of the skin that have been burned or exposed to chemicals or radiation. Often this cancer appears as a firm red bump. The tumor may feel scaly, bleed, or form a crust. Squamous cell tumors may spread to nearby lymph nodes. Squamous cell carcinoma that has not spread can usually be cured. Actinic keratosis Actinic keratosis is a skin condition that is not cancer, but sometimes changes into squamous cell carcinoma. It usually occurs in areas that have been exposed to the sun, such as the face, the back of the hands, and the lower lip. It looks like rough, red, pink, or brown scaly patches on the skin that may be flat or raised, or the lower lip cracks and peels and is not helped by lip balm or petroleum jelly.
0000028_1
Skin Cancer
6
0000028_1-6
treatment
What are the treatments for Skin Cancer ?
Key Points - There are different types of treatment for patients with nonmelanoma skin cancer and actinic keratosis. - Six types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Photodynamic therapy - Biologic therapy - Targeted therapy - New types of treatment are being tested in clinical trials. - Treatment for skin cancer may cause side effects. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with nonmelanoma skin cancer and actinic keratosis. Different types of treatment are available for patients with nonmelanoma skin cancer and actinic keratosis. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Six types of standard treatment are used: Surgery One or more of the following surgical procedures may be used to treat nonmelanoma skin cancer or actinic keratosis: - Mohs micrographic surgery: The tumor is cut from the skin in thin layers. During surgery, the edges of the tumor and each layer of tumor removed are viewed through a microscope to check for cancer cells. Layers continue to be removed until no more cancer cells are seen. This type of surgery removes as little normal tissue as possible and is often used to remove skin cancer on the face. - Simple excision: The tumor is cut from the skin along with some of the normal skin around it. - Shave excision: The abnormal area is shaved off the surface of the skin with a small blade. - Electrodesiccation and curettage: The tumor is cut from the skin with a curette (a sharp, spoon-shaped tool). A needle-shaped electrode is then used to treat the area with an electric current that stops the bleeding and destroys cancer cells that remain around the edge of the wound. The process may be repeated one to three times during the surgery to remove all of the cancer. - Cryosurgery: A treatment that uses an instrument to freeze and destroy abnormal tissue, such as carcinoma in situ. This type of treatment is also called cryotherapy. - Laser surgery: A surgical procedure that uses a laser beam (a narrow beam of intense light) as a knife to make bloodless cuts in tissue or to remove a surface lesion such as a tumor. - Dermabrasion: Removal of the top layer of skin using a rotating wheel or small particles to rub away skin cells. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of cancer being treated. External radiation therapy is used to treat skin cancer. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Chemotherapy for nonmelanoma skin cancer and actinic keratosis is usually topical (applied to the skin in a cream or lotion). The way the chemotherapy is given depends on the condition being treated. Retinoids (drugs related to vitamin A) are sometimes used to treat squamous cell carcinoma of the skin. See Drugs Approved for Basal Cell Carcinoma for more information. Photodynamic therapy Photodynamic therapy (PDT) is a cancer treatment that uses a drug and a certain type of laser light to kill cancer cells. A drug that is not active until it is exposed to light is injected into a vein. The drug collects more in cancer cells than in normal cells. For skin cancer, laser light is shined onto the skin and the drug becomes active and kills the cancer cells. Photodynamic therapy causes little damage to healthy tissue. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Interferon and imiquimod are biologic agents used to treat skin cancer. Interferon (by injection) may be used to treat squamous cell carcinoma of the skin. Topical imiquimod therapy (a cream applied to the skin) may be used to treat some small basal cell carcinomas. See Drugs Approved for Basal Cell Carcinoma for more information. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Targeted therapy with a signal transduction inhibitor is used to treat basal cell carcinoma. Signal transduction inhibitors block signals that are passed from one molecule to another inside a cell. Blocking these signals may kill cancer cells. Vismodegib and sonidegib are signal transduction inhibitors used to treat basal cell carcinoma. See Drugs Approved for Basal Cell Carcinoma for more information. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Treatment for skin cancer may cause side effects. For information about side effects caused by treatment for cancer, see our Side Effects page. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Basal cell carcinoma and squamous cell carcinoma are likely to recur (come back), usually within 5 years, or new tumors may form. Talk to your doctor about how often you should have your skin checked for signs of cancer. Treatment Options for Nonmelanoma Skin Cancer Basal Cell Carcinoma Treatment of basal cell carcinoma may include the following: - Simple excision. - Mohs micrographic surgery. - Radiation therapy. - Electrodesiccation and curettage. - Cryosurgery. - Photodynamic therapy. - Topical chemotherapy. - Topical biologic therapy with imiquimod. - Laser surgery. Treatment of recurrent basal cell carcinoma is usually Mohs micrographic surgery. Treatment of basal cell carcinoma that is metastatic or cannot be treated with local therapy may include the following: - Targeted therapy with a signal transduction inhibitor. - Chemotherapy. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with basal cell carcinoma of the skin. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Squamous Cell Carcinoma Treatment of squamous cell carcinoma may include the following: - Simple excision. - Mohs micrographic surgery. - Radiation therapy. - Electrodesiccation and curettage. - Cryosurgery. Treatment of recurrent squamous cell carcinoma may include the following: - Simple excision. - Mohs micrographic surgery. - Radiation therapy. Treatment of squamous cell carcinoma that is metastatic or cannot be treated with local therapy may include the following: - Chemotherapy. - Retinoid therapy and biologic therapy with interferon. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with squamous cell carcinoma of the skin. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
0000028_1
Skin Cancer
7
0000028_1-7
research
what research (or clinical trials) is being done for Skin Cancer ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Treatment for skin cancer may cause side effects. For information about side effects caused by treatment for cancer, see our Side Effects page. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
0000041_1
Urethral Cancer
1
0000041_1-1
information
What is (are) Urethral Cancer ?
Key Points - Urethral cancer is a disease in which malignant (cancer) cells form in the tissues of the urethra. - There are different types of urethral cancer that begin in cells that line the urethra. - A history of bladder cancer can affect the risk of urethral cancer. - Signs of urethral cancer include bleeding or trouble with urination. - Tests that examine the urethra and bladder are used to detect (find) and diagnose urethral cancer. - Certain factors affect prognosis (chance of recovery) and treatment options. Urethral cancer is a disease in which malignant (cancer) cells form in the tissues of the urethra. The urethra is the tube that carries urine from the bladder to outside the body. In women, the urethra is about 1 inches long and is just above the vagina. In men, the urethra is about 8 inches long, and goes through the prostate gland and the penis to the outside of the body. In men, the urethra also carries semen. Urethral cancer is a rare cancer that occurs more often in men than in women. There are different types of urethral cancer that begin in cells that line the urethra. These cancers are named for the types of cells that become malignant (cancer): - Squamous cell carcinoma is the most common type of urethral cancer. It forms in cells in the part of the urethra near the bladder in women, and in the lining of the urethra in the penis in men. - Transitional cell carcinoma forms in the area near the urethral opening in women, and in the part of the urethra that goes through the prostate gland in men. - Adenocarcinoma forms in the glands that are around the urethra in both men and women. Urethral cancer can metastasize (spread) quickly to tissues around the urethra and is often found in nearby lymph nodes by the time it is diagnosed. A history of bladder cancer can affect the risk of urethral cancer. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for urethral cancer include the following: - Having a history of bladder cancer. - Having conditions that cause chronic inflammation in the urethra, including: - Sexually transmitted diseases (STDs), including human papillomavirus (HPV), especially HPV type 16. - Frequent urinary tract infections (UTIs).
0000041_1
Urethral Cancer
2
0000041_1-2
symptoms
What are the symptoms of Urethral Cancer ?
Signs of urethral cancer include bleeding or trouble with urination. These and other signs and symptoms may be caused by urethral cancer or by other conditions. There may be no signs or symptoms in the early stages. Check with your doctor if you have any of the following: - Trouble starting the flow of urine. - Weak or interrupted ("stop-and-go") flow of urine. - Frequent urination, especially at night. - Incontinence. - Discharge from the urethra. - Bleeding from the urethra or blood in the urine. - A lump or thickness in the perineum or penis. - A painless lump or swelling in the groin.
0000041_1
Urethral Cancer
3
0000041_1-3
exams and tests
How to diagnose Urethral Cancer ?
Tests that examine the urethra and bladder are used to detect (find) and diagnose urethral cancer. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patient's health habits and past illnesses and treatments will also be taken. - Pelvic exam : An exam of the vagina, cervix, uterus, fallopian tubes, ovaries, and rectum. A speculum is inserted into the vagina and the doctor or nurse looks at the vagina and cervix for signs of disease. The doctor or nurse also inserts one or two lubricated, gloved fingers of one hand into the vagina and places the other hand over the lower abdomen to feel the size, shape, and position of the uterus and ovaries. The doctor or nurse also inserts a lubricated, gloved finger into the rectum to feel for lumps or abnormal areas. - Digital rectal exam : An exam of the rectum. The doctor or nurse inserts a lubricated, gloved finger into the lower part of the rectum to feel for lumps or anything else that seems unusual. - Urine cytology : A laboratory test in which a sample of urine is checked under a microscope for abnormal cells. - Urinalysis : A test to check the color of urine and its contents, such as sugar, protein, blood, and white blood cells. If white blood cells (a sign of infection) are found, a urine culture is usually done to find out what type of infection it is. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Complete blood count (CBC): A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells, white blood cells, and platelets. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the blood sample made up of red blood cells. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the pelvis and abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Ureteroscopy : A procedure to look inside the ureter and renal pelvis to check for abnormal areas. A ureteroscope is a thin, tube-like instrument with a light and a lens for viewing. The ureteroscope is inserted through the urethra into the bladder, ureter, and renal pelvis. A tool may be inserted through the ureteroscope to take tissue samples to be checked under a microscope for signs of disease. - Biopsy: The removal of cell or tissue samples from the urethra, bladder, and, sometimes, the prostate gland. The samples are viewed under a microscope by a pathologist to check for signs of cancer.
0000041_1
Urethral Cancer
4
0000041_1-4
outlook
What is the outlook for Urethral Cancer ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - Where the cancer formed in the urethra. - Whether the cancer has spread through the mucosa lining the urethra to nearby tissue, to lymph nodes, or to other parts of the body. - Whether the patient is a male or female. - The patient's general health. - Whether the cancer has just been diagnosed or has recurred (come back).
0000041_1
Urethral Cancer
5
0000041_1-5
stages
What are the stages of Urethral Cancer ?
Key Points - After urethral cancer has been diagnosed, tests are done to find out if cancer cells have spread within the urethra or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - Urethral cancer is staged and treated based on the part of the urethra that is affected. - Distal urethral cancer - Proximal urethral cancer - Bladder and/or prostate cancer may occur at the same time as urethral cancer. After urethral cancer has been diagnosed, tests are done to find out if cancer cells have spread within the urethra or to other parts of the body. The process used to find out if cancer has spread within the urethra or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following procedures may be used in the staging process: - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan) of the pelvis and abdomen : A procedure that makes a series of detailed pictures of the pelvis and abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of the urethra, nearby lymph nodes, and other soft tissue and bones in the pelvis. A substance called gadolinium is injected into the patient through a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Urethrography: A series of x-rays of the urethra. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. A dye is injected through the urethra into the bladder. The dye coats the bladder and urethra and x-rays are taken to see if the urethra is blocked and if cancer has spread to nearby tissue. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if urethral cancer spreads to the lung, the cancer cells in the lung are actually urethral cancer cells. The disease is metastatic urethral cancer, not lung cancer. Urethral cancer is staged and treated based on the part of the urethra that is affected. Urethral cancer is staged and treated based on the part of the urethra that is affected and how deeply the tumor has spread into tissue around the urethra. Urethral cancer can be described as distal or proximal. Distal urethral cancer In distal urethral cancer, the cancer usually has not spread deeply into the tissue. In women, the part of the urethra that is closest to the outside of the body (about inch) is affected. In men, the part of the urethra that is in the penis is affected. Proximal urethral cancer Proximal urethral cancer affects the part of the urethra that is not the distal urethra. In women and men, proximal urethral cancer usually has spread deeply into tissue. Bladder and/or prostate cancer may occur at the same time as urethral cancer. In men, cancer that forms in the proximal urethra (the part of the urethra that passes through the prostate to the bladder) may occur at the same time as cancer of the bladder and/or prostate. Sometimes this occurs at diagnosis and sometimes it occurs later.
0000041_1
Urethral Cancer
6
0000041_1-6
treatment
What are the treatments for Urethral Cancer ?
Key Points - There are different types of treatment for patients with urethral cancer. - Four types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Active surveillance - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with urethral cancer. Different types of treatments are available for patients with urethral cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Four types of standard treatment are used: Surgery Surgery to remove the cancer is the most common treatment for cancer of the urethra. One of the following types of surgery may be done: - Open excision: Removal of the cancer by surgery. - Transurethral resection (TUR): Surgery to remove the cancer using a special tool inserted into the urethra. - Electroresection with fulguration: Surgery to remove the cancer by electric current. A lighted tool with a small wire loop on the end is used to remove the cancer or to burn the tumor away with high-energy electricity. - Laser surgery: A surgical procedure that uses a laser beam (a narrow beam of intense light) as a knife to make bloodless cuts in tissue or to remove or destroy tissue. - Lymph node dissection: Lymph nodes in the pelvis and groin may be removed. - Cystourethrectomy: Surgery to remove the bladder and the urethra. - Cystoprostatectomy: Surgery to remove the bladder and the prostate. - Anterior exenteration: Surgery to remove the urethra, the bladder, and the vagina. Plastic surgery may be done to rebuild the vagina. - Partial penectomy: Surgery to remove the part of the penis surrounding the urethra where cancer has spread. Plastic surgery may be done to rebuild the penis. - Radical penectomy: Surgery to remove the entire penis. Plastic surgery may be done to rebuild the penis. If the urethra is removed, the surgeon will make a new way for the urine to pass from the body. This is called urinary diversion. If the bladder is removed, the surgeon will make a new way for urine to be stored and passed from the body. The surgeon may use part of the small intestine to make a tube that passes urine through an opening (stoma). This is called an ostomy or urostomy. If a patient has an ostomy, a disposable bag to collect urine is worn under clothing. The surgeon may also use part of the small intestine to make a new storage pouch (continent reservoir) inside the body where the urine can collect. A tube (catheter) is then used to drain the urine through a stoma. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of cancer and where the cancer formed in the urethra. External and internal radiation therapy are used to treat urethral cancer. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type of cancer and where the cancer formed in the urethra. Active surveillance Active surveillance is following a patient's condition without giving any treatment unless there are changes in test results. It is used to find early signs that the condition is getting worse. In active surveillance, patients are given certain exams and tests, including biopsies, on a regular schedule. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options for Urethral Cancer Distal Urethral Cancer Treatment of abnormal cells in the mucosa (inside lining of the urethra that have not become cancer, may include surgery to remove the tumor (open excision or transurethral resection), electroresection with fulguration, or laser surgery. Treatment of distal urethral cancer is different for men and women. For women, treatment may include the following: - Surgery to remove the tumor (transurethral resection), electroresection and fulguration, or laser surgery for tumors that have not spread deeply into tissue. - Brachytherapy and/or external radiation therapy for tumors that have not spread deeply into tissue. - Surgery to remove the tumor (anterior exenteration) for tumors that have spread deeply into tissue. Sometimes nearby lymph nodes are also removed (lymph node dissection). Radiation therapy may be given before surgery. For men, treatment may include the following: - Surgery to remove the tumor (transurethral resection), electroresection and fulguration, or laser surgery for tumors that have not spread deeply into tissue. - Surgery to remove part of the penis (partial penectomy) for tumors that are near the tip of the penis. Sometimes nearby lymph nodes are also removed (lymph node dissection). - Surgery to remove part of the urethra for tumors that are in the distal urethra but not at the tip of the penis and have not spread deeply into tissue. Sometimes nearby lymph nodes are also removed (lymph node dissection). - Surgery to remove the penis (radical penectomy) for tumors that have spread deeply into tissue. Sometimes nearby lymph nodes are also removed (lymph node dissection). - Radiation therapy with or without chemotherapy. - Chemotherapy given together with radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with distal urethral cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Proximal Urethral Cancer Treatment of proximal urethral cancer or urethral cancer that affects the entire urethra is different for men and women. For women, treatment may include the following: - Radiation therapy and/or surgery (open excision, transurethral resection) for tumors that are of an inch or smaller. - Radiation therapy followed by surgery (anterior exenteration with lymph node dissection and urinary diversion). For men, treatment may include the following: - Radiation therapy or radiation therapy and chemotherapy, followed by surgery (cystoprostatectomy, penectomy, lymph node dissection, and urinary diversion). Check the list of NCI-supported cancer clinical trials that are now accepting patients with proximal urethral cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Urethral Cancer that Forms with Invasive Bladder Cancer Treatment of urethral cancer that forms at the same time as invasive bladder cancer may include the following: - Surgery (cystourethrectomy in women, or urethrectomy and cystoprostatectomy in men). If the urethra is not removed during surgery to remove the bladder, treatment may include the following: - Active surveillance. Samples of cells are taken from inside the urethra and checked under a microscope for signs of cancer. Check the list of NCI-supported cancer clinical trials that are now accepting patients with urethral cancer associated with invasive bladder cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Metastatic or Recurrent Urethral Cancer Treatment of urethral cancer that has metastasized (spread to other parts of the body) is usually chemotherapy. Treatment of recurrent urethral cancer may include one or more of the following: - Surgery to remove the tumor. Sometimes nearby lymph nodes are also removed (lymph node dissection). - Radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent urethral cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
0000041_1
Urethral Cancer
7
0000041_1-7
research
what research (or clinical trials) is being done for Urethral Cancer ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
0000006_1
Adult Central Nervous System Tumors
1
0000006_1-1
information
What is (are) Adult Central Nervous System Tumors ?
Key Points - An adult central nervous system tumor is a disease in which abnormal cells form in the tissues of the brain and/or spinal cord. - A tumor that starts in another part of the body and spreads to the brain is called a metastatic brain tumor. - The brain controls many important body functions. - The spinal cord connects the brain to nerves in most parts of the body. - There are different types of brain and spinal cord tumors. - Astrocytic Tumors - Oligodendroglial Tumors - Mixed Gliomas - Ependymal Tumors - Medulloblastomas - Pineal Parenchymal Tumors - Meningeal Tumors - Germ Cell Tumors - Craniopharyngioma (Grade I) - Having certain genetic syndromes may increase the risk of a central nervous system tumor. - The cause of most adult brain and spinal cord tumors is not known. - The signs and symptoms of adult brain and spinal cord tumors are not the same in every person. - Tests that examine the brain and spinal cord are used to diagnose adult brain and spinal cord tumors. - A biopsy is also used to diagnose a brain tumor. - Sometimes a biopsy or surgery cannot be done. - Certain factors affect prognosis (chance of recovery) and treatment options. An adult central nervous system tumor is a disease in which abnormal cells form in the tissues of the brain and/or spinal cord. There are many types of brain and spinal cord tumors. The tumors are formed by the abnormal growth of cells and may begin in different parts of the brain or spinal cord. Together, the brain and spinal cord make up the central nervous system (CNS). The tumors may be either benign (not cancer) or malignant (cancer): - Benign brain and spinal cord tumors grow and press on nearby areas of the brain. They rarely spread into other tissues and may recur (come back). - Malignant brain and spinal cord tumors are likely to grow quickly and spread into other brain tissue. When a tumor grows into or presses on an area of the brain, it may stop that part of the brain from working the way it should. Both benign and malignant brain tumors cause signs and symptoms and need treatment. Brain and spinal cord tumors can occur in both adults and children. However, treatment for children may be different than treatment for adults. (See the PDQ summary on Childhood Brain and Spinal Cord Tumors Treatment Overview for more information on the treatment of children.) For information about lymphoma that begins in the brain, see the PDQ summary on Primary CNS Lymphoma Treatment. A tumor that starts in another part of the body and spreads to the brain is called a metastatic brain tumor. Tumors that start in the brain are called primary brain tumors. Primary brain tumors may spread to other parts of the brain or to the spine. They rarely spread to other parts of the body. Often, tumors found in the brain have started somewhere else in the body and spread to one or more parts of the brain. These are called metastatic brain tumors (or brain metastases). Metastatic brain tumors are more common than primary brain tumors. Up to half of metastatic brain tumors are from lung cancer. Other types of cancer that commonly spread to the brain include: - Melanoma. - Breast cancer. - Colon cancer. - Kidney cancer. - Nasopharyngeal cancer. - Cancer of unknown primary site. Cancer may spread to the leptomeninges (the two innermost membranes covering the brain and spinal cord). This is called leptomeningeal carcinomatosis. The most common cancers that spread to the leptomeninges include: - Breast cancer. - Lung cancer. - Leukemia. - Lymphoma. See the following for more information from PDQ about cancers that commonly spread to the brain or spinal cord: - Adult Hodgkin Lymphoma Treatment - Adult Non-Hodgkin Lymphoma Treatment - Breast Cancer Treatment - Carcinoma of Unknown Primary Treatment - Colon Cancer Treatment - Leukemia Home Page - Melanoma Treatment - Nasopharyngeal Cancer Treatment - Non-Small Cell Lung Cancer Treatment - Renal Cell Cancer Treatment - Small Cell Lung Cancer Treatment The brain controls many important body functions. The brain has three major parts: - The cerebrum is the largest part of the brain. It is at the top of the head. The cerebrum controls thinking, learning, problem solving, emotions, speech, reading, writing, and voluntary movement. - The cerebellum is in the lower back of the brain (near the middle of the back of the head). It controls movement, balance, and posture. - The brain stem connects the brain to the spinal cord. It is in the lowest part of the brain (just above the back of the neck). The brain stem controls breathing, heart rate, and the nerves and muscles used to see, hear, walk, talk, and eat. The spinal cord connects the brain to nerves in most parts of the body. The spinal cord is a column of nerve tissue that runs from the brain stem down the center of the back. It is covered by three thin layers of tissue called membranes. These membranes are surrounded by the vertebrae (back bones). Spinal cord nerves carry messages between the brain and the rest of the body, such as a message from the brain to cause muscles to move or a message from the skin to the brain to feel touch. There are different types of brain and spinal cord tumors. Brain and spinal cord tumors are named based on the type of cell they formed in and where the tumor first formed in the CNS. The grade of a tumor may be used to tell the difference between slow-growing and fast-growing types of the tumor. The World Health Organization (WHO) tumor grades are based on how abnormal the cancer cells look under a microscope and how quickly the tumor is likely to grow and spread. WHO Tumor Grading System - Grade I (low-grade) The tumor cells look more like normal cells under a microscope and grow and spread more slowly than grade II, III, and IV tumor cells. They rarely spread into nearby tissues. Grade I brain tumors may be cured if they are completely removed by surgery. - Grade II The tumor cells grow and spread more slowly than grade III and IV tumor cells. They may spread into nearby tissue and may recur (come back). Some tumors may become a higher-grade tumor. - Grade III The tumor cells look very different from normal cells under a microscope and grow more quickly than grade I and II tumor cells. They are likely to spread into nearby tissue. - Grade IV (high-grade) The tumor cells do not look like normal cells under a microscope and grow and spread very quickly. There may be areas of dead cells in the tumor. Grade IV tumors usually cannot be cured. The following types of primary tumors can form in the brain or spinal cord: Astrocytic Tumors An astrocytic tumor begins in star-shaped brain cells called astrocytes, which help keep nerve cells healthy. An astrocyte is a type of glial cell. Glial cells sometimes form tumors called gliomas. Astrocytic tumors include the following: - Brain stem glioma (usually high grade): A brain stem glioma forms in the brain stem, which is the part of the brain connected to the spinal cord. It is often a high-grade tumor, which spreads widely through the brain stem and is hard to cure. Brain stem gliomas are rare in adults. (See the PDQ summary on Childhood Brain Stem Glioma Treatment for more information.) - Pineal astrocytic tumor (any grade): A pineal astrocytic tumor forms in tissue around the pineal gland and may be any grade. The pineal gland is a tiny organ in the brain that makes melatonin, a hormone that helps control the sleeping and waking cycle. - Pilocytic astrocytoma (grade I): A pilocytic astrocytoma grows slowly in the brain or spinal cord. It may be in the form of a cyst and rarely spreads into nearby tissues. Pilocytic astrocytomas can often be cured. - Diffuse astrocytoma (grade II): A diffuse astrocytoma grows slowly, but often spreads into nearby tissues. The tumor cells look something like normal cells. In some cases, a diffuse astrocytoma can be cured. It is also called a low-grade diffuse astrocytoma. - Anaplastic astrocytoma (grade III): An anaplastic astrocytoma grows quickly and spreads into nearby tissues. The tumor cells look different from normal cells. This type of tumor usually cannot be cured. An anaplastic astrocytoma is also called a malignant astrocytoma or high-grade astrocytoma. - Glioblastoma (grade IV): A glioblastoma grows and spreads very quickly. The tumor cells look very different from normal cells. This type of tumor usually cannot be cured. It is also called glioblastoma multiforme. See the PDQ summary on Childhood Astrocytomas Treatment for more information about astrocytomas in children. Oligodendroglial Tumors An oligodendroglial tumor begins in brain cells called oligodendrocytes, which help keep nerve cells healthy. An oligodendrocyte is a type of glial cell. Oligodendrocytes sometimes form tumors called oligodendrogliomas. Grades of oligodendroglial tumors include the following: - Oligodendroglioma (grade II): An oligodendroglioma grows slowly, but often spreads into nearby tissues. The tumor cells look something like normal cells. In some cases, an oligodendroglioma can be cured. - Anaplastic oligodendroglioma (grade III): An anaplastic oligodendroglioma grows quickly and spreads into nearby tissues. The tumor cells look different from normal cells. This type of tumor usually cannot be cured. See the PDQ summary on Childhood Astrocytomas Treatment for more information about oligodendroglial tumors in children. Mixed Gliomas A mixed glioma is a brain tumor that has two types of tumor cells in it oligodendrocytes and astrocytes. This type of mixed tumor is called an oligoastrocytoma. - Oligoastrocytoma (grade II): An oligoastrocytoma is a slow-growing tumor. The tumor cells look something like normal cells. In some cases, an oligoastrocytoma can be cured. - Anaplastic oligoastrocytoma (grade III): An anaplastic oligoastrocytoma grows quickly and spreads into nearby tissues. The tumor cells look different from normal cells. This type of tumor has a worse prognosis than oligoastrocytoma (grade II). See the PDQ summary on Childhood Astrocytomas Treatment for more information about mixed gliomas in children. Ependymal Tumors An ependymal tumor usually begins in cells that line the fluid -filled spaces in the brain and around the spinal cord. An ependymal tumor may also be called an ependymoma. Grades of ependymomas include the following: - Ependymoma (grade I or II): A grade I or II ependymoma grows slowly and has cells that look something like normal cells. There are two types of grade I ependymoma myxopapillary ependymoma and subependymoma. A grade II ependymoma grows in a ventricle (fluid-filled space in the brain) and its connecting paths or in the spinal cord. In some cases, a grade I or II ependymoma can be cured. - Anaplastic ependymoma (grade III): An anaplastic ependymoma grows quickly and spreads into nearby tissues. The tumor cells look different from normal cells. This type of tumor usually has a worse prognosis than a grade I or II ependymoma. See the PDQ summary on Childhood Ependymoma Treatment for more information about ependymoma in children. Medulloblastomas A medulloblastoma is a type of embryonal tumor. Medulloblastomas are most common in children or young adults. See the PDQ summary on Childhood Central Nervous System Embryonal Tumors Treatment for more information about medulloblastomas in children. Pineal Parenchymal Tumors A pineal parenchymal tumor forms in parenchymal cells or pineocytes, which are the cells that make up most of the pineal gland. These tumors are different from pineal astrocytic tumors. Grades of pineal parenchymal tumors include the following: - Pineocytoma (grade II): A pineocytoma is a slow-growing pineal tumor. - Pineoblastoma (grade IV): A pineoblastoma is a rare tumor that is very likely to spread. See the PDQ summary on Childhood Central Nervous System Embryonal Tumors Treatment for more information about pineal parenchymal tumors in children. Meningeal Tumors A meningeal tumor, also called a meningioma, forms in the meninges (thin layers of tissue that cover the brain and spinal cord). It can form from different types of brain or spinal cord cells. Meningiomas are most common in adults. Types of meningeal tumors include the following: - Meningioma (grade I): A grade I meningioma is the most common type of meningeal tumor. A grade I meningioma is a slow-growing tumor. It forms most often in the dura mater. A grade I meningioma can be cured if it is completely removed by surgery. - Meningioma (grade II and III): This is a rare meningeal tumor. It grows quickly and is likely to spread within the brain and spinal cord. The prognosis is worse than a grade I meningioma because the tumor usually cannot be completely removed by surgery. A hemangiopericytoma is not a meningeal tumor but is treated like a grade II or III meningioma. A hemangiopericytoma usually forms in the dura mater. The prognosis is worse than a grade I meningioma because the tumor usually cannot be completely removed by surgery. Germ Cell Tumors A germ cell tumor forms in germ cells, which are the cells that develop into sperm in men or ova (eggs) in women. There are different types of germ cell tumors. These include germinomas, teratomas, embryonal yolk sac carcinomas, and choriocarcinomas. Germ cell tumors can be either benign or malignant. See the PDQ summary on Childhood Central Nervous System Germ Cell Tumors Treatment for more information about childhood germ cell tumors in the brain. Craniopharyngioma (Grade I) A craniopharyngioma is a rare tumor that usually forms in the center of the brain just above the pituitary gland (a pea-sized organ at the bottom of the brain that controls other glands). Craniopharyngiomas can form from different types of brain or spinal cord cells. See the PDQ summary on Childhood Craniopharyngioma Treatment for more information about craniopharyngioma in children.
0000006_1
Adult Central Nervous System Tumors
2
0000006_1-2
susceptibility
Who is at risk for Adult Central Nervous System Tumors? ?
Having certain genetic syndromes may increase the risk of a central nervous system tumor. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. There are few known risk factors for brain tumors. The following conditions may increase the risk of certain types of brain tumors: - Being exposed to vinyl chloride may increase the risk of glioma. - Infection with the Epstein-Barr virus, having AIDS (acquired immunodeficiency syndrome), or receiving an organ transplant may increase the risk of primary CNS lymphoma. (See the PDQ summary on Primary CNS Lymphoma for more information.) - Having certain genetic syndromes may increase the risk brain tumors: - Neurofibromatosis type 1 (NF1) or 2 (NF2). - von Hippel-Lindau disease. - Tuberous sclerosis. - Li-Fraumeni syndrome. - Turcot syndrome type 1 or 2. - Nevoid basal cell carcinoma syndrome.
0000006_1
Adult Central Nervous System Tumors
3
0000006_1-3
causes
What causes Adult Central Nervous System Tumors ?
The cause of most adult brain and spinal cord tumors is not known.
0000006_1
Adult Central Nervous System Tumors
4
0000006_1-4
symptoms
What are the symptoms of Adult Central Nervous System Tumors ?
The signs and symptoms of adult brain and spinal cord tumors are not the same in every person. Signs and symptoms depend on the following: - Where the tumor forms in the brain or spinal cord. - What the affected part of the brain controls. - The size of the tumor. Signs and symptoms may be caused by CNS tumors or by other conditions, including cancer that has spread to the brain. Check with your doctor if you have any of the following: Brain Tumor Symptoms - Morning headache or headache that goes away after vomiting. - Seizures. - Vision, hearing, and speech problems. - Loss of appetite. - Frequent nausea and vomiting. - Changes in personality, mood, ability to focus, or behavior. - Loss of balance and trouble walking. - Weakness. - Unusual sleepiness or change in activity level. Spinal Cord Tumor Symptoms - Back pain or pain that spreads from the back towards the arms or legs. - A change in bowel habits or trouble urinating. - Weakness or numbness in the arms or legs. - Trouble walking.
0000006_1
Adult Central Nervous System Tumors
5
0000006_1-5
exams and tests
How to diagnose Adult Central Nervous System Tumors ?
Tests that examine the brain and spinal cord are used to diagnose adult brain and spinal cord tumors. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a persons mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - Visual field exam: An exam to check a persons field of vision (the total area in which objects can be seen). This test measures both central vision (how much a person can see when looking straight ahead) and peripheral vision (how much a person can see in all other directions while staring straight ahead). Any loss of vision may be a sign of a tumor that has damaged or pressed on the parts of the brain that affect eyesight. - Tumor marker test : A procedure in which a sample of blood, urine, or tissue is checked to measure the amounts of certain substances made by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the body. These are called tumor markers. This test may be done to diagnose a germ cell tumor. - Gene testing : A laboratory test in which a sample of blood or tissue is tested for changes in a chromosome that has been linked with a certain type of brain tumor. This test may be done to diagnose an inherited syndrome. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging) with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of the brain and spinal cord. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). MRI is often used to diagnose tumors in the spinal cord. Sometimes a procedure called magnetic resonance spectroscopy (MRS) is done during the MRI scan. An MRS is used to diagnose tumors, based on their chemical make-up. - SPECT scan (single photon emission computed tomography scan): A procedure that uses a special camera linked to a computer to make a 3-dimensional (3-D) picture of the brain. A very small amount of a radioactive substance is injected into a vein or inhaled through the nose. As the substance travels through the blood, the camera rotates around the head and takes pictures of the brain. Blood flow and metabolism are higher than normal in areas where cancer cells are growing. These areas will show up brighter in the picture. This procedure may be done just before or after a CT scan. SPECT is used to tell the difference between a primary tumor and a tumor that has spread to the brain from somewhere else in the body. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the brain. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. PET is used to tell the difference between a primary tumor and a tumor that has spread to the brain from somewhere else in the body. A biopsy is also used to diagnose a brain tumor. If imaging tests show there may be a brain tumor, a biopsy is usually done. One of the following types of biopsies may be used: - Stereotactic biopsy : When imaging tests show there may be a tumor deep in the brain in a hard to reach place, a stereotactic brain biopsy may be done. This kind of biopsy uses a computer and a 3-dimensional (3-D) scanning device to find the tumor and guide the needle used to remove the tissue. A small incision is made in the scalp and a small hole is drilled through the skull. A biopsy needle is inserted through the hole to remove cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. - Open biopsy : When imaging tests show that there may be a tumor that can be removed by surgery, an open biopsy may be done. A part of the skull is removed in an operation called a craniotomy. A sample of brain tissue is removed and viewed under a microscope by a pathologist. If cancer cells are found, some or all of the tumor may be removed during the same surgery. Tests are done before surgery to find the areas around the tumor that are important for normal brain function. There are also ways to test brain function during surgery. The doctor will use the results of these tests to remove as much of the tumor as possible with the least damage to normal tissue in the brain. The pathologist checks the biopsy sample to find out the type and grade of brain tumor. The grade of the tumor is based on how the tumor cells look under a microscope and how quickly the tumor is likely to grow and spread. The following tests may be done on the tumor tissue that is removed: - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer. - Light and electron microscopy : A laboratory test in which cells in a sample of tissue are viewed under regular and high-powered microscopes to look for certain changes in the cells. - Cytogenetic analysis : A laboratory test in which cells in a sample of tissue are viewed under a microscope to look for certain changes in the chromosomes. Sometimes a biopsy or surgery cannot be done. For some tumors, a biopsy or surgery cannot be done safely because of where the tumor formed in the brain or spinal cord. These tumors are diagnosed and treated based on the results of imaging tests and other procedures. Sometimes the results of imaging tests and other procedures show that the tumor is very likely to be benign and a biopsy is not done.
0000006_1
Adult Central Nervous System Tumors
6
0000006_1-6
outlook
What is the outlook for Adult Central Nervous System Tumors ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options for primary brain and spinal cord tumors depend on the following: - The type and grade of the tumor. - Where the tumor is in the brain or spinal cord. - Whether the tumor can be removed by surgery. - Whether cancer cells remain after surgery. - Whether there are certain changes in the chromosomes. - Whether the cancer has just been diagnosed or has recurred (come back). - The patient's general health. The prognosis and treatment options for metastatic brain and spinal cord tumors depend on the following: - Whether there are more than two tumors in the brain or spinal cord. - Where the tumor is in the brain or spinal cord. - How well the tumor responds to treatment. - Whether the primary tumor continues to grow or spread.
0000006_1
Adult Central Nervous System Tumors
7
0000006_1-7
stages
What are the stages of Adult Central Nervous System Tumors ?
Key Points - There is no standard staging system for adult brain and spinal cord tumors. - Imaging tests may be repeated after surgery to help plan more treatment. There is no standard staging system for adult brain and spinal cord tumors. The extent or spread of cancer is usually described as stages. There is no standard staging system for brain and spinal cord tumors. Brain tumors that begin in the brain may spread to other parts of the brain and spinal cord, but they rarely spread to other parts of the body. Treatment of primary brain and spinal cord tumors is based on the following: - The type of cell in which the tumor began. - Where the tumor formed in the brain or spinal cord. - The amount of cancer left after surgery. - The grade of the tumor. Treatment of tumors that have spread to the brain from other parts of the body is based on the number of tumors in the brain. Imaging tests may be repeated after surgery to help plan more treatment. Some of the tests and procedures used to diagnose a brain or spinal cord tumor may be repeated after treatment to find out how much tumor is left.
0000006_1
Adult Central Nervous System Tumors
8
0000006_1-8
research
what research (or clinical trials) is being done for Adult Central Nervous System Tumors ?
New types of treatment are being tested in clinical trials. This summary section refers to new treatments being studied in clinical trials, but it may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Proton beam radiation therapy Proton beam radiation therapy is a type of high-energy, external radiation therapy that uses streams of protons (small, positively-charged pieces of matter) to make radiation. This type of radiation kills tumor cells with little damage to nearby tissues. It is used to treat cancers of the head, neck, and spine and organs such as the brain, eye, lung, and prostate. Proton beam radiation is different from x-ray radiation. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Biologic therapy is being studied for the treatment of some types of brain tumors. Treatments may include the following: - Dendritic cell vaccine therapy. - Gene therapy. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
0000006_1
Adult Central Nervous System Tumors
9
0000006_1-9
treatment
What are the treatments for Adult Central Nervous System Tumors ?
Key Points - There are different types of treatment for patients with adult brain and spinal cord tumors. - Five types of standard treatment are used: - Active surveillance - Surgery - Radiation therapy - Chemotherapy - Targeted therapy - Supportive care is given to lessen the problems caused by the disease or its treatment. - New types of treatment are being tested in clinical trials. - Proton beam radiation therapy - Biologic therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with adult brain and spinal cord tumors. Different types of treatment are available for patients with adult brain and spinal cord tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Five types of standard treatment are used: Active surveillance Active surveillance is closely watching a patients condition but not giving any treatment unless there are changes in test results that show the condition is getting worse. Active surveillance may be used to avoid or delay the need for treatments such as radiation therapy or surgery, which can cause side effects or other problems. During active surveillance, certain exams and tests are done on a regular schedule. Active surveillance may be used for very slow-growing tumors that do not cause symptoms. Surgery Surgery may be used to diagnose and treat adult brain and spinal cord tumors. Removing tumor tissue helps decrease pressure of the tumor on nearby parts of the brain. See the General Information section of this summary. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of radiation therapy include the following: - Conformal radiation therapy: Conformal radiation therapy is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. - Intensity-modulated radiation therapy (IMRT): IMRT is a type of 3-dimensional (3-D) external radiation therapy that uses a computer to make pictures of the size and shape of the tumor. Thin beams of radiation of different intensities (strengths) are aimed at the tumor from many angles. - Stereotactic radiosurgery: Stereotactic radiosurgery is a type of external radiation therapy. A rigid head frame is attached to the skull to keep the head still during the radiation treatment. A machine aims a single large dose of radiation directly at the tumor. This procedure does not involve surgery. It is also called stereotaxic radiosurgery, radiosurgery, and radiation surgery. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and grade of tumor and where it is in the brain or spinal cord. External radiation therapy is used to treat adult central nervous system tumors. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. To treat brain tumors, a wafer that dissolves may be used to deliver an anticancer drug directly to the brain tumor site after the tumor has been removed by surgery. The way the chemotherapy is given depends on the type and grade of tumor and where it is in the brain. Anticancer drugs given by mouth or vein to treat brain and spinal cord tumors cannot cross the blood-brain barrier and enter the fluid that surrounds the brain and spinal cord. Instead, an anticancer drug is injected into the fluid-filled space to kill cancer cells there. This is called intrathecal chemotherapy. See Drugs Approved for Brain Tumors for more information. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibody therapy is a type of targeted therapy that uses antibodies made in the laboratory from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Bevacizumab is a monoclonal antibody that binds to a protein called vascular endothelial growth factor (VEGF) and may prevent the growth of new blood vessels that tumors need to grow. Bevacizumab is used in the treatment of recurrent glioblastoma. Other types of targeted therapies are being studied for adult brain tumors, including tyrosine kinase inhibitors and new VEGF inhibitors. See Drugs Approved for Brain Tumors for more information. Supportive care is given to lessen the problems caused by the disease or its treatment. This therapy controls problems or side effects caused by the disease or its treatment and improves quality of life. For brain tumors, supportive care includes drugs to control seizures and fluid buildup or swelling in the brain. New types of treatment are being tested in clinical trials. This summary section refers to new treatments being studied in clinical trials, but it may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Proton beam radiation therapy Proton beam radiation therapy is a type of high-energy, external radiation therapy that uses streams of protons (small, positively-charged pieces of matter) to make radiation. This type of radiation kills tumor cells with little damage to nearby tissues. It is used to treat cancers of the head, neck, and spine and organs such as the brain, eye, lung, and prostate. Proton beam radiation is different from x-ray radiation. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Biologic therapy is being studied for the treatment of some types of brain tumors. Treatments may include the following: - Dendritic cell vaccine therapy. - Gene therapy. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. The following tests and procedures may be used to check whether a brain tumor has come back after treatment: - SPECT scan (single photon emission computed tomography scan): A procedure that uses a special camera linked to a computer to make a 3-dimensional (3-D) picture of the brain. A very small amount of a radioactive substance is injected into a vein or inhaled through the nose. As the substance travels through the blood, the camera rotates around the head and takes pictures of the brain. Blood flow and metabolism are higher than normal in areas where cancer cells are growing. These areas will show up brighter in the picture. This procedure may be done just before or after a CT scan. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the brain. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. Treatment Options by Type of Primary Adult Brain Tumor Astrocytic Tumors Brain Stem Gliomas Treatment of brain stem gliomas may include the following: - Radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult brain stem glioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Pineal Astrocytic Tumors Treatment of pineal astrocytic tumors may include the following: - Surgery and radiation therapy. For high-grade tumors, chemotherapy may also be given. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult pineal gland astrocytoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Pilocytic Astrocytomas Treatment of pilocytic astrocytomas may include the following: - Surgery to remove the tumor. Radiation therapy may also be given if tumor remains after surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult pilocytic astrocytoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Diffuse Astrocytomas Treatment of diffuse astrocytomas may include the following: - Surgery with or without radiation therapy. - Surgery followed by radiation therapy and chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult diffuse astrocytoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Anaplastic Astrocytomas Treatment of anaplastic astrocytomas may include the following: - Surgery and radiation therapy. Chemotherapy may also be given. - Surgery and chemotherapy. - A clinical trial of chemotherapy placed into the brain during surgery. - A clinical trial of a new treatment added to standard treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult anaplastic astrocytoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Glioblastomas Treatment of glioblastomas may include the following: - Surgery followed by radiation therapy and chemotherapy given at the same time, followed by chemotherapy alone. - Surgery followed by radiation therapy. - Chemotherapy placed into the brain during surgery. - Radiation therapy and chemotherapy given at the same time. - A clinical trial of a new treatment added to standard treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult glioblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Oligodendroglial Tumors Treatment of oligodendrogliomas may include the following: - Surgery with or without radiation therapy. Chemotherapy may be given after radiation therapy. Treatment of anaplastic oligodendroglioma may include the following: - Surgery followed by radiation therapy with or without chemotherapy. - A clinical trial of a new treatment added to standard treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult oligodendroglial tumors. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Mixed Gliomas Treatment of mixed gliomas may include the following: - Surgery and radiation therapy. Sometimes chemotherapy is also given. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult mixed glioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Ependymal Tumors Treatment of grade I and grade II ependymomas may include the following: - Surgery to remove the tumor. Radiation therapy may also be given if tumor remains after surgery. Treatment of grade III anaplastic ependymoma may include the following: - Surgery and radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult ependymal tumors. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Medulloblastomas Treatment of medulloblastomas may include the following: - Surgery and radiation therapy to the brain and spine. - A clinical trial of chemotherapy added to surgery and radiation therapy to the brain and spine Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult medulloblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Pineal Parenchymal Tumors Treatment of pineal parenchymal tumors may include the following: - For pineocytomas, surgery and radiation therapy. - For pineoblastomas, surgery, radiation therapy, and chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult pineal parenchymal tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Meningeal Tumors Treatment of grade I meningiomas may include the following: - Active surveillance for tumors with no signs or symptoms. - Surgery to remove the tumor. Radiation therapy may also be given if tumor remains after surgery. - Stereotactic radiosurgery for tumors smaller than 3 centimeters. - Radiation therapy for tumors that cannot be removed by surgery. Treatment of grade II and III meningiomas and hemangiopericytoma s may include the following: - Surgery and radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult meningeal tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Germ Cell Tumors There is no standard treatment for germ cell tumors (germinoma, embryonal carcinoma, choriocarcinoma, and teratoma). Treatment depends on what the tumor cells look like under a microscope, the tumor markers, where the tumor is in the brain, and whether it can be removed by surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult central nervous system germ cell tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Craniopharyngiomas Treatment of craniopharyngiomas may include the following: - Surgery to completely remove the tumor. - Surgery to remove as much of the tumor as possible, followed by radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with adult craniopharyngioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
0000014_2
Uterine Sarcoma
1
0000014_2-1
information
What is (are) Uterine Sarcoma ?
Key Points - Uterine sarcoma is a disease in which malignant (cancer) cells form in the muscles of the uterus or other tissues that support the uterus. - Being exposed to x-rays can increase the risk of uterine sarcoma. - Signs of uterine sarcoma include abnormal bleeding. - Tests that examine the uterus are used to detect (find) and diagnose uterine sarcoma. - Certain factors affect prognosis (chance of recovery) and treatment options. Uterine sarcoma is a disease in which malignant (cancer) cells form in the muscles of the uterus or other tissues that support the uterus. The uterus is part of the female reproductive system. The uterus is the hollow, pear-shaped organ in the pelvis, where a fetus grows. The cervix is at the lower, narrow end of the uterus, and leads to the vagina. Uterine sarcoma is a very rare kind of cancer that forms in the uterine muscles or in tissues that support the uterus. (Information about other types of sarcomas can be found in the PDQ summary on Adult Soft Tissue Sarcoma Treatment.) Uterine sarcoma is different from cancer of the endometrium, a disease in which cancer cells start growing inside the lining of the uterus. (See the PDQ summary on Endometrial Cancer Treatment for information).
0000014_2
Uterine Sarcoma
2
0000014_2-2
susceptibility
Who is at risk for Uterine Sarcoma? ?
Being exposed to x-rays can increase the risk of uterine sarcoma. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for uterine sarcoma include the following: - Past treatment with radiation therapy to the pelvis. - Treatment with tamoxifen for breast cancer. If you are taking this drug, have a pelvic exam every year and report any vaginal bleeding (other than menstrual bleeding) as soon as possible.
0000014_2
Uterine Sarcoma
3
0000014_2-3
symptoms
What are the symptoms of Uterine Sarcoma ?
Signs of uterine sarcoma include abnormal bleeding. Abnormal bleeding from the vagina and other signs and symptoms may be caused by uterine sarcoma or by other conditions. Check with your doctor if you have any of the following: - Bleeding that is not part of menstrual periods. - Bleeding after menopause. - A mass in the vagina. - Pain or a feeling of fullness in the abdomen. - Frequent urination.
0000014_2
Uterine Sarcoma
4
0000014_2-4
exams and tests
How to diagnose Uterine Sarcoma ?
Tests that examine the uterus are used to detect (find) and diagnose uterine sarcoma. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Pelvic exam: An exam of the vagina, cervix, uterus, fallopian tubes, ovaries, and rectum. A speculum is inserted into the vagina and the doctor or nurse looks at the vagina and cervix for signs of disease. A Pap test of the cervix is usually done. The doctor or nurse also inserts one or two lubricated, gloved fingers of one hand into the vagina and places the other hand over the lower abdomen to feel the size, shape, and position of the uterus and ovaries. The doctor or nurse also inserts a lubricated, gloved finger into the rectum to feel for lumps or abnormal areas. - Pap test: A procedure to collect cells from the surface of the cervix and vagina. A piece of cotton, a brush, or a small wooden stick is used to gently scrape cells from the cervix and vagina. The cells are viewed under a microscope to find out if they are abnormal. This procedure is also called a Pap smear. Because uterine sarcoma begins inside the uterus, this cancer may not show up on the Pap test. - Transvaginal ultrasound exam: A procedure used to examine the vagina, uterus, fallopian tubes, and bladder. An ultrasound transducer (probe) is inserted into the vagina and used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. The doctor can identify tumors by looking at the sonogram. - Dilatation and curettage : A procedure to remove samples of tissue from the inner lining of the uterus. The cervix is dilated and a curette (spoon-shaped instrument) is inserted into the uterus to remove tissue. The tissue samples are checked under a microscope for signs of disease. This procedure is also called a D&C. - Endometrial biopsy : The removal of tissue from the endometrium (inner lining of the uterus) by inserting a thin, flexible tube through the cervix and into the uterus. The tube is used to gently scrape a small amount of tissue from the endometrium and then remove the tissue samples. A pathologist views the tissue under a microscope to look for cancer cells.
0000014_2
Uterine Sarcoma
5
0000014_2-5
outlook
What is the outlook for Uterine Sarcoma ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer. - The type and size of the tumor. - The patient's general health. - Whether the cancer has just been diagnosed or has recurred (come back).
0000014_2
Uterine Sarcoma
6
0000014_2-6
stages
What are the stages of Uterine Sarcoma ?
Key Points - After uterine sarcoma has been diagnosed, tests are done to find out if cancer cells have spread within the uterus or to other parts of the body. - Uterine sarcoma may be diagnosed, staged, and treated in the same surgery. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for uterine sarcoma: - Stage I - Stage II - Stage III - Stage IV After uterine sarcoma has been diagnosed, tests are done to find out if cancer cells have spread within the uterus or to other parts of the body. The process used to find out if cancer has spread within the uterus or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following procedures may be used in the staging process: - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - CA 125 assay : A test that measures the level of CA 125 in the blood. CA 125 is a substance released by cells into the bloodstream. An increased CA 125 level is sometimes a sign of cancer or other condition. - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - Transvaginal ultrasound exam: A procedure used to examine the vagina, uterus, fallopian tubes, and bladder. An ultrasound transducer (probe) is inserted into the vagina and used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. The doctor can identify tumors by looking at the sonogram. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the abdomen and pelvis, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues to show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Cystoscopy : A procedure to look inside the bladder and urethra to check for abnormal areas. A cystoscope is inserted through the urethra into the bladder. A cystoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue samples, which are checked under a microscope for signs of cancer. Uterine sarcoma may be diagnosed, staged, and treated in the same surgery. Surgery is used to diagnose, stage, and treat uterine sarcoma. During this surgery, the doctor removes as much of the cancer as possible. The following procedures may be used to diagnose, stage, and treat uterine sarcoma: - Laparotomy: A surgical procedure in which an incision (cut) is made in the wall of the abdomen to check the inside of the abdomen for signs of disease. The size of the incision depends on the reason the laparotomy is being done. Sometimes organs are removed or tissue samples are taken and checked under a microscope for signs of disease. - Abdominal and pelvic washings: A procedure in which a saline solution is placed into the abdominal and pelvic body cavities. After a short time, the fluid is removed and viewed under a microscope to check for cancer cells. - Total abdominal hysterectomy: A surgical procedure to remove the uterus and cervix through a large incision (cut) in the abdomen. - Bilateral salpingo-oophorectomy: Surgery to remove both ovaries and both fallopian tubes. - Lymphadenectomy: A surgical procedure in which lymph nodes are removed and checked under a microscope for signs of cancer. For a regional lymphadenectomy, some of the lymph nodes in the tumor area are removed. For a radical lymphadenectomy, most or all of the lymph nodes in the tumor area are removed. This procedure is also called lymph node dissection. Treatment in addition to surgery may be given, as described in the Treatment Option Overview section of this summary. There are three ways that cancer spreads in the body. Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body. Cancer may spread from where it began to other parts of the body. When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if uterine sarcoma spreads to the lung, the cancer cells in the lung are actually uterine sarcoma cells. The disease is metastatic uterine sarcoma, not lung cancer. The following stages are used for uterine sarcoma: Stage I In stage I, cancer is found in the uterus only. Stage I is divided into stages IA and IB, based on how far the cancer has spread. - Stage IA: Cancer is in the endometrium only or less than halfway through the myometrium (muscle layer of the uterus). - Stage IB: Cancer has spread halfway or more into the myometrium. Stage II In stage II, cancer has spread into connective tissue of the cervix, but has not spread outside the uterus. Stage III In stage III, cancer has spread beyond the uterus and cervix, but has not spread beyond the pelvis. Stage III is divided into stages IIIA, IIIB, and IIIC, based on how far the cancer has spread within the pelvis. - Stage IIIA: Cancer has spread to the outer layer of the uterus and/or to the fallopian tubes, ovaries, and ligaments of the uterus. - Stage IIIB: Cancer has spread to the vagina or to the parametrium (connective tissue and fat around the uterus). - Stage IIIC: Cancer has spread to lymph nodes in the pelvis and/or around the aorta (largest artery in the body, which carries blood away from the heart). Stage IV In stage IV, cancer has spread beyond the pelvis. Stage IV is divided into stages IVA and IVB, based on how far the cancer has spread. - Stage IVA: Cancer has spread to the bladder and/or bowel wall. - Stage IVB: Cancer has spread to other parts of the body beyond the pelvis, including the abdomen and/or lymph nodes in the groin.
0000014_2
Uterine Sarcoma
7
0000014_2-7
treatment
What are the treatments for Uterine Sarcoma ?
Key Points - There are different types of treatment for patients with uterine sarcoma. - Four types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Hormone therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for patients with uterine sarcoma. Different types of treatments are available for patients with uterine sarcoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Four types of standard treatment are used: Surgery Surgery is the most common treatment for uterine sarcoma, as described in the Stages of Uterine Sarcoma section of this summary. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External and internal radiation therapy are used to treat uterine sarcoma, and may also be used as palliative therapy to relieve symptoms and improve quality of life. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Hormone therapy Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances produced by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Treatment Options by Stage Stage I Uterine Sarcoma Treatment of stage I uterine sarcoma may include the following: - Surgery (total abdominal hysterectomy, bilateral salpingo-oophorectomy, and lymphadenectomy). - Surgery followed by radiation therapy to the pelvis. - Surgery followed by chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I uterine sarcoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage II Uterine Sarcoma Treatment of stage II uterine sarcoma may include the following: - Surgery (total abdominal hysterectomy, bilateral salpingo-oophorectomy, and lymphadenectomy). - Surgery followed by radiation therapy to the pelvis. - Surgery followed by chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II uterine sarcoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage III Uterine Sarcoma Treatment of stage III uterine sarcoma may include the following: - Surgery (total abdominal hysterectomy, bilateral salpingo-oophorectomy, and lymphadenectomy). - A clinical trial of surgery followed by radiation therapy to the pelvis. - A clinical trial of surgery followed by chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III uterine sarcoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. Stage IV Uterine Sarcoma There is no standard treatment for patients with stage IV uterine sarcoma. Treatment may include a clinical trial using chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IV uterine sarcoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
0000014_2
Uterine Sarcoma
8
0000014_2-8
research
what research (or clinical trials) is being done for Uterine Sarcoma ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
0000007_5
Liver (Hepatocellular) Cancer
1
0000007_5-1
information
What is (are) Liver (Hepatocellular) Cancer ?
Key Points - Liver cancer is a disease in which malignant (cancer) cells form in the tissues of the liver. - Liver cancer is less common in the United States than in other parts of the world. - Having hepatitis or cirrhosis can increase the risk of developing liver cancer. Liver cancer is a disease in which malignant (cancer) cells form in the tissues of the liver. The liver is one of the largest organs in the body. It has four lobes and fills the upper right side of the abdomen inside the rib cage. Three of the many important functions of the liver are: - To filter harmful substances from the blood so they can be passed from the body in stools and urine. - To make bile to help digest fats from food. - To store glycogen (sugar), which the body uses for energy. See the following PDQ summaries for more information about liver (hepatocellular) cancer: - Liver (Hepatocellular) Cancer Prevention - Adult Primary Liver Cancer Treatment - Childhood Liver Cancer Treatment Liver cancer is less common in the United States than in other parts of the world. Liver cancer is uncommon in the United States, but is the fourth most common cancer in the world. In the United States, men, especially Chinese American men, have a greater risk of developing liver cancer.
0000007_5
Liver (Hepatocellular) Cancer
2
0000007_5-2
susceptibility
Who is at risk for Liver (Hepatocellular) Cancer? ?
Having hepatitis or cirrhosis can increase the risk of developing liver cancer. Anything that increases the chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. People who think they may be at risk should discuss this with their doctor. Risk factors for liver cancer include: - Having hepatitis B or hepatitis C; having both hepatitis B and hepatitis C increases the risk even more. - Having cirrhosis, which can be caused by: - hepatitis (especially hepatitis C); or - drinking large amounts of alcohol for many years or being an alcoholic. - Eating foods tainted with aflatoxin (poison from a fungus that can grow on foods, such as grains and nuts, that have not been stored properly).
0000013_1
Myelodysplastic Syndromes
1
0000013_1-1
information
What is (are) Myelodysplastic Syndromes ?
Key Points - Myelodysplastic syndromes are a group of cancers in which immature blood cells in the bone marrow do not mature or become healthy blood cells. - The different types of myelodysplastic syndromes are diagnosed based on certain changes in the blood cells and bone marrow. - Age and past treatment with chemotherapy or radiation therapy affect the risk of a myelodysplastic syndrome. - Signs and symptoms of a myelodysplastic syndrome include shortness of breath and feeling tired. - Tests that examine the blood and bone marrow are used to detect (find) and diagnose myelodysplastic syndromes. - Certain factors affect prognosis and treatment options. Myelodysplastic syndromes are a group of cancers in which immature blood cells in the bone marrow do not mature or become healthy blood cells. In a healthy person, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a lymphoid stem cell or a myeloid stem cell. A lymphoid stem cell becomes a white blood cell. A myeloid stem cell becomes one of three types of mature blood cells: - Red blood cells that carry oxygen and other substances to all tissues of the body. - Platelets that form blood clots to stop bleeding. - White blood cells that fight infection and disease. In a patient with a myelodysplastic syndrome, the blood stem cells (immature cells) do not become mature red blood cells, white blood cells, or platelets in the bone marrow. These immature blood cells, called blasts, do not work the way they should and either die in the bone marrow or soon after they go into the blood. This leaves less room for healthy white blood cells, red blood cells, and platelets to form in the bone marrow. When there are fewer healthy blood cells, infection, anemia, or easy bleeding may occur. The different types of myelodysplastic syndromes are diagnosed based on certain changes in the blood cells and bone marrow. - Refractory anemia: There are too few red blood cells in the blood and the patient has anemia. The number of white blood cells and platelets is normal. - Refractory anemia with ring sideroblasts: There are too few red blood cells in the blood and the patient has anemia. The red blood cells have too much iron inside the cell. The number of white blood cells and platelets is normal. - Refractory anemia with excess blasts: There are too few red blood cells in the blood and the patient has anemia. Five percent to 19% of the cells in the bone marrow are blasts. There also may be changes to the white blood cells and platelets. Refractory anemia with excess blasts may progress to acute myeloid leukemia (AML). See the PDQ Adult Acute Myeloid Leukemia Treatment summary for more information. - Refractory cytopenia with multilineage dysplasia: There are too few of at least two types of blood cells (red blood cells, platelets, or white blood cells). Less than 5% of the cells in the bone marrow are blasts and less than 1% of the cells in the blood are blasts. If red blood cells are affected, they may have extra iron. Refractory cytopenia may progress to acute myeloid leukemia (AML). - Refractory cytopenia with unilineage dysplasia: There are too few of one type of blood cell (red blood cells, platelets, or white blood cells). There are changes in 10% or more of two other types of blood cells. Less than 5% of the cells in the bone marrow are blasts and less than 1% of the cells in the blood are blasts. - Unclassifiable myelodysplastic syndrome: The numbers of blasts in the bone marrow and blood are normal, and the disease is not one of the other myelodysplastic syndromes. - Myelodysplastic syndrome associated with an isolated del(5q) chromosome abnormality: There are too few red blood cells in the blood and the patient has anemia. Less than 5% of the cells in the bone marrow and blood are blasts. There is a specific change in the chromosome. - Chronic myelomonocytic leukemia (CMML): See the PDQ summary on Myelodysplastic/ Myeloproliferative Neoplasms Treatment for more information.
0000013_1
Myelodysplastic Syndromes
6
0000013_1-6
treatment
What are the treatments for Myelodysplastic Syndromes ?
Key Points - There are different types of treatment for patients with myelodysplastic syndromes. - Treatment for myelodysplastic syndromes includes supportive care, drug therapy, and stem cell transplantation. - Three types of standard treatment are used: - Supportive care - Drug therapy - Chemotherapy with stem cell transplant - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their treatment. - Follow-up tests may be needed. There are different types of treatment for patients with myelodysplastic syndromes. Different types of treatment are available for patients with myelodysplastic syndromes. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Treatment for myelodysplastic syndromes includes supportive care, drug therapy, and stem cell transplantation. Patients with a myelodysplastic syndrome who have symptoms caused by low blood counts are given supportive care to relieve symptoms and improve quality of life. Drug therapy may be used to slow progression of the disease. Certain patients can be cured with aggressive treatment with chemotherapy followed by stem cell transplant using stem cells from a donor. Three types of standard treatment are used: Supportive care Supportive care is given to lessen the problems caused by the disease or its treatment. Supportive care may include the following: - Transfusion therapy Transfusion therapy (blood transfusion) is a method of giving red blood cells, white blood cells, or platelets to replace blood cells destroyed by disease or treatment. A red blood cell transfusion is given when the red blood cell count is low and signs or symptoms of anemia, such as shortness of breath or feeling very tired, occur. A platelet transfusion is usually given when the patient is bleeding, is having a procedure that may cause bleeding, or when the platelet count is very low. Patients who receive many blood cell transfusions may have tissue and organ damage caused by the buildup of extra iron. These patients may be treated with iron chelation therapy to remove the extra iron from the blood. - Erythropoiesis-stimulating agents Erythropoiesis-stimulating agents (ESAs) may be given to increase the number of mature red blood cells made by the body and to lessen the effects of anemia. Sometimes granulocyte colony-stimulating factor (G-CSF) is given with ESAs to help the treatment work better. - Antibiotic therapy Antibiotics may be given to fight infection. Drug therapy - Lenalidomide Patients with myelodysplastic syndrome associated with an isolated del(5q) chromosome abnormality who need frequent red blood cell transfusions may be treated with lenalidomide. Lenalidomide is used to lessen the need for red blood cell transfusions. - Immunosuppressive therapy Antithymocyte globulin (ATG) works to suppress or weaken the immune system. It is used to lessen the need for red blood cell transfusions. - Azacitidine and decitabine Azacitidine and decitabine are used to treat myelodysplastic syndromes by killing cells that are dividing rapidly. They also help genes that are involved in cell growth to work the way they should. Treatment with azacitidine and decitabine may slow the progression of myelodysplastic syndromes to acute myeloid leukemia. - Chemotherapy used in acute myeloid leukemia (AML) Patients with a myelodysplastic syndrome and a high number of blasts in their bone marrow have a high risk of acute leukemia. They may be treated with the same chemotherapy regimen used in patients with acute myeloid leukemia. Chemotherapy with stem cell transplant Stem cell transplant is a method of giving chemotherapy and replacing blood-forming cells destroyed by the treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of a donor and are frozen for storage. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. This treatment may not work as well in patients whose myelodysplastic syndrome was caused by past treatment for cancer. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
0000006_6
Childhood Central Nervous System Embryonal Tumors
1
0000006_6-1
information
What is (are) Childhood Central Nervous System Embryonal Tumors ?
Key Points - Central nervous system (CNS) embryonal tumors may begin in embryonic (fetal) cells that remain in the brain after birth. - There are different types of CNS embryonal tumors. - Pineoblastomas form in cells of the pineal gland. - Certain genetic conditions increase the risk of childhood CNS embryonal tumors. - Signs and symptoms of childhood CNS embryonal tumors or pineoblastomas depend on the child's age and where the tumor is. - Tests that examine the brain and spinal cord are used to detect (find) childhood CNS embryonal tumors or pineoblastomas. - A biopsy may be done to be sure of the diagnosis of CNS embryonal tumor or pineoblastoma. - Certain factors affect prognosis (chance of recovery) and treatment options. Central nervous system (CNS) embryonal tumors may begin in embryonic (fetal) cells that remain in the brain after birth. Central nervous system (CNS) embryonal tumors form in embryonic cells that remain in the brain after birth. CNS embryonal tumors tend to spread through the cerebrospinal fluid (CSF) to other parts of the brain and spinal cord. The tumors may be malignant (cancer) or benign (not cancer). Most CNS embryonal tumors in children are malignant. Malignant brain tumors are likely to grow quickly and spread into other parts of the brain. When a tumor grows into or presses on an area of the brain, it may stop that part of the brain from working the way it should. Benign brain tumors grow and press on nearby areas of the brain. They rarely spread to other parts of the brain. Both benign and malignant brain tumors can cause signs or symptoms and need treatment. Although cancer is rare in children, brain tumors are the third most common type of childhood cancer, after leukemia and lymphoma. This summary is about the treatment of primary brain tumors (tumors that begin in the brain). The treatment of metastatic brain tumors, which begin in other parts of the body and spread to the brain, is not discussed in this summary. For information about the different types of brain and spinal cord tumors, see the PDQ summary on Childhood Brain and Spinal Cord Tumors Treatment Overview. Brain tumors occur in both children and adults. Treatment for adults may be different from treatment for children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. The different types of CNS embryonal tumors include: - Medulloblastomas Most CNS embryonal tumors are medulloblastomas. Medulloblastomas are fast-growing tumors that form in brain cells in the cerebellum. The cerebellum is at the lower back part of the brain between the cerebrum and the brain stem. The cerebellum controls movement, balance, and posture. Medulloblastomas sometimes spread to the bone, bone marrow, lung, or other parts of the body, but this is rare. - Nonmedulloblastoma embryonal tumors Nonmedulloblastoma embryonal tumors are fast-growing tumors that usually form in brain cells in the cerebrum. The cerebrum is at the top of the head and is the largest part of the brain. The cerebrum controls thinking, learning, problem-solving, emotions, speech, reading, writing, and voluntary movement. Nonmedulloblastoma embryonal tumors may also form in the brain stem or spinal cord. There are four types of nonmedulloblastoma embryonal tumors: - Embryonal tumors with multilayered rosettes Embryonal tumors with multilayered rosettes (ETMR) are rare tumors that form in the brain and spinal cord. ETMR most commonly occur in young children and are fast-growing tumors. - Medulloepitheliomas Medulloepitheliomas are fast-growing tumors that usually form in the brain, spinal cord or nerves just outside the spinal column. They occur most often in infants and young children. - CNS neuroblastomas CNS neuroblastomas are a very rare type of neuroblastoma that form in the nerve tissue of the cerebrum or the layers of tissue that cover the brain and spinal cord. CNS neuroblastomas may be large and spread to other parts of the brain or spinal cord. - CNS ganglioneuroblastomas CNS ganglioneuroblastomas are rare tumors that form in nerve tissue of the brain and spinal cord. They may form in one area and be fast growing or form in more than one area and be slow growing. Childhood CNS atypical teratoid/rhabdoid tumor is also a type of embryonal tumor, but it is treated differently than other childhood CNS embryonal tumors. See the PDQ summary on Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment for more information. Pineoblastomas form in cells of the pineal gland. The pineal gland is a tiny organ in the center of the brain. The gland makes melatonin, a substance that helps control our sleep cycle. Pineoblastomas form in cells of the pineal gland and are usually malignant. Pineoblastomas are fast-growing tumors with cells that look very different from normal pineal gland cells. Pineoblastomas are not a type of CNS embryonal tumor but treatment for them is a lot like treatment for CNS embryonal tumors. Pineoblastoma is linked with inherited changes in the retinoblastoma (RB1) gene. A child with the inherited form of retinoblastoma (cancer than forms in the tissues of the retina) has an increased risk of pineoblastoma. When retinoblastoma forms at the same time as a tumor in or near the pineal gland, it is called trilateral retinoblastoma. MRI (magnetic resonance imaging) testing in children with retinoblastoma may detect pineoblastoma at an early stage when it can be treated successfully.
0000006_6
Childhood Central Nervous System Embryonal Tumors
2
0000006_6-2
susceptibility
Who is at risk for Childhood Central Nervous System Embryonal Tumors? ?
Certain genetic conditions increase the risk of childhood CNS embryonal tumors. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your childs doctor if you think your child may be at risk. Risk factors for CNS embryonal tumors include having the following inherited diseases: - Turcot syndrome. - Rubinstein-Taybi syndrome. - Nevoid basal cell carcinoma (Gorlin) syndrome. - Li-Fraumeni syndrome. - Fanconi anemia. In most cases, the cause of CNS embryonal tumors is not known.
0000006_6
Childhood Central Nervous System Embryonal Tumors
3
0000006_6-3
symptoms
What are the symptoms of Childhood Central Nervous System Embryonal Tumors ?
Signs and symptoms of childhood CNS embryonal tumors or pineoblastomas depend on the child's age and where the tumor is. These and other signs and symptoms may be caused by childhood CNS embryonal tumors, pineoblastomas, or other conditions. Check with your child's doctor if your child has any of the following: - Loss of balance, trouble walking, worsening handwriting, or slow speech. - Lack of coordination. - Headache, especially in the morning, or headache that goes away after vomiting. - Double vision or other eye problems. - Nausea and vomiting. - General weakness or weakness on one side of the face. - Unusual sleepiness or change in energy level. - Seizures. Infants and young children with these tumors may be irritable or grow slowly. Also they may not eat well or meet developmental milestones such as sitting, walking, and talking in sentences.
0000006_6
Childhood Central Nervous System Embryonal Tumors
4
0000006_6-4
exams and tests
How to diagnose Childhood Central Nervous System Embryonal Tumors ?
Tests that examine the brain and spinal cord are used to detect (find) childhood CNS embryonal tumors or pineoblastomas. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a patient's mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - MRI (magnetic resonance imaging) of the brain and spinal cord with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the brain and spinal cord. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). Sometimes magnetic resonance spectroscopy (MRS) is done during the MRI scan to look at the chemicals in brain tissue. - Lumbar puncture : A procedure used to collect cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs of tumor cells. The sample may also be checked for the amounts of protein and glucose. A higher than normal amount of protein or lower than normal amount of glucose may be a sign of a tumor. This procedure is also called an LP or spinal tap. A biopsy may be done to be sure of the diagnosis of CNS embryonal tumor or pineoblastoma. If doctors think your child may have a CNS embryonal tumor or pineoblastoma, a biopsy may be done. For brain tumors, the biopsy is done by removing part of the skull and using a needle to remove a sample of tissue. Sometimes, a computer-guided needle is used to remove the tissue sample. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The piece of skull is usually put back in place after the procedure. The following test may be done on the sample of tissue that is removed: - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of brain tumors.
0000006_6
Childhood Central Nervous System Embryonal Tumors
5
0000006_6-5
outlook
What is the outlook for Childhood Central Nervous System Embryonal Tumors ?
Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on: - The type of tumor and where it is in the brain. - Whether the cancer has spread within the brain and spinal cord when the tumor is found. - The age of the child when the tumor is found. - How much of the tumor remains after surgery. - Whether there are certain changes in the chromosomes, genes, or brain cells. - Whether the tumor has just been diagnosed or has recurred (come back).
0000006_6
Childhood Central Nervous System Embryonal Tumors
6
0000006_6-6
research
what research (or clinical trials) is being done for Childhood Central Nervous System Embryonal Tumors ?
New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
0000006_6
Childhood Central Nervous System Embryonal Tumors
8
0000006_6-8
treatment
What are the treatments for Childhood Central Nervous System Embryonal Tumors ?
Key Points - There are different types of treatment for children who have central nervous system (CNS) embryonal tumors. - Children who have CNS embryonal tumors should have their treatment planned by a team of health care providers who are experts in treating brain tumors in children. - Childhood brain tumors may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years. - Some cancer treatments cause side effects months or years after treatment has ended. - Five types of treatment are used: - Surgery - Radiation therapy - Chemotherapy - High-dose chemotherapy with stem cell rescue - Targeted therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed. There are different types of treatment for children who have central nervous system (CNS) embryonal tumors. Different types of treatment are available for children with central nervous system (CNS) embryonal tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Children who have CNS embryonal tumors should have their treatment planned by a team of health care providers who are experts in treating brain tumors in children. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with brain tumors and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Neurosurgeon. - Neurologist. - Neuropathologist. - Neuroradiologist. - Rehabilitation specialist. - Radiation oncologist. - Psychologist. Childhood brain tumors may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years. Signs or symptoms caused by the tumor may begin before the cancer is diagnosed and continue for months or years. It is important to talk with your child's doctors about signs or symptoms caused by the tumor that may continue after treatment. Some cancer treatments cause side effects months or years after treatment has ended. Side effects from cancer treatment that begin during or after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Children diagnosed with medulloblastoma may have certain problems after surgery or radiation therapy such as changes in the ability to think, learn, and pay attention. Also, cerebellar mutism syndrome may occur after surgery. Signs of this syndrome include the following: - Delayed ability to speak. - Trouble swallowing and eating. - Loss of balance, trouble walking, and worsening handwriting. - Loss of muscle tone. - Mood swings and changes in personality. Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information). Five types of treatment are used: Surgery Surgery is used to diagnose and treat a childhood CNS embryonal tumor as described in the General Information section of this summary. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy and/or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of radiation therapy include the following: - Conformal radiation therapy: Conformal radiation therapy is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. This allows a high dose of radiation to reach the tumor and causes less damage to nearby healthy tissue. - Stereotactic radiation therapy: Stereotactic radiation therapy is a type of external radiation therapy. A rigid head frame is attached to the skull to keep the head still during the radiation treatment. A machine aims radiation directly at the tumor, causing less damage to nearby healthy tissue. The total dose of radiation is divided into several smaller doses given over several days. This procedure is also called stereotactic external-beam radiation therapy and stereotaxic radiation therapy. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. Radiation therapy to the brain can affect growth and development in young children. For this reason, clinical trials are studying new ways of giving radiation that may have fewer side effects than standard methods. The way the radiation therapy is given depends on the type of cancer being treated. External radiation therapy is used to treat childhood CNS embryonal tumors. Because radiation therapy can affect growth and brain development in young children, especially children who are three years old or younger, chemotherapy may be given to delay or reduce the need for radiation therapy. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on the type of cancer being treated. Regular dose anticancer drugs given by mouth or vein to treat central nervous system tumors cannot cross the blood-brain barrier and enter the fluid that surrounds the brain and spinal cord. Instead, an anticancer drug is injected into the fluid-filled space to kill cancer cells that may have spread there. This is called intrathecal or intraventricular chemotherapy. High-dose chemotherapy with stem cell rescue High-dose chemotherapy with stem cell rescue is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Signal transduction inhibitors are a type of targeted therapy used to treat recurrent medulloblastoma. Signal transduction inhibitors block signals that are passed from one molecule to another inside a cell. Blocking these signals may kill cancer cells. Vismodegib is a type of signal transduction inhibitor. New types of treatment are being tested in clinical trials. Information about clinical trials is available from the NCI website. Patients may want to think about taking part in a clinical trial. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Patients can enter clinical trials before, during, or after starting their cancer treatment. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. Follow-up tests may be needed. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. (See the General Information section for a list of tests.) Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. This is sometimes called re-staging. Some of the imaging tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the brain tumor has recurred (come back). If the imaging tests show abnormal tissue in the brain, a biopsy may also be done to find out if the tissue is made up of dead tumor cells or if new cancer cells are growing. These tests are sometimes called follow-up tests or check-ups. Treatment Options for Childhood Central Nervous System Embryonal Tumors and Childhood Pineoblastoma Newly Diagnosed Childhood Medulloblastoma In newly diagnosed childhood medulloblastoma, the tumor itself has not been treated. The child may have received drugs or treatment to relieve signs or symptoms caused by the tumor. Children older than 3 years with average-risk medulloblastoma Standard treatment of average-risk medulloblastoma in children older than 3 years includes the following: - Surgery to remove as much of the tumor as possible. This is followed by radiation therapy to the brain and spinal cord. Chemotherapy is also given during and after radiation therapy. - Surgery to remove the tumor, radiation therapy, and high-dose chemotherapy with stem cell rescue. Children older than 3 years with high-risk medulloblastoma Standard treatment of high-risk medulloblastoma in children older than 3 years includes the following: - Surgery to remove as much of the tumor as possible. This is followed by a larger dose of radiation therapy to the brain and spinal cord than the dose given for average-risk medulloblastoma. Chemotherapy is also given during and after radiation therapy. - Surgery to remove the tumor, radiation therapy, and high-dose chemotherapy with stem cell rescue. - A clinical trial of new combinations of radiation therapy and chemotherapy. Children aged 3 years and younger Standard treatment of medulloblastoma in children aged 3 years and younger is: - Surgery to remove as much of the tumor as possible, followed by chemotherapy. Other treatments that may be given after surgery include the following: - Chemotherapy with or without radiation therapy to the area where the tumor was removed. - High-dose chemotherapy with stem cell rescue. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood medulloblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Newly Diagnosed Childhood Nonmedulloblastoma Embryonal Tumors In newly diagnosed childhood nonmedulloblastoma embryonal tumors, the tumor itself has not been treated. The child may have received drugs or treatment to relieve symptoms caused by the tumor. Children older than 3 years Standard treatment of nonmedulloblastoma embryonal tumors in children older than 3 years is: - Surgery to remove as much of the tumor as possible. This is followed by radiation therapy to the brain and spinal cord. Chemotherapy is also given during and after radiation therapy. Children aged 3 years and younger Standard treatment of nonmedulloblastoma embryonal tumors in children aged 3 years and younger is: - Surgery to remove as much of the tumor as possible, followed by chemotherapy. Other treatments that may be given after surgery include the following: - Chemotherapy and radiation therapy to the area where the tumor was removed. - High-dose chemotherapy with stem cell rescue. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood nonmedulloblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Newly Diagnosed Childhood Medulloepithelioma In newly diagnosed childhood medulloepithelioma, the tumor itself has not been treated. The child may have received drugs or treatment to relieve symptoms caused by the tumor. Children older than 3 years Standard treatment of medulloepithelioma in children older than 3 years includes the following: - Surgery to remove as much of the tumor as possible. This is followed by radiation therapy to the brain and spinal cord. Chemotherapy is also given during and after radiation therapy. - Surgery to remove the tumor, radiation therapy, and high-dose chemotherapy with stem cell rescue. - A clinical trial of new combinations of radiation therapy and chemotherapy. Children aged 3 years and younger Standard treatment of medulloepithelioma in children aged 3 years and younger includes the following: - Surgery to remove as much of the tumor as possible, followed by chemotherapy. - High-dose chemotherapy with stem cell rescue. - Radiation therapy, when the child is older. - A clinical trial of new combinations and schedules of chemotherapy or new combinations of chemotherapy with stem cell rescue. Treatment of medulloepithelioma in children aged 3 years and younger is often within a clinical trial. Check the list of NCI-supported cancer clinical trials that are now accepting patients with childhood medulloepithelioma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Newly Diagnosed Childhood Pineoblastoma In newly diagnosed childhood pineoblastoma, the tumor itself has not been treated. The child may have received drugs or treatment to relieve symptoms caused by the tumor. Children older than 3 years Standard treatment of pineoblastoma in children older than 3 years includes the following: - Surgery to remove the tumor. The tumor usually cannot be completely removed because of where it is in the brain. Surgery is often followed by radiation therapy to the brain and spinal cord and chemotherapy. - A clinical trial of high-dose chemotherapy after radiation therapy and stem cell rescue. - A clinical trial of chemotherapy during radiation therapy. Children aged 3 years and younger Standard treatment of pineoblastoma in children aged 3 years and younger includes the following: - Biopsy to diagnose pineoblastoma followed by chemotherapy. - If the tumor responds to chemotherapy, radiation therapy is given when the child is older. - High-dose chemotherapy with stem cell rescue. Check the list of NCI-supported cancer clinical trials that are now accepting patients with untreated childhood pineoblastoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website. Recurrent Childhood Central Nervous System Embryonal Tumors and Pineoblastomas The treatment of central nervous system (CNS) embryonal tumors and pineoblastoma that recur (come back) depends on: - The type of tumor. - Whether the tumor recurred where it first formed or has spread to other parts of the brain, spinal cord, or body. - The type of treatment given in the past. - How much time has passed since the initial treatment ended. - Whether the patient has signs or symptoms. Treatment for recurrent childhood CNS embryonal tumors and pineoblastomas may include the following: - For children who previously received radiation therapy and chemotherapy, treatment may include repeat radiation at the site where the cancer started and where the tumor has spread. Stereotactic radiation therapy and/or chemotherapy may also be used. - For infants and young children who previously received chemotherapy only and have a local recurrence, treatment may be chemotherapy with radiation therapy to the tumor and the area close to it. Surgery to remove the tumor may also be done. - For patients who previously received radiation therapy, high-dose chemotherapy and stem cell rescue may be used. It is not known whether this treatment improves survival. - Targeted therapy with a signal transduction inhibitor for patients whose cancer has certain changes in the genes. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent childhood central nervous system embryonal tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
0000006_7
Childhood Central Nervous System Germ Cell Tumors
1
0000006_7-1
information
What is (are) Childhood Central Nervous System Germ Cell Tumors ?
Key Points - Childhood central nervous system (CNS) germ cell tumors form from germ cells. - There are different types of childhood CNS germ cell tumors. - Germinomas - Nongerminomas - The cause of most childhood CNS germ cell tumors is not known. - Signs and symptoms of childhood CNS germ cell tumors include unusual thirst, frequent urination, early puberty, or vision changes. - Imaging studies and tests are used to detect (find) and diagnose childhood CNS germ cell tumors. - A biopsy may be done to be sure of the diagnosis of CNS germ cell tumor. - Certain factors affect prognosis (chance of recovery). Childhood central nervous system (CNS) germ cell tumors form from germ cells. Germ cells are a type of cell that form as a fetus (unborn baby) develops. These cells later become sperm in the testicles or eggs in the ovaries. Sometimes while the fetus is forming, germ cells travel to other parts of the body and grow into germ cell tumors. Germ cells tumors that form in the brain or spinal cord are called CNS germ cell tumors. The most common places for one or more central nervous system (CNS) germ cell tumors to form is near the pineal gland and in an area of the brain that includes the pituitary gland and the tissue just above it. Sometimes germ cell tumors may form in other areas of the brain. This summary is about germ cell tumors that start in the central nervous system (brain and spinal cord). Germ cell tumors may also form in other parts of the body. See the PDQ summary on Childhood Extracranial Germ Cell Tumors Treatment for information on germ cell tumors that are extracranial (outside the brain). CNS germ cell tumors usually occur in children, but may occur in adults. Treatment for children may be different than treatment for adults. See the following PDQ summaries for information about treatment for adults: - Adult Central Nervous System Tumors Treatment - Extragonadal Germ Cell Tumors Treatment For information about other types of childhood brain and spinal cord tumors, see the PDQ summary on Childhood Brain and Spinal Cord Tumors Treatment Overview. There are different types of childhood CNS germ cell tumors. There are different types of CNS germ cell tumors. The type of CNS germ cell tumor depends on what the cells look like under a microscope. This summary is about the treatment of the following types of CNS germ cell tumors: Germinomas Germinomas are the most common type of CNS germ cell tumor and have a good prognosis. Nongerminomas Some nongerminomas make hormones. CNS teratomas are a type of nongerminoma that does not make hormones. They may have different kinds of tissue in them, such as hair, muscle, and bone. Teratomas are described as mature or immature, based on how normal the cells look under a microscope. Sometimes teratomas are a mix of mature and immature cells. Other types of nongerminomas include the following: - Choriocarcinomas make the hormone beta-human chorionic gonadotropin (-hCG). - Embryonal carcinomas do not make hormones. - Yolk sac tumors make the hormone alpha-fetoprotein (AFP). - Mixed germ cell tumors are made of more than one kind of germ cell.